Table of Contents

Physical Sciences

CHEMISTRY

- Phytotoxins from the pathogenic fungi *Drechslera maydis* and *Drechslera sorghicola*
 - F. Sugawara, G. Strobel, R. N. Strange, J. N. Siedow, G. D. Van Duyne, and J. Clardy
 - 3081

- Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides
 - Tatsuo Ooi, Motohisa Oobatake, George Némethy, and Harold A. Scheraga
 - 3086

- Discrete wave mechanics: Multidimensional systems
 - Frederick T. Wall
 - 3091

MATHEMATICS

- Algebraic K-theory of discrete subgroups of Lie groups
 - F. T. Farrell and L. E. Jones
 - 3095

Biological Sciences

BIOCHEMISTRY

- Specific inhibition of *Trypanosoma cruzi* neuraminidase by the human plasma glycoprotein "cruzin"
 - R. P. Prioli, I. Rosenberg, and M. E. A. Pereira
 - 3097

- Regulation of actomyosin ATPase activity by troponin–tropomyosin: Effect of the binding of the myosin subfragment 1 (S-1)–ATP complex
 - Lois E. Greene, David L. Williams, Jr., and Evan Eisenberg
 - 3102
Partial amino acid sequence of apolipoprotein(a) shows that it is homologous to plasminogen

BIOPHYSICS

Single acetylcholine receptor channel currents recorded at high hydrostatic pressures

CELL BIOLOGY

Expression of p21TM in normal and malignant human tissues: Lack of association with proliferation and malignancy

The very late antigen family of heterodimers is part of a superfamily of molecules involved in adhesion and embryogenesis

Immunoglobulin A stimulates growth of the extrahepatic bile duct in BALB/c mice

Cytoskeletal association of human α-interferon-receptor complexes in interferon-sensitive and -resistant lymphoblastoid cells

An insulin-like growth factor (IGF) binding protein enhances the biologic response to IGF-I

Periodic crosslinking of microtubules by cytoplasmic microtubule-associated and microtubule-corset proteins from a trypanosomatid

Firefly luciferase is targeted to peroxisomes in mammalian cells

Functional epithelial cell line cloned from rat parathyroid glands

Differential regulation of colony-stimulating factors and interleukin 2 production by cyclosporin A

Coinduction of glucose-regulated proteins and doxorubicin resistance in Chinese hamster cells

Growth factor(s) produced during infection with an adenovirus variant stimulates proliferation of nonestablished epithelial cells

Protein import into chloroplasts requires a chloroplast ATPase

A high molecular weight component of the human tumor necrosis factor receptor is associated with cytotoxicity

Chemical carcinogen-induced decreases in genomic 5-methyldeoxycytidine content of normal human bronchial epithelial cells

DEVELOPMENTAL BIOLOGY

Cell patterning in pigment-chimeric eyes in Xenopus: Germinal cell transplants and their contributions to growth of the pigmented retinal epithelium

EVOLUTION

A molecular phylogeny of the hominoid primates as indicated by two-dimensional protein electrophoresis

Geographic dialects in blind mole rats: Role of vocal communication in active speciation
Contents

GENETICS

Homology between the DNA-binding domain of the GCN4 regulatory protein of yeast and the carboxyl-terminal region of a protein coded for by the oncogene jun

A family of short, interspersed repeats is associated with tandemly repetitive DNA in the human genome

Random cloning of genes from mouse chromosome 17

Structure and expression of human dihydropteridine reductase

Gene tandem-mediated selection of coliphage λ-receptive Agrobacterium, Pseudomonas, and Rhizobium strains

Detection of human DNA polymorphisms with a simplified denaturing gradient gel electrophoresis technique

Expression of retrovirally transduced genes in primary cultures of adult rat hepatocytes

Comparative anatomy of the human APRT gene and enzyme: Nucleotide sequence divergence and conservation of a nonrandom CpG dinucleotide arrangement

Sequence analysis of spontaneous mutations in a shuttle vector gene integrated into mammalian chromosomal DNA

Molecular cloning and characterization of esterase-6, a serine hydrolase of Drosophila

Measurement of low levels of x-ray mutagenesis in relation to human disease (Correction)

IMMUNOLOGY

Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselection procedure

Biosynthesis, glycosylation, and partial N-terminal amino acid sequence of the T-cell-activating protein TAP

Resistance of cytotoxic T lymphocytes to lysis by a clone of cytotoxic T lymphocytes

Regulation of murine class I genes by interferons is controlled by regions located both 5' and 3' to the transcription initiation site

1α,25-Dihydroxyvitamin D3 inhibits γ-interferon synthesis by normal human peripheral blood lymphocytes

Complete suppression of in vivo growth of human leukemia cells by specific immunotoxins: Nude mouse models

Lymphocyte major histocompatibility complex-encoded class II structures may act as sperm receptors

Working principles in the immune system implied by the "peptidic self" model

MEDITICAL SCIENCES

Interferon γ induces lung colonization by intravenously inoculated B16 melanoma cells in parallel with enhanced expression of class I major histocompatibility complex antigens

Peter K. Vogt, Timothy J. Bos, and Russell F. Doolittle 3316

Brion Mermer, Mark Colb, and Theodore G. Krontiris 3320

Masanori Kasahara, Felipe Figueroa, and Jan Klein 3325

Jean Lockyer, Richard G. Cook, Sheldon Milstien, Seymour Kaufman, Savio L. C. Woo, and Fred D. Ledley 3329

Robert A. Ludwing 3334

Walter W. Noll and Mary Collins 3339

Jon A. Wolff, Jiing-Kuan Yee, Harold F. Skelly, Jane C. Moores, James G. Respress, Theodore Friedman, and Hyam Leffert 3344

Thomas P. Broderick, Dennis A. Schaff, Amy M. Bertino, Michael K. Dush, Jay A. Tischfeld, and Peter J. Stambrook 3349

Charles R. Ashman and Richard L. Davidson 3354

Charles Waldren, Laura Correll, Marguerite A. Sognier, and Theodore T. Puck 3364

Brian Seed and Alejandro Aruffo 3365

Hans Reiser, John Coligan, Baruj Benacerraf, and Kenneth L. Rock 3370

David M. Kranz and Herman N. Eisen 3375

Bette Korber, Leroy Hood, and Iwona Struynewski 3380

Helmut Reichel, H. Phillip Koeffler, Andreas Tobler, and Anthony W. Norman 3385

Hideki Hara and Ben K. Seon 3390

Ellyn R. Ashida and Virginia L. Scofield 3395

Philippe Kourilsky, Gérard Chaouat, Chantal Rabourdin-Combe, and Jean-Michel Claverie 3400

K. Taniguchi, M. Petersson, P. Höglund, R. Kiessling, G. Klein, and K. Kärre 3405

K. Taniguchi, M. Petersson, P. Höglund, R. Kiessling, G. Klein, and K. Kärre 3405
Contents

Recognition of tau epitopes by anti-neurofilament antibodies that bind to Alzheimer neurofibrillary tangles
Hanna Ksiezak-Reding, Dennis W. Dickson, Peter Davies, and Shu-Hui Yen 3410

Recognition of Alzheimer paired helical filaments by monoclonal neurofilament antibodies is due to crossreaction with tau protein
Nobuyuki Nukina, Kenneth S. Kosik, and Dennis J. Selkoe 3415

Purification and characterization of rat liver nuclear thyroid hormone receptors
Kazuo Ichikawa and Leslie J. DeGroot 3420

Development of a monoclonal antibody specifically reactive to gastrointestinal goblet cells
M. Vecchi, S. Sakamaki, B. Diamond, A. B. Novikoff, P. M. Novikoff, and K. M. Das 3425

Linkage of the Wiskott-Aldrich syndrome with polymorphic DNA sequences from the human X chromosome
Monica Peacocke and Katherine A. Siminovich 3430

Glucagon-like peptide 1 stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line
Daniel J. Drucker, Jacques Philippe, Svetlana Mojsov, William L. Chick, and Joel F. Habener 3434

Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells
Alvin Y. Liu, Randy R. Robinson, Karl Erik Hellström, E. David Murray, Jr., C. Paul Chang, and Ingegerd Hellström 3439

Androstenedione may organize or activate sex-reversed traits in female spotted hyenas
Stephen E. Glickman, Laurence G. Frank, Julian M. Davidson, Erla R. Smith, and P. K. Siiteri 3444

Monoclonal antibodies to the human insulin receptor that activate glucose transport but not insulin receptor kinase activity
John R. Forsayeth, Jose F. Caro, Madhur K. Sinha, Betty A. Maddux, and Ira D. Goldfine 3448

Epstein-Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23

Tissue distribution and clearance kinetics of non-transferrin-bound iron in the hypotransferrinemic mouse: A rodent model for hemochromatosis
C. M. Craven, J. Alexander, M. Eldridge, J. P. Kushner, S. Bernstein, and J. Kaplan 3457

MICROBIOLOGY

Isolation and characterization of the α-sialyl-β-2,3-galactosyl-specific adhesin from fimbriated Escherichia coli
Thomas Moch, Heinz Hoschützky, Jörg Hacker, Klaus-D. Kröncke, and Klaus Jann 3462

NEUROBIOLOGY

Cholinergic phosphatidylinositol modulation of inhibitory, G protein-linked, neurotransmitter actions: Electrophysiological studies in rat hippocampus
Paul F. Worley, Jay M. Baraban, Madeline McCa llen, Solomon H. Snyder, and Bradley E. Alger 3467

Neurofilament gene expression: A major determinant of axonal caliber
Paul N. Hoffman, Don W. Cleveland, John W. Griffin, Phillip W. Landes, Nicholas J. Cowan, and Donald L. Price 3472

Calcium-dependent effect of the thymic polypeptide thymopoietin on the desensitization of the nicotinic acetylcholine receptor
Frédéric Revah, Christophe Mulle, Christian Pinset, Tapan Audhya, Gideon Goldstein, and Jean-Pierre Changeux 3477

Monoclonal antibody analysis of keratin expression in the central nervous system
Maryellen C. Franko, Clarence J. Gibbs, Jr., Dorothy A. Rhoades, and D. Carleton Gajdusek 3482

Multiple neuropeptides in cholinergic motor neurons of Aplysia: Evidence for modulation intrinsic to the motor circuit
Elizabeth C. Cropper, Philip E. Lloyd, William Reed, Renata Tenenbaum, Irving Kupfermann, and Klaudiusz R. Weiss 3486

Quinolinic acid phosphoribosyltransferase: Preferential glial localization in the rat brain visualized by immunocytochemistry
Christer Köhler, Etsuo Okuno, Per R. Flood, and Robert Schwarcz 3491

Activation of a potassium current by rapid photochemically generated step increases of intracellular calcium in rat sympathetic neurons
Alison M. Gurney, Roger Y. Tsien, and Henry A. Lester 3496
Contents

γ-Aminobutyric acid exerts a local inhibitory action on the axon terminal of bipolar cells: Evidence for negative feedback from amacrine cells

Masao Tachibana and Akimichi Kaneko 3501

Identification and purification of an irreversible presynaptic neurotoxin from the venom of the spider Hololea curta

Chauncey W. Bowers, Heidi S. Phillips, Pamela Lee, Yuh Nung Jan, and Lily Y. Jan 3506

Neuropeptide Y-like immunoreactivity in rat cranial parasympathetic neurons: Coexistence with vasoactive intestinal peptide and choline acetyltransferase

Gabrielle G. Leblanc, Barry A. Trimmer, and Story C. Landis 3511

Cloning and sequence analysis of cDNA for the canine neurotensin/neuromedin N precursor

Paul R. Dobner, Diane L. Barber, Lydia Villa-Komaroff, and Colleen McKiernan 3516

Correlation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity with blood-brain barrier monoamine oxidase activity

Rajesh N. Kalaria, Mary Jo Mitchell, and Sami I. Harik 3521

Human immunodeficiency virus can productively infect cultured human glial cells

Cecilia Cheng-Mayer, James T. Rutka, Mark L. Rosenblum, Thomas McHugh, Daniel P. Stites, and Jay A. Levy 3526

Social Sciences

PSYCHOLOGY

Initial localization of the acoustic conditioned stimulus projection system to the cerebellum essential for classical eyelid conditioning

Joseph E. Steinmetz, Christine G. Logan, Daniel J. Rosen, Judith K. Thompson, David G. Lavond, and Richard F. Thompson 3531
Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells

(Immunoglobulin domain cDNA/DNA transfection/tumor antigen/complement-dependent cytolysis/antibody-dependent cellular cytotoxicity)

International Genetic Engineering, Inc., 1545 17th Street, Santa Monica, CA 90404; *Oncogen, 3005 First Avenue, Seattle, WA 98121; and Departments of *Pathology and Microbiology, University of Washington Medical School, Seattle, WA 98195

Communicated by Paul D. Boyer, January 28, 1987 (received for review December 22, 1986)

ABSTRACT A chimeric mouse-human antibody has been created that recognizes an antigen found on the surface of cells from many carcinomas. Immunoglobulin constant (C) domains of the mouse monoclonal antibody L6, C\textsubscript{\textgamma 2a} and C\textsubscript{\textgamma 4}, were substituted by the human C\textsubscript{\textgamma 2a} and C\textsubscript{\textgamma 4} by recombing cDNA modules encoding variable or C domains. The cDNA constructs were transfected into lymphoid cells for antibody production. The chimeric antibody and mouse L6 antibody bound to carcinoma cells with equal affinity and mediated complement-dependent cytolysis. In the presence of human effector cells, the chimeric antibody gave antibody-dependent cellular cytotoxicity at 100 times lower concentration than that needed for the mouse L6 antibody. The chimeric antibody, but not the mouse L6 antibody, is effective against a melanoma line expressing small amounts of the L6 antigen. The findings point to the usefulness of the chimeric antibody approach for obtaining agents with strong antitumor activity for possible therapeutic use in man.

The presence of tumor-associated antigens at the cell surface is a characteristic of many cancers. Since these antigens are either absent or found in much lower amounts in normal cells, it should be possible to use antibodies for targeting of tumors. A sizable collection of relatively tumor-specific monoclonal antibodies (mAb) of mouse origin is available (1). Some of these mAb possess tumoricidal activity in the presence of human effector cells [antibody-dependent cellular cytotoxicity (ADCC)] or serum [complement-dependent cytolytocity (CDC)] (2, 3). It has been shown (4) that partial tumor regression can be achieved when mAb possessing such functional activity are given to patients. One complication preventing repeated use of mouse mAb in man is that they are immunogenic. Furthermore, mouse mAb may interact less efficiently with human effector cells to mediate tumor destruction.

A method made possible by recombinant DNA technology was chosen to generate chimeric mouse-human antibodies. It entails the replacement of the mouse constant (C) domain regions with the corresponding human equivalents (5–7). In this study we have generated a mouse-human chimeric L6 antibody in which the mouse constant domains C\textsubscript{\textgamma 2a} and C\textsubscript{\textgamma 4} are substituted by the human C\textsubscript{\textgamma 2a} and C\textsubscript{\textgamma 4}. First, the cDNAs encoding the immunoglobulin genes were isolated. Next, restriction enzyme recognition sites were created in the cDNA sequences at the V/C junction (where V stands for variable) (9) by in vitro mutagenesis using oligodeoxynucleotides (10). The chimeric cDNAs thus constructed were then introduced into lymphoid cells by DNA transfection. The chimeric antibody isolated from the transfectants was compared with the mouse L6 for effector functions.

In this study we have generated a mouse-human chimeric L6 antibody in which the mouse constant domains C\textsubscript{\textgamma 2a} and C\textsubscript{\textgamma 4} are substituted by the human C\textsubscript{\textgamma 2a} and C\textsubscript{\textgamma 4}. First, the cDNAs encoding the immunoglobulin genes were isolated. Next, restriction enzyme recognition sites were created in the cDNA sequences at the V/C junction (where V stands for variable) (9) by in vitro mutagenesis using oligodeoxynucleotides (10). The chimeric cDNAs thus constructed were then introduced into lymphoid cells by DNA transfection. The chimeric antibody isolated from the transfectants was compared with the mouse L6 for effector functions.

MATERIALS AND METHODS

DNA Transfection of Mouse Sp2/0 Lymphoid Cells. Expression plasmid pING2114 (50 µg), linearized at a unique site (Aat II) in the nonessential bacterial region (see Fig. 3A), was transfected into 10^7 mouse Sp2/0 cells (CRL 1581, ATCC) by electroporation (11, 12). Transformants were selected in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% (vol/vol) fetal bovine serum (HyClone, Logan, UT) and G418 at 0.8 mg/ml (GIBCO). The transfection frequency was between 10^-5 and 10^-4. Human antibody in the medium was detected by ELISA (13).

Isolation of Chimeric Antibody. Antibody-producing cells were grown to a density of 10^6 cells per ml and then shifted to serum-free DMEM 24 hr before harvest. Antibody secreted by the cells was concentrated by ultrafiltration, then chromatographed on a DEAE-cellulose column equilibrated in 40 mM NaCl/10 mM sodium phosphate, pH 8.0. The antibody in the flow-through was further purified to apparent homogeneity on protein A-Sepharose (14). For production of ascites fluid, 10^6 cells were injected into pristane-primed BALB/c mice. The chimeric antibody was purified by anti-human IgG-Sepharose chromatography (14).

Functional Tests of the Chimeric L6 Antibody. The following tests were included: (i) measurement of antibody binding to target cells, either positive or negative for reactivity with the mouse L6; (ii) competitive inhibition of binding of L6 to these cells; (iii) assays for CDC and ADCC. The binding tests were performed using a Coulter model EPIC-C cell sorter (8). The assays for CDC and ADCC were carried out on ^51Cr-labeled target cells (2, 3) that were exposed to antibodies and human serum or peripheral blood leukocytes over a 4-hr period.

Abbreviations: V, variable; C, constant; J, joining; mAb, monoclonal antibodies; CDC, complement-dependent cytolytocity; ADCC, antibody-dependent cellular cytotoxicity; SV40, simian virus 40; H, heavy.

To whom reprint requests should be addressed.

Present address: Department of Biochemistry, University of California, Riverside, CA 92521.
Fig. 1. Nucleotide sequences and predicted amino acid sequences of the L6 VH (A) and VL (B). The framework (FR) and complementarity determining region (CDR) segments are indicated. The diversity (D) segment in VH is underlined. Circles above the amino acid sequences of the L6 VH and VL are labeled with the relevant FR and CDR numbers. The sequence is present in plasmid pH3-6a. The CDR3 at the 5' end is removed by oligonucleotide-mediated mutagenesis. The VH sequence is present in plasmid pH3-6a. The CDR3 at the 5' end is removed by oligonucleotide-mediated mutagenesis. The VH sequence is present in plasmid pH3-6a. The CDR3 at the 5' end is removed by oligonucleotide-mediated mutagenesis. The VH sequence is present in plasmid pH3-6a. The CDR3 at the 5' end is removed by oligonucleotide-mediated mutagenesis.
RESULTS

Isolation of Mouse cDNA. A cDNA library was generated from the L6 hybridoma cells by priming poly(A)+ RNA with oligo(dT) as described (9, 15). The probes used to screen the library were a J5 oligonucleotide, d(GTCCCGAACAGCAGGCAAG), for the light chain and a JH2 oligonucleotide, d(TGGCTGGAGAGACTGGTAGAG) for the heavy chain (where J stands for joining and H stands for heavy). Two methods (16, 17) were used to determine that the L6 x mRNA contains J5 sequences and that the L6 yA mRNA contains J2 sequences.

Preparation of Mouse V-Region cDNA Modules. Restriction enzyme sites were engineered into the immunoglobulin cdNA around the V/C border for recombining mouse V regions to human C modules. The oligonucleotide MIIIH2ApaI [d(ATGGCCCTTTGTGCTGGCTGAGGAGACTGT)] (with the restriction enzyme site underlined) was used for mutagenesis of the V\(\gamma\) cDNA; and the oligonucleotide JxHindIII [d(CTCAAGCTTGGTCCCAGT)] for that of the V\(\gamma\) segment. The oligonucleotide described above was used to generate a Sal I site eight residues on the 5' side of the V\(\gamma\), ATG codon. By cleaving with Sal I the oligo(dGC) segment on the 5' side of the cDNA insert was removed. The oligo(dGC) segment on the 5' side of the V\(\gamma\) cDNA, the nuclear sequence, was used. The digested products were inserted into the vector pGML60, containing regulatory sequences derived from the plasmid pLl (19) in such a way that the Ml3 restriction site was engineered into the immunoglobulin M13mp19 (19) in such a way that the Ml3 restriction site was placed upstream of the SV40 promoter (9). The selectable marker is the Tns neo gene that confers resistance to the drug G418.

The heavy-chain plasmid pLNG211 was constructed by first joining the mouse V\(\gamma\) cDNA module in a Sal I-Apa I DNA fragment with the human C\(\gamma\) cDNA module in an Apa I-Apa I DNA fragment. The ligated fragments were then inserted into pLNG2012E cleaved by Sal I-BamHI. The light-chain plasmid pLNG219 was constructed by joining the mouse V\(\gamma\), cDNA module in a Sal I-HindIII DNA fragment with the human C\(\gamma\), cDNA module in a HindIII-BamHI DNA fragment. The same vector fragment was used (Fig. 3A). In both plasmids the cDNA gene is placed 11 nucleotide residues downstream of the SV40 19S 3'-splice acceptor (9). The cDNA ends in a segment approximately 100 G+G, where it is joined to the SV40 transcription-termination/polyadenylation sequences. Fig. 3B shows the incident nucleotide sequence changes made at the V/C junction as a result of the gene construction.

A two-gene plasmid, pLNG2114, was constructed from pLNG211 and pLNG219 in which the light-and heavy-chain gene transcription units are in tandem (Fig. 3A). By using this plasmid, we introduced an equal ratio of heavy- and light-chain genes into recipient cells. Unexpectedly, we observed that there was a consistently higher expression of heavy than of light chain in all transfected cell lines examined (data not shown). The two transcription units differ in that the light-chain gene is about 700 base pairs shorter than the heavy-chain gene, and the C\(\gamma\), segment has a higher A+T content. This imbalance was reduced by introducing more light-chain gene copies carried on a second plasmid with a different selectable marker [pLNG2121a, an Eco-gpt (22) version of pLNG2119].

Two initial Sp2/0 transformants, D7 and 3E3, obtained by transfection with pLNG2114 were cultured for the isolation of chimeric antibody. D7 secretes 10% of the antibody produced by 3E3—x (17 \mu g/liter) and y (77 \mu g/liter) chains for D7 compared to x (100 \mu g/liter) and y (700 \mu g/liter) chains for 3E3.

Binding Characteristics of Chimeric Versus Mouse L6 Antibody. Table 1 shows that the chimeric L6 antibody binds to cells from a human colon carcinoma (line C-3347) that expresses 5 x 10^6 molecules per cell of the antigen defined by the mouse L6 mAb (8). In a competition assay, 50% inhibition of binding was achieved by the same amount of the chimeric mouse L6 (Fig. 4). Cells from a T-cell line, HSB-2, did not bind either mouse L6 or the chimeric antibody. Data on the melanoma line M-2669, clone 13 (3), are also included in Table 1, since this line, which expresses a low level of the L6-defined antigen, was used for the functional studies (see below).

Chimeric L6 Antibody Mediates CDC and ADCC. Fig. 5 shows that both the chimeric and mouse L6 antibodies lysed tumor cells in the presence of human complement. The experiment further showed that the chimeric L6 gave higher CDC at all dilutions of the complement.
before fluorescein isothiocyanate-conjugated mouse L6 (3 µg/ml) was added. Antibody inhibition assays, performed by fluorescence-activated cell sorting. C-3347 cells were incubated with the blocking antibodies because ADCC was not observed with the following three cell lines lacking detectable L6 antigens: B-cell lines DHL-10 (data not shown) and the T-cell line HSB-2 (as bright as the control). A ratio of 2 means that the test sample is as bright as the control, NT, not tested.

DISCUSSION

The mouse mAb L6 recognizes a carbohydrate antigen present in abundance in a variety of carcinomas. Normal tissues express only trace amounts of the antigen. Based on this specificity there is justification in considering L6 for cancer treatment with the mAb used either alone (2) or as a carrier of anticancer agents. However, the immunogenicity of mouse L6 mAb in man is a disadvantage for its sustained use in patients, and its functional activity (ADCC and CDC) may be insufficient to effect optimal tumor destruction at the concentration, µg/ml | Binding ratio* |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibody</td>
<td>GAM</td>
</tr>
<tr>
<td>Human colon carcinoma line C-3347</td>
<td></td>
</tr>
<tr>
<td>Mouse L6</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Chimeric L6 (ascites)</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Chimeric L6 (cell culture)</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Human melanoma line M-2669 (clone 13)</td>
<td></td>
</tr>
<tr>
<td>Mouse L6</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Chimeric L6 (cell culture)</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Human T-cell line HSB-2</td>
<td></td>
</tr>
<tr>
<td>Mouse L6</td>
<td>10</td>
</tr>
<tr>
<td>Chimeric L6 (ascites)</td>
<td>10</td>
</tr>
<tr>
<td>Chimeric L6 (cell culture)</td>
<td>10</td>
</tr>
</tbody>
</table>

*The binding ratio is the number of times a test sample is brighter than a control sample when treated with GAM (fluorescein isothiocyanate-conjugated goat anti-mouse immunoglobulin) or with GAH (fluorescein isothiocyanate-conjugated goat anti-human immunoglobulin). For example, a ratio of 1 means that the test sample is as bright as the control; a ratio of 2 means that the test sample is twice as bright as the control. NT, not tested.
We show here that this is a useful approach to improve ADCC by the mouse L6. In patients one may speculate that the chimeric L6 would remain longer in the circulation. This, in combination with the functional attributes of chimeric L6, should make it a strong candidate for therapeutic trials. Some of the antibodies induced in man to mouse mAb were directed to idiotypic determinants (26, 27). It remains to be seen whether the immunogenicity of those determinants of the chimeric L6 will be different from that of the mouse L6.

The advantage of the cDNA approach lies in the ease with which immunoglobulin gene cDNAs can be isolated. The technology used for the present work should make it possible to convert many other mouse mAb to chimeric antibodies with improved antitumor activity via ADCC and CDC mechanisms. The chimeric antibodies will augment the relatively few human mAb currently used in the treatment of cancer (28).

We thank Cathy Shapiro, Phil Mack, Phil Mixter, Pam Smith, Susan Azemove, Grethe Lovold, and Pat McGowan for excellent technical assistance. We also thank Randy Wall for discussion, and Randy Wall, Carol Hersh, Arup Sen, Gary Wilcox, Perry Fell, Jeff Ledbetter, Peter Linsley, and Erik Milner for useful comments on the manuscript. The work was supported by INGENE and ONCOGEN.

Fig. 6. (A) Titration of chimeric and mouse L6 antibodies in ADCC assays with human peripheral blood leucocytes. E/T, effector-target cell ratio. Two preparations of chimeric L6 were used. (B) Titration of human peripheral blood leucocyte effector cells mediating ADCC in the presence of antibodies (2.5 μg/ml). (C) Titration of L6 (chimeric mouse) in ADCC assays on the DHL-10 T-cell line. 1F5 is a mouse mAb that recognizes the DHL-10 cells.