Contents

OVERVIEW
Suppressor T cells in allogeneic models.
I.V. Hutchinson ... 547

EXPERIMENTAL TRANSPLANTATION
Lifelong reversal of the metabolic abnormalities of advanced diabetes in rats by whole-pancreas transplantation.
Monoclonal antibody analysis of canine hematopoietic cells: Role of la-like and Thy-1 antigens in bone marrow engraftment.

CLINICAL TRANSPLANTATION
Monoclonal antibody therapy: Anti-idiotypic and non-anti-idiotypic antibodies to OKT3 arising despite intense immunosuppression.
G.J. Jaffers, T.C. Fuller, A.B. Cosimi, P.S. Russell, H.J. Winn, and R.B. Colvin 572
ALG treatment of steroid-resistant rejection in patients receiving cyclosporine.
A.J. Matas, V.A. Tellis, T. Quinn, D. Glichlick, R. Soberman, R. Weiss, G. Karwa, and F.J. Veith .. 579
Severe aplastic anemia associated with chronic mucocutaneous candidiasis: Immunologic and hematologic reconstitution after allogeneic bone marrow transplantation.
Antigen-specific antibody responses of lymphocytes to tetanus toxoid after human marrow transplantation.
S. Shiobara, L.G. Lum, R.P. Witherspoon, and R. Storb 587
Diagnosis of tubular injury in renal transplant patients by a urinary assay for a proximal tubular antigen, the adenosine-deaminase-binding protein.
A critical look at survival of diabetics with end-stage renal disease: Transplantation versus dialysis therapy.
Plasma exchange for platelet alloimmunization.
Results of living-related kidney transplantation in Puerto Rico.
The effects of cyclosporine on Toxoplasma gondii in vivo and in vitro.
R.E. McCabe, B.J. Luft, and J.S. Remington 611
Autonomic system dysfunction and polyneuropathy in nondiabetic uremia: A one year follow-up study after renal transplantation.
G. Solders, A. Persson, and H. Wilczek 616
IMMUNOBIOLOGY

Allospecificity of activated T cells grown from endomyocardial biopsies from heart transplant patients.

Induction of transplantation tolerance in rats by spleen allografts: I. Evidence that rats tolerant of spleen allografts contain two phenotypically distinct T suppressor cells.
W.R. Duncan, S.M. Stepkowski, and H. Bitter-Suermann ... 626

Skin allograft rejection by both L3/T4+ and Lyt-2+ T cell subsets.
S. Cobbold and H. Waldmann .. 634

Improved renal allograft function and survival following nonspecific blood transfusions: I. Induction of soluble suppressor factors inhibiting the mitogenic response.
R. Roy, J. Lachance, R. Noel, J.H. Grose, and R. Beaudoin. .. 640

Treatment and prevention of acute graft-versus-host disease with thalidomide in a rat model.
G.B. Vogelsang, A.D. Hess, G. Gordon, and G.W. Santos. ... 644

BRIEF COMMUNICATIONS

Transfusion of donor class I MHC antigen prior to kidney transplantation in dogs.
P.F. Gores, A. Sitges-Serra, U.J. Hesse, J.S. Najarian, and D.E.R. Sutherland. 648

The influence of the transplantation technique on the duration of endocrine function of pancreas allografts in the rat model.
W. Timmermann, T. Schang, and A. Thiede. ... 650

The effect of exchange blood transfusions on the cytotoxic alloantibody response in AS strain rats.
N. Mistry, T. Horsburgh, P.S. Veitch, and P.R.F. Bell. ... 652

Optimization by timing of oral cyclosporine to prevent acute kidney allograft rejection in dogs.

Determination of cyclosporine concentration in bile.
L. Scanlon, R. Baloh, B. Gridelli, K.M. Rao, B. Shaw, T. Starzl, and A. Sanghvi. 657

Encapsulation of cyclosporine by phosphatidylinositol-cholesterol liposomes.
L. Stuhne-Sekalec, J. Chudzik, and N.Z. Stanacev ... 659

Effect of cyclosporine and low-temperature culture on prevention of rejection of islet xenografts (rat-to-mouse).
R. Terasaka, P.E. Lacy, R.P. Bucy, and J.M. Davie .. 661

Positive direct antiglobulin tests associated with intravenous gamma globulin use in bone marrow transplant recipients.
C.F. Whitsett, J.A. Pierce, and L.E. Daffin. .. 663

Hematuria and hypercalciuria following renal transplantation.
J.E. Springate, R.D. Fildes, S.M. Mauer, and L.G. Feld. ... 664

Successful treatment of persistent post-transplant hyperparathyroidism with diphosphonate.
K.M.L. Leunissen, F-J.F.E. Vismans, R.J.M. van Leendert, and J.P. van Hooff 666
Transplantation
INSTRUCTIONS FOR AUTHORS

Articles dealing with completed research, and brief or preliminary reports designated as Brief Communication will be considered for publication. The latter should present new ideas or techniques or findings of special timeliness and significance. Brief Communications should not be divided into sections; it is recommended that the last paragraph be a summary and the entire double-spaced typewritten manuscript including tables and figures should not exceed 10 pages. Letters to the Editor, whether in commentary on articles appearing in TRANSPLANTATION or about other pertinent matters will also be considered. Overview articles should cover a topic of special interest in the field of transplantation. The overview should not exceed 4000 words and should not be divided in sections. The references should be done according to the instructions below for References. If and when manuscripts are accepted for publication, it will be necessary for the Williams & Wilkins Company to receive in writing the assignment of copyright from all authors of all manuscripts. Forms for this purpose will be supplied. Submit an original, 2 copies, and 3 sets of illustrations. Avoid extensive handwritten alterations. Failure to observe the format requested may delay processing of the manuscript.

Typescript must be double-spaced throughout. Use bond paper for the original copy. Maintain a minimum left margin of approximately 4 cm and a right margin of 2.5 cm. Number the pages in sequence.

Title page should carry the title, author's name under the title, and institution and address under the author's name. Include postal zone or “zip code” in the address. To avoid confusion in bibliographic indexing, it is preferable for authors to state given names in full.

Title should be concise (preferably not more than 15 words). Summary of not more than 250 words is to be typed on a separate sheet.

Footnotes for the text should be typed double-spaced on a separate page, but all footnotes may be typed on the same page. Footnotes should be designated by superscript Arabic numbers and numbered in sequence. Footnotes should include source of support (cited as footnote to the title), current address, correspondence address, and abbreviations.

Abbreviations used in the text and their meanings should be listed alphabetically and typed double-spaced on a separate sheet of paper or on the page with other footnotes.

References should be typed double-spaced on a separate sheet. References should be numbered in the order in which they are cited in the text. Six or fewer authors should be listed. If there are seven or more, only the first three and “et al.” should be listed. The titles of articles are to be included, and the journal names are to be abbreviated according to the Index Medicus style. Text citations of the references are placed in parentheses. Only papers that have been accepted for publication should be listed in the references. Manuscripts in preparation, unpublished observations, and personal communications should be referred to as such in the text. Completed manuscripts that have been submitted for publication may be cited as footnotes to the text. If the manuscript is subsequently in press, appropriate changes can be made in the galleys. The following are examples of the reference style:

Tables should be typed double-spaced throughout (including column heads, footnotes, and data), each table on a separate sheet. Number the tables in sequence with Arabic numerals. For each table supply a concise descriptive heading. Designate explanatory footnotes by superscript lowercase Latin letters. Type footnotes immediately below the table to which they refer. All columns must carry concise headings descriptive of the data in the column. Photographs of tables are not acceptable. All tables are cited in the text in numerical order.

Figures (i.e., photomicrographs, charts, and graphs) are to be supplied as unmounted glossy photographic prints. Lettering on graphs should be large enough so that when the figure is reduced to the width of a single column (8.8 cm), the lettering is still legible (1.5 mm high for an 8.8-cm-wide figure). Photomicrographs and other photographs should be no larger than 8.8 cm in width, if possible. Number the figures in sequence in Arabic numbers. Figures should be labeled on the back with the author’s name, figure number, and the word “top.” All figures are cited in the text in numerical order. Figure legends, numbered to correspond with the figures, typed double-spaced, and assembled on a separate sheet are to be supplied for all figures. These legends should explain all symbols used on the figures and should indicate staining and magnification for photomicrographs.

Page charges. Authors will be charged $40.00 for each printed page per article. Under exceptional circumstances, page charges will be waived by the editors.

Submit manuscripts to either editorial office:

A. P. Monaco, M.D.
TRANSPLANTATION
North American Editorial Office
New England Deaconess Hospital
185 Pilgrim Road
Boston, Massachusetts 02215

J. R. Batchelor, M.D.
TRANSPLANTATION
European Editorial Office
Department of Immunology
Royal Postgraduate Medical School
Hammersmith Hospital
Ducane Road
London W12, England
Information for Subscribers

Published monthly, two volumes a year, beginning January and July.

Annual Subscription Rates—U. S. A. AND POSSESSIONS: personal, $105.00; institutional, $130.00; single copies, $12.00. FOREIGN: personal, $120.00; institutional, $145.00; single copies, $15.00. Institutional (multiple reader) rate applies to libraries, schools, hospitals, clinics, group practices, and federal commercial, and private institutions and organizations. A special in-training rate of $60.00 ($85.00 foreign) is available to residents, fellows, interns and students. (Prices subject to change) In requesting this rate, which is limited to three years, please give training status and name of institution. Subscribers may request that their copies be sent by air mail; the extra charge entailed for air service will be billed to the subscriber.

New and renewal subscriptions are entered to begin with the January or July issue. Correspondence regarding subscriptions should be addressed to the publishers.

Change of address. Publisher must be notified 60 days in advance. Undeliverable journals will be destroyed. Duplicates (if available) can be ordered from the publishers at the regular price of single issues.

Reprints of individual articles are available only from authors.

Microfilm. For availability, inquire of Williams & Wilkins. Japanese Yen price is available from our sole agent: USACO Corporation, 13-12 Shimabashi 1-Chome, Minato-Ku, Tokyo 105, Japan, telephone 03-502-6471.

WILLIAMS & WILKINS
Publishers of Books and Periodicals in Medicine and the Allied Sciences
425 East Preston Street, Baltimore, Md. 21202, U.S.A.

Author Index

Amadeo, J. H., 606
Baloh, R., 657
Bander, N. H., 593
Beatty, P., 583
Beaudoin, R., 640
Bell, P. R. F., 652
Bensinger, W. L., 692
Berruda, M. C., 565
Bitter-Suermann, H., 626
Bradstock, K. F., 565
Broomhead, A. F., 565
Buckner, C. D., 602
Bucy, R. P., 661
Buexa, C., 598
Cavallini, M., 654
Chudzik, J., 659
Clift, R. A., 662
Cobbold, S., 634
Colvin, R. B., 572
Cordon-Cardo, C., 593
Cornsilhen, G., 654
Cosimi, A. B., 572, 593
Daffin, L. E., 663
Davie, J. M., 661
Deeg, H. J., 583
Delmonico, P. L., 593
Duncan, W. R., 626
Duquesnoy, R. J., 620
Feld, L. G., 664
Filides, R. D., 664
Finstad, C. L., 593
Foller, T. C., 572
Fung, J., 620
Girard, B., 556
Glichlick, D., 579
Gonzalez, Z., 606
Goormastic, M., 598
Gordon, G., 644
Gores, P. F., 648
Greenleaf, G. E., 556
Grudeli, B., 657
Griffith, B. P., 620
Grose, J. H., 640
Hallberg, F., 654
Hansen, W. P., 593
Hardesty, R. L., 620
Heils, J., 654
Hess, A. D., 644
Hesse, U. J., 648
Horsburgh, T., 652
Hughes, W. G., 565
Hutchinson, I. V., 547
Jaffers, G. J., 572
Kabral, A., 565
Karwa, G., 579
Kaufman, C., 620
Khauri, R. B., 598
Klotz, L. H., 593
Lachance, J., 640
Lacy, P. E., 661
Leunissens, K. M. L., 666
Levy, G. J., 593
Lufi, B. J., 611
Lum, L. G., 583, 587
Magnusson, M., 598
Matas, A. J., 579
Mauer, S. M., 664
McCabe, R. E., 611
Mistry, N., 652
Najarian, J. S., 648, 654
Nakamoto, S., 598
Noel, R., 640
Novick, A. C., 598
Old, L. J., 593
Orloff, M. J., 556
Paganini, E., 598
Pernson, A., 616
Pierce, J. A., 663
Piper, D. J., 593
Prendergast, M. M., 565
Quinn, T., 579
Rabin, B. S., 620
Ramirez-Gonzalez, R., 606
Rao, K. M., 657
Remington, J. S., 611
Rive-Mora, E., 598
Roy, R., 640
Rubin, R. H., 593
Russell, P. S., 572, 593
Sanders, J., 583
Sanghvi, A., 657
Sancho-Pablos, E. A., 600
Santo, G. W., 644
Scanlon, L., 657
Schang, T., 650
Schreiber, M. J., 598
Shaw, B., 657
Shiobar, S., 587
Signes-Serra, A., 648
Slichter, S. J., 692
Soberman, R., 579
Solders, G., 616
Springate, J. E., 664
Stanacev, N. Z., 659
Starzl, T., 657
Steinmüller, D. R., 598
Stepkowski, S. M., 626
Storh, R., 583, 587
Stuhle-Skalec, L., 659
Sullivan, K. M., 583
Sutherland, D. R. E., 648, 654
Tellis, V. A., 579
Terazawa, K., 661
Thiede, A., 650
Thomas, E. D., 583, 602
Thompson, R. E., 593
Timmermann, W., 590
Tiver, K., 565
Tolkoff-Rubin, N. E., 593
Urban, P., 556
Van Hooft, J. P., 666
Van Leendert, R. J. M., 666
Veitch, P. S., 652
Veitch, F. J., 579
Vidt, D. G., 598
Vismans, F.-J. E. F., 666
Vogelsang, G. B., 644
Waldmann, H., 634
Weiss, R., 579
Witets, C. F., 663
Wilczek, H., 616
Winn, H. J., 572
Witherspoon, R. P., 587
Zeevi, A., 620
Zerbe, T. R., 620
MONOCLONAL ANTIBODY THERAPY

ANTI-IDIOPTYPIC AND NON-ANTI-IDIOPTYPIC ANTIBODIES TO OKT3 ARISING DESPITE INTENSE IMMUNOSUPPRESSION

GREGORY J. JAFFERS, THOMAS C. FULLER, A. BENEDICT COSIMI, PAUL S. RUSSELL, HENRY J. WINN, AND ROBERT B. COLVIN

Transplantation-Immunology and Immunopathology Units, Departments of Surgery and Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114

The frequency, timing, and specificity of the humoral antibody response to a murine monoclonal antibody (OKT3, IgG2a) were measured in 21 consecutive renal allotransplant recipients. These patients received i.v. OKT3, 1–5 mg/day for 10–20 days as treatment for acute graft rejection. Maintenance immunosuppression consisted of azathioprine and corticosteroids. Using three different assays, an antibody response was detected in 75% of the 20 patients with adequate samples. The ELISA assay of the overall IgM and IgG reactivity to OKT3 revealed that IgM anti-OKT3 appeared in 65% and IgG anti-OKT3 in 50% of the patients, reaching a peak 20–33 days after the last dose of OKT3. The IgM preceeded the IgG in most cases (P<0.02) and in 8 cases was detected during therapy. One patient had high levels of IgM anti-OKT3 before therapy, yet responded normally to OKT3. Interference with the therapeutic effectiveness was evident in one patient who developed IgG antibodies during therapy. His serum blocked the binding of F-OKT3 to normal lymphocytes in the presence of normal BALB/c serum. The blocking assay, done by flow cytometry, measured anti-idiotypic (Id) reactivity since the sera did not affect the binding of OKT8 (another IgG2a) or anti-Leu4 (another anti-T3), and the blocking activity remained after affinity absorption with normal mouse IgG. Using this assay, 60% of the patients made an anti-Id response. One made only anti-Id, and several had anti-Id at times when other reactivities were undetectable. Antibodies to non-idiotypic, presumably isotypic, determinants represented on OKT8 occurred in only 44%, while other reactivity (OKT4; IgG2a) was less common (12%) and weaker.

While no adverse allergic reactions occurred in this group of patients, the anti-Id antibodies, which are a prominent feature of the immune response to this and probably other monoclonal antibodies, can block their therapeutic effectiveness and can arise despite intense immunosuppression. This response may require the use of different idiotypes for prolonged or repeated courses of therapy and may be the major obstacle to the use of human monoclonal antibodies.

The parenteral administration of foreign serum proteins has been known since the early days of serotherapy to stimulate an immune response. The typical allergic manifestations include fever, skin rash, anaphylaxis, and serum sickness. This phenomenon has acquired new relevance with the application of murine hybridoma-derived antibodies to clinical medicine. Despite some initial optimism, the injection of these murine proteins into man, as expected, regularly provokes an immune response by the host (1–11).

We have had extensive experience with the use of one monoclonal antibody, OKT3 (IgG2a, BALB/c), used as an adjuvant to azathioprine and prednisone for treatment of acute renal allograft rejection (1, 2, 11). This antibody, reactive with an invariant component (T3)* of the T cell antigen receptor complex (12), has proved to be dramatically effective in reversing acute cellular rejection when administered at doses of 1–5 mg/day over 10–20 days. This report describes in detail the specificity of the antibody response to OKT3 in 21 renal allotransplant recipients, and the implications for therapy. A preliminary report of the first 11 patients has been presented (6, 7).

MATERIALS AND METHODS

Patients. The 21 consecutive OKT3-treated patients studied were initially treated with prednisone and azathioprine after receiving a cadaver donor renal allograft (1, 2). They were given OKT3 (Ortho Pharmaceuticals, Raritan, NJ) when they had their first episode of renal allograft rejection. The antibody was given once daily as a 1–5-mg i.v. bolus. No patient manifested a skin reaction to intradermal OKT3 (0.1 μg) prior to treatment. In an attempt to modify the immune response to OKT3, 6 patients also received cyclophosphamide (patients Nos. 10 and 17–21).

Serum samples. Blood samples were collected in acid-citrate-dextrose (ACD) at least twice weekly beginning at the time of transplantation and continuing for up to ten months after OKT3 therapy. An average of 19 samples per patient were analyzed in 20 patients (range 12–24). One patient (No. 3) had only 3 posttreatment samples (all negative) and therefore was not included in further analysis. The samples were centrifuged at 1500 rpm and the plasma was stored at −20°C. Peripheral blood lymphocytes from these samples were used for immunologic monitoring as described previously (1).

Enzyme-linked immunosorbent assay (ELISA). This assay, performed by a slight modification of published methods (13), was used to detect both anti-Id and non-anti-Id anti-OKT3 antibodies. Polyvinyl vinyl plastic microtiter plates (Imulon I,

1. This work was supported by USPHS Grant HL-18646 and by funds provided by the Ortho Pharmaceutical Corporation.
2. Reprint requests should be addressed to R.B. Colvin, M.D., Immunopathology Unit, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114.
DynaTech, Alexandria, VA) were coated with 1 μg/ml of purified parenteral grade OKT3, 0.05 M NaHCO₃ buffer (pH 9.6). The plates were incubated overnight at 4°C then washed with phosphate-buffered saline containing 0.5% (v/v) Tween-20, 0.01 M Na phosphate, 0.14 M NaCl, (pH 7.4) (PBS-Tween). Each serum sample was diluted 1:240 in PBS-Tween (5 μl/1.2 ml buffer). 200 μl of this mixture was added to the wells. The plates were incubated for 2 hr at room temperature, washed with PBS-Tween, and 200 μl of a 1:500 dilution of alkaline-phosphatase-conjugated goat anti-human IgG (Kirkegaard-Perry, Gaithersberg, MD)—or goat anti-human IgM (both heavy chain specific) was added at a similar concentration. Anti-IgG with light chain reactivity was used in early studies as a screening test. These solutions were incubated for 2 hr at room temperature and washed again using PBS-Tween. Finally, 200 μl of 1 mg/ml p-nitrophenyl phosphate in 10% diethanolamine was added. The resultant color change of substrate was read on an ELISA plate spectrophotometer (Bio-Tek Instruments) at 405 nm. Sera from 15 healthy volunteers and assays without OKT3, serum, or anti-Ig were used as controls. All assays were done in triplicate. Each daily run was standardized by running aliquots of a known positive control. This serum had a net OD₆₅₀ (test blank) of about 650 and 70 for the IgG and IgM assays, respectively. Standardized values for IgG were obtained by multiplying the net OD₆₅₀ of the test sample by 650/OD₆₅₀ of standard) on that day (or 70/OD₆₅₀ of standard for IgM). A sample was considered positive if the corrected OD₆₅₀ was 2 SD above the mean of the controls (95th percentile) in the case of the pretreatment samples, or if the OD₆₅₀ was more than double the pretreatment OD₆₅₀ in the case of subsequent samples (provided the OD₆₅₀ was >100).

PHA blast preparation. The preparation of phytohaemagglutinin (PHA)-stimulated T cell blasts was accomplished by methods previously described (14). Briefly, normal peripheral mononuclear cells were isolated on Ficoll-Hypaque gradients and stimulated with 1 μg of PHA per 10⁶ lymphocytes in 1 ml of RPMI 1640 medium containing 5% normal human serum, antibiotics, and 5 μM mercaptoethanol. Cells were maintained by dilution to 10³/ml in T cell growth factor medium containing interleukin-2 about every third day.

Enhancing assay for non-Anti-Ig antibodies. Using flow cytometry, non-anti-Ig human antibodies that included isotypespecific reactivity to murine IgG₂a were detected by the binding to OKT8-coated (IgG₂a,CAF₃) PHA blasts. Antibodies not specific for Ig or isotype were similarly measured with OKT4-coated (IgG₂a,CAF₃) targets. OKT3-coated targets were used as a positive control. PHA blasts (which contained both T₃⁺T₄⁺ and T₃⁺T₈⁺ cells) were suspended at a concentration of 10⁵/ml in RPMI 1640. Nonfluoresceinated OKT8, OKT4, or OKT3 (0.5 μg) or PBS was added to each tube containing 50 μl of PHA blasts. The suspensions were incubated at 4°C for 30 min and washed twice with PBS. 50 μl of test or normal serum was added and the mixture incubated and washed as before. Fluoresceinated goat anti-human IgG (heavy and light chain reactive) was then added and the tubes were incubated and washed as before. The median intensity of the positive staining was evaluated using the Spectrum III flow cytometer (Ortho Diagnostics System, Westwood, MA) (15). The percentage of increase in the median fluorescence channel (MFC, linear units) above uncoated blasts (no monoclonal antibody) for each sample was calculated. This corrects for any contribution by anti-T-cell antibodies that may be present in the patient's serum, e.g., anti-HLA. Positive values were defined as 2 SD units above the mean of 21 normals.

Affinity columns. OKT3 and normal mouse IgG (Miles) were coupled to CNBr-activated Sepharose 4B (Pharmacia) by standard techniques, with approximately 10 mg of protein/ml swollen gel. Columns were 12×0.9 cm (mouse IgG) and 4.5×0.9 cm (OKT3). Fractions were eluted in PBS and then 3M KSCN, dialyzed, and reconcentrated to the starting volume by positive pressure filtration (Amicon XM-50).

Anti-idotype (Id) assay. The basis of this assay is that certain anti-id block the binding of the Id-bearing antibody with antigen. The test was done by flow cytometry using fluoresceinated OKT3 (F-OKT3) as the Id and T3⁺ T cell blasts (or normal peripheral blood lymphocytes) as the antigen in the presence of the test serum. Normal BALB/c mouse serum was added to block non-anti-id antibodies. The controls included normal human serum and fluoresceinated OKT8 (F-OKT8). The amount of F-OKT3 required to saturate PHA blasts or peripheral lymphocytes was determined by titration with a constant number of cells, plotting the MFC-vs.-concentration of F-OKT3 used (Fig. 1). Saturation was achieved at 8 μg/ml of F-OKT3; beyond this point no further shift in the MFC was achieved. A point of about 30% saturation was selected (2.5 μg/ml) for use in the assays to maximize sensitivity. A similar point was determined for F-OKT8.

The assay was performed by adding 25 μl of test or normal serum to 20 μl of BALB/c serum and incubating for 30 min at room temperature. Subsaturating amounts of F-OKT3 or F-OKT8 were added and these were incubated for 30 min on ice. Normal buffy coat peripheral blood lymphocytes (25 μl), previously prepared from ACD blood, were added to each tube with further incubation for 30 min at 4°C. Residual erythrocytes were lysed with NH₄Cl, and the cells were washed twice in PBS. Samples were analyzed using the Spectrum III flow cytometer gated on the lymphocyte or lymphoblast cluster. The MFC of the positive cells above the positive threshold channel was taken as the index of staining intensity. Pretreatment samples had inhibition of 7±7%. Therefore a decrease in the MFC of greater than 20% of the normal serum control, provided there was not a concomitant inhibition of F-OKT8, was taken as evidence for the presence of anti-id antibody. Samples

![Figure 1](https://via.placeholder.com/573/573/573?text=Figure%201. Plot%20of%20fluorescence%20intensity%20(MFC,%20linear%20units)%20vs.%20dilution%20of%20F-OKT3%20on%20PHA%20lymphoblasts.%20A%20point%20of%20about%2030%25%20saturation%20was%20selected%20for%20the%20anti-id%20inhibition%20assay.)
containing no BALB/c serum were analyzed in parallel. F-anti-Leu 4 (Becton Dickinson Monoclonal Center, Mountain View, CA) was used for comparison.

Statistical analysis. Values given are mean ± SD unless otherwise noted. Student's t and Fisher's exact tests were used for evaluating statistical significance. An antibody response was considered positive if two or more sample values were above the defined threshold, either a doubling of the pretreatment value or above the 95th percentile of normal controls.

RESULTS

ELISA: total Anti-OKT3 response. Using the ELISA with OKT3 as the antigen, the IgG and IgM antibodies of all specificities to OKT3 were determined. Except for patient No. 18, the ELISA reactivity of the patient's pretreatment serum was similar to that of the 15 controls, both for IgG and for IgM (Table 1) and the anti-Ig with light chain reactivity gave essentially the same result as anti-γ chain.

Patient No. 18 had the highest pretreatment reactivity, which was exclusively IgM. This binding could be completely eliminated by preincubation of the test serum with BALB/c serum, and partially blocked with preincubation in normal goat serum. A rheumatoid factor assay with human IgG was within normal limits (<60 I.U.). The level of the IgM antimouse IgG antibody did not change by more than 5% during treatment, and the patient responded normally to the OKT3 therapy (Table 2).

An anti-OKT3 antibody response, defined as doubling of the pretreatment OD_405, was detectable at various times posttreatment in 14 (70%) of those individuals (Tables 2 and 3). Four had only IgM and one had only IgG. The IgG was detected significantly later than the IgM by an average of 10 days, although the time of the peak level was the same (20-23 days) (Tables 2-4). Antibodies were detected during OKT3 administration in 8 patients. All 8 had IgM antibodies and 2 also had IgG. Only one patient (No. 4), who had IgG as well as IgM anti-OKT3, showed resistance to the pharmacologic effects of OKT3. The other 7 cleared their T cells normally despite the presence of IgM anti-OKT3. Only 10% (IgG) and 33% (IgM) of the responders had persistent antibodies when checked 6 weeks or longer after the last dose. Two had detectable levels 14 weeks posttherapy (Nos. 7, 15).

Enhancing assay. This assay was used to detect isotype and light chain reactivity by assaying T8+ and T4+ PHA blasts coated with OKT8, OKT4, or OKT3 antibodies. Three patients (Nos. 10, 12, and 14) had pretreatment reactivity above the 95th percentile (Tables 1 and 2). Of the 16 tested, 7 (44%) showed a two-fold or greater increase in reactivity to OKT8 (IgG2aK)-coated cells. Only two (12%) bound (both weakly) to OKT4 (IgG2bK)-coated cells, suggesting that the reactivity detected was primarily to isotype specificities on the heavy chain. The timing of the anti-isotype was closer to that of the IgM than the IgG (Table 4).

TABLE 1. Pretreatment reactivity

<table>
<thead>
<tr>
<th>ELISA (OD_405)</th>
<th>Enhancing assay (% increase)</th>
<th>Blocking assay (% inhibition)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IgG</td>
<td>IgM</td>
</tr>
<tr>
<td>Patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OKT8 and OKT3 enhancing reactivity were disparate in 2 patients. The serum from patient No. 1 reacted with OKT8 coated, but not OKT3 coated cells. She had blocking anti-Id antibodies and it is possible that these displaced the OKT3 from the target cell, giving a false negative. A similar phenomenon may explain the negative OKT3-enhancing results in patients Nos. 2 and 17 who also had blocking anti-Id. A second patient (No. 14) had the opposite pattern, reacting with OKT3-coated, but not OKT8-coated cells. The restricted reactivity in this case may have been due to anti-Id of the nonblocking type.

Blocking anti-Id assay. None of the pretreatment sera specifically blocked the binding of F-OKT3 or F-OKT8 to normal lymphocytes (Table 1). However, after the course of OKT3 therapy, 12 patients (60%) developed antibodies that selectively blocked the antigen-binding of F-OKT3. The sera blocked F-OKT3 in the presence of normal BALB/c serum and did not block F-OKT8 or F-anti-Leu 4, arguing that the specificity was restricted to idiotypic—and not allotypic or isotypic—determinants on OKT3 (Fig. 2).

TABLE 2. Onset of anti-OKT3 antibodies and effect on OKT3 response

<table>
<thead>
<tr>
<th>Patient</th>
<th>ELISA-OKT3</th>
<th>Blocking OKT3</th>
<th>Enhancing OKT3</th>
<th>Response to OKT3 cells/mm³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IgG</td>
<td>IgM</td>
<td>Anti-Id</td>
<td>OKT3</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>4</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>-4</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>-2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>7</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>5</td>
<td>-3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>6</td>
<td>-8</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>p-</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>p-</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>31</td>
<td>-10</td>
<td>8</td>
<td>p-</td>
</tr>
<tr>
<td>15</td>
<td>-1</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
<td>p-</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>-10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>-6</td>
<td>45</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

* The day when antibody was first detected (0 = last day of OKT3 therapy; negative numbers—days before therapy ended).

† Only 3 posttreatment samples.

‡ Abbreviations: p = pretreatment sample positive, >95th percentile of normal controls; = negative; blank = not done.

§ Last blood values on OKT3.
IgG (patient No. 8, day 5) showed equivalent blocking of F-Sepharose.

were chromatography using columns with immobilized normal mouse IgG. The sera from patients Nos. 4 (Fig. 2 and 3) and 8 (Figs. 4 and 5) were absorbed with mouse IgG on Sepharose. The effluent and the dialyzed 3M KSCN eluate were tested for blocking activity. The eluate from normal mouse IgG (patient No. 8, day 5) showed equivalent blocking of F-OKT3 and P-OKT8 of 88% and 83%, respectively, in the absence of BALB/c serum. The analogous eluate from patient No. 4 had no blocking activity. In contrast, the effluent blocked F-OKT3 completely but had little activity against P-OKT8, even in the absence of added BALB/c serum (Fig. 4). The effluent (patient No. 4) and the starting serum were then absorbed on an OKT3 column. This removed the blocking activity, which was undetectable even after reconstitution. Taken together, these data indicate that the blocking activity was due to antibodies that reacted selectively with OKT3 and not to other mouse immunoglobulins, satisfying the criteria for anti-Id specificity.

The time course of the anti-Id antibody production was variable, but generally paralleled that of the IgG (Table 4). The anti-Id antibodies first became detectable at an average of 11 days (range 0-45) after therapy had ended. The most rapid antibody response was manifested at 12 days after the start of therapy in patient No. 4 (Fig. 3). At this time he became refractory to the T lymphopenic effect of OKT3. The only clinical signs of an allergic reaction were an eosinophilia of 12% and a fever upon administration of the OKT3. No serum sickness lesions (glomerulonephritis, vasculitis, mouse Ig deposits by immunofluorescence) were seen in renal biopsy taken during the OKT3 treatment. The patient suffered no adverse systemic effects from this response, although the rejection process became reactivated and the allograft was eventually rejected. This was the only patient whose therapy was stopped because of anti-OKT3 antibodies. Three other patients had anti-Id antibody in the first sample analyzed, 2 days after therapy ended. Anti-Id antibody persisted in 33% of patients after 6 weeks; the longest documented was 6 months (No. 8).

Of the 12 patients that made a blocking anti-Id antibody, 3 (25%) had no IgG and 2 (17%) had no IgM reactivity detectable by ELISA. Similarly, 30% of those with blocking anti-Id had no isotype/light chain reactivity detectable by the enhancing assay. Patient No. 17 made exclusively an anti-Id response, detectable only in the blocking assay. Furthermore, the anti-Id assay detected antibody on one or more occasions in 7 other patients when the other assays were negative. This can be seen, for example, in the time course of the antibody response in patient No. 8 (Fig 4), in which the anti-Id response was persistently positive when the ELISA and enhancing assays were negative. Two patients (Nos. 11 and 15) made anti-OKT3 antibody detected on ELISA that did not block antigen binding or have reactivity to OKT8. These antibodies may include nonblocking anti-Id.

Further experiments were performed to document whether the effect was indeed due to anti-Id antibodies. The presence of residual free OKT3 in the serum was ruled out by the lack of detectable mouse Ig on normal lymphocytes after incubation in the blocking serum. In all patients OKT3 antibody was undetectable in the serum by 2 days after therapy had ended (data not shown). For this reason only sera taken at least 48 hr after the end of therapy were analyzed (except for patient No. 4 who was demonstrated to clear the residual free OKT3 within 7 hr). Serum that blocked OKT3 did not block F-anti-Leu 4, an IgG1 antibody to a different epitope on the same molecule (Fig. 2). This argues strongly against free or complexed T3 antigen itself as a significant source of antigenic competition in the blocking assay.

Sera from two of the patients were analyzed by affinity chromatography using columns with immobilized OKT3 or normal mouse IgG. The sera from patients Nos. 4 (Fig. 2 and 3) and 8 (Figs. 4 and 5) were absorbed with mouse IgG on Sepharose. The effluent and the dialyzed 3M KSCN eluate were tested for blocking activity. The eluate from normal mouse IgG (patient No. 8, day 5) showed equivalent blocking of F-OKT3 and P-OKT8 of 88% and 83%, respectively, in the absence of BALB/c serum. The analogous eluate from patient No. 4 had no blocking activity. In contrast, the effluent blocked F-OKT3 completely but had little activity against P-OKT8, even in the absence of added BALB/c serum (Fig. 4). The effluent (patient No. 4) and the starting serum were then absorbed on an OKT3 column. This removed the blocking activity, which was undetectable even after reconstitution. Taken together, these data indicate that the blocking activity was due to antibodies that reacted selectively with OKT3 and not to other mouse immunoglobulins, satisfying the criteria for anti-Id specificity.

The time course of the anti-Id antibody production was variable, but generally paralleled that of the IgG (Table 4). The anti-Id antibodies first became detectable at an average of 11 days (range 0-45) after therapy had ended. The most rapid antibody response was manifested at 12 days after the start of therapy in patient No. 4 (Fig. 3). At this time he became refractory to the T lymphopenic effect of OKT3. The only clinical signs of an allergic reaction were an eosinophilia of 12% and a fever upon administration of the OKT3. No serum sickness lesions (glomerulonephritis, vasculitis, mouse Ig deposits by immunofluorescence) were seen in renal biopsy taken during the OKT3 treatment. The patient suffered no adverse systemic effects from this response, although the rejection process became reactivated and the allograft was eventually rejected. This was the only patient whose therapy was stopped because of anti-OKT3 antibodies. Three other patients had anti-Id antibody in the first sample analyzed, 2 days after therapy ended. Anti-Id antibody persisted in 33% of patients after 6 weeks; the longest documented was 6 months (No. 8).

Of the 12 patients that made a blocking anti-Id antibody, 3 (25%) had no IgG and 2 (17%) had no IgM reactivity detectable by ELISA. Similarly, 30% of those with blocking anti-Id had no isotype/light chain reactivity detectable by the enhancing assay. Patient No. 17 made exclusively an anti-Id response, detectable only in the blocking assay. Furthermore, the anti-Id assay detected antibody on one or more occasions in 7 other patients when the other assays were negative. This can be seen, for example, in the time course of the antibody response in patient No. 8 (Fig 4), in which the anti-Id response was persistently positive when the ELISA and enhancing assays were negative. Two patients (Nos. 11 and 15) made anti-OKT3 antibody detected on ELISA that did not block antigen binding or have reactivity to OKT8. These antibodies may include nonblocking anti-Id.

To estimate the portion of the antibody response that was anti-Id, serum from patient No. 8 at the peak of the antibody response (day 12, Fig. 4) was analyzed by ELISA using normal BALB/c serum as a competitive inhibitor for non-anti-Id antibodies. Normal mouse serum (100 µl) was able to block 69% of the IgG binding to OKT3, while 100% could be blocked by 10 µg OKT3, so that anti-Id constituted about 31% of the reactivity.

Correlations with clinical course. With the exception of the one patient (No. 4) who developed anti-Id antibodies that neutralized the in vivo effectiveness of OKT3, no adverse effects were associated with the antimouse Ig or anti-OKT3 idiotype response. The response to therapy and outcome of the graft were not correlated with the presence or absence of an antibody response. However, of the 6 patients who received cyclophosphamide (Nos. 10 and 17–21) only 17% made an IgG anti-OKT3 response detectable in ELISA, whereas 9 of 14 of
NORMAL

OKT3

C4/13

OKT3

OKT8

Leu4

FIGURE 2. Fluorescence histograms of blocking anti-Id assay. Normal lymphocytes stained with fluoresceinated monoclonal antibodies in the presence of normal BALB/c serum and either normal human serum (left column) or serum from patient No. 4 (right column). The patient's serum blocks F-OKT3, but not F-OKT8 (both are IgG2a) or F-anti-Leu 4 (IgGl, reactive to the T3 antigen). Cell number is on the y-axis and fluorescence intensity is on the x-axis. The number in the lower right of each histogram is the median fluorescence channel of the positive cells.

FIGURE 3. Clinical course of patient No. 4, who developed blocking anti-Id during therapy and became resistant to the T lymphopenic effects of OKT3. IgG and IgM anti-OKT3 was detected during therapy. Blocking anti-Id appearance was accompanied by resistance to the T lymphopenic response to OKT3 (day 22).

FIGURE 4. Time course of antibody response in patient No. 8, as detected by each assay in this study. The horizontal bar is the threshold of positivity (2 SD above the mean of normals). Note the early rise of IgM and the presence of both blocking anti-Id and anti-isotype (OKT8 enhancing assay). No antibodies to OKT4 were detectable.

DISCUSSION

In this series 60% of the patients treated with OKT3 developed anti-Id antibodies and 44% anti-isotypic antibodies, despite intense immunosuppressive treatment (Table 5). The
blocking activity. and normal T lymphocytes (the control for the enhancing assay) was unlikely because of the inability of the test serum to bind \(\text{T3} \). One complex. Similarly, no inhibition was obtained with 12F6, the inability of the test sera to block the binding of a monoclonal antibody to a different epitope on the same antigen. The presence of free \(\text{T3} \) antigen was rendered unlikely by the presence of \(\text{BALB/c serum} \) and after absorption with mouse \(\text{OKT3} \), blocked the antigen binding of \(\text{OKT3} \), in contrast to its slight inhibitory effect on \(\text{F-OKT3} \).

Figure 5. Blocking assay of the mouse IgG absorbed serum from patient No. 8, day 5. Fluorescence histograms of T cell blasts stained with F-OKT3 (T3) or F-OKT8 (T8) in the presence of the effluent (E) that passed through the mouse IgG column or the control (C) which was the ultrafiltrate of the effluent (passed through XM-50). (U) unstained cells. No BALB/c serum was added. The effluent completely blocks F-OKT3, in contrast to its slight inhibitory effect on F-OKT8.

<table>
<thead>
<tr>
<th>N</th>
<th>Anti-OKT3 by ELISA</th>
<th>Blocking anti-id</th>
<th>Antiisotype*</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* Four patients were not tested for antiisotype.

The nonidotypic reactivity detected by the binding of OKT8 was probably isotypic, because little reactivity was found to OKT4. We cannot exclude the possibility that a portion of the OKT8 reactivity may be to allotypic determinants not expressed on OKT4. OKT3 was derived from a BALB/c mouse, and both OKT8 and OKT4 were obtained from (BALB/c × A/J) F₃ mice ([6]). The strains of origin of the heavy chains in OKT4 and OKT8 are unknown. Several IgG₂₅, allotypic determinants of BALB/c are expressed by A/J but none are apparently expressed on IgG₂₅ ([17]). Anti-isotype specificities have been detected in other patients treated with OKT3 ([10]).

The presence of some degree of reactivity to mouse immunoglobulin in the pretreatment sera and in normal controls was expected. Antibodies to equine ATG have been detected by passive hemagglutination in up to 50% of patients awaiting renal transplantation with no previous exposure to ATG ([18]). These antihorse immunoglobulin antibodies were found to crossreact with goat and rabbit immunoglobulin. The specificity of these antibodies has not been established. They may be crossreactive antibodies to immunoglobulin antigens absorbed orally (beef, pork, etc.) or rheumatoid factors. We found no correlation between preexisting antibodies and the severity of side effects from monoclonal therapy. The one patient with a high titer prior to treatment responded fully to OKT3 therapy for rejection. A further analysis of these antibody crossreactivities will be necessary to determine the importance of these interactions.

Although early studies were optimistic that monoclonal antibodies might have low immunogenicity ([1, 3, 19]), following our initial report ([6]), several other studies have documented the presence of both non anti-Id and anti-Id responses ([4, 5, 7, 9, 10, 14, 15]). The production of such antibodies may be influenced by the particular monoclonal antibody used and the immune reactivity of the individuals treated. More than half the patients treated for lymphoreticular malignancies with a nonmitogenic antibody (anti-Leu 1) produce antinouse antibody, similar to that of our transplant recipients. Although these antibodies do not cause immune complex disease, the response effectively neutralized the monoclonal antibody, as in our patients ([15]).

OKT3 does not seem particularly more or less immunogenic than other anti-T-cell or antitumor antibodies, despite its known mitogenic activity. The one distinctive feature of the immune response to OKT3 may be the predominance of the anti-Id response. Only 5% of the antibodies to the murine immunoglobulin have been to idiotypic determinants in lymphoma patients treated with anti-Leu 1 ([20]), whereas in one of our patients only anti-Id antibodies were detected, and in another they accounted for 31% of the antibody response. Overall, 75% of our patients who had any antibody response made anti-Id that was able to block antigen binding. Why OKT3 should be particularly effective at promoting an anti-Id response is unknown, but one could speculate that this might be related to the target molecule, a part of the T cell antigen receptor complex. However, the strong anti-Id response is not unique to OKT3, as anti-Id constituted about one-third of the antibody response of goats immunized with myeloma proteins ([21]). Furthermore, we have observed blocking anti-Id in monkeys treated with anti-Leu 2a (Cosimi et al., manuscript in preparation).

That the recipients of murine monoclonal antibodies should develop an immune response to these foreign proteins is, of
course, expected. Such responses have been described in recipients of antithymocyte (or lymphocyte) globulin (ATG) made in horses or rabbits (22, 23). However, with more recent preparations of ATG that have been degaggregated and administered i.v., the antibody response is typically inconsequential and does not preclude repeated use of ATG (24, 25).

Two likely possibilities exist for the differences between the intensity of the response to monoclonal and polyclonal antibodies. The broadly reactive ATG may be more effective at destroying the T cells and/or B cells needed to make an antibody response. If this is the case, a monoclonal antibody—or drug, such as cyclophosphamide—might be added that would interfere with B cell function. A second possibility is that the substantial amount of nonreactive immunoglobulin in the polyclonal preparations acts to promote tolerance in the recipients. It is likely that more intense deggregation of the monoclonal antibody will be ineffective, since essentially all of the soluble antibody response.

If this is the case, a monoclonal antibody—"shields." Although monoclonal antibodies have exceptional promise for specific modulation of immune responses, the antibody response will need to be eliminated to permit their widest therapeutic and diagnostic application.

Acknowledgments. We are grateful for the excellent technical assistance of Helen Goldman, Carol Struzziero, Amy Luttinger, and Victoria Hall. James T. Kurnick, M.D., kindly provided the PHA blast lines.

REFERENCES

Received 26 June 1985.

Accepted 4 September 1985.