ORIGINAL ARTICLES

Ocular Fundus Lesions in Divers
P. J. Polkinghorne, FRACP, Kishan Sheth, FRPS, M. R. Cross, MD, Darwin Minassian, FRCS, Prof A. C. Bird, FRCS

Allele Loss on Short Arm of Chromosome 17 in Breast Cancers
J. Mackay, FRCS, C. M. Steel, MCORP, A. Elder, BSC, Sir Patrick Forrest, FRCS, Prof H. J. Evans, PHD

Support for Adrenaline-hypertension Hypothesis: 18 hour Pressor Effect after 6 hours Adrenaline Infusion

Simultaneous Isolation of HIV-1 and HIV-2 from an AIDS Patient
L. A. Evans, PHD, Jacques Moreau, MD, Konoud Odehouri, MD, Deborah Seto, BA, Graeme Thomson-Hontebey, MD, Harold Legg, BA, Ashley Barboza, BA, Cecilia Cheng-Meyer, PHD, Prof J. A. Levy, MD

Improvement of Hepatic Encephalopathy Treated with Flumazenil
Georg Gramm, MD, Peter Ferenci, MD, Regina Karszenbscher, Christian Madi, Bruno Schneeweiss, MD, A. N. Laggner, MD, Kurt Lein, MD, Prof Alfred Gangl, MD

PRELIMINARY COMMUNICATION

Remission Induction in Non-Hodgkin Lymphoma with Reshaped Human Monoclonal Antibody CAMPATH-1H

REVIEWS

Notices of Books
1399

GENERAL PRACTICE

Evaluation of a Structured Treatment and Teaching Programme on Non-insulin-dependent Diabetes
Peter Kronsbein, PHD, Victor Jordens, MD, Ingrid Mulhauzer, MD, Vera Scholz, PHD, Annette Verhuis, BA, Prof Michael Berger, MD

THERAPEUTICS

Reversible Ceftriaxone-associated Biliary Pseudolithiasis in Children
U. B. Schaad, MD, Joanna Wedgewood-Krukowski, MD, Heinz Tischspeck, MD

HOSPITAL PRACTICE

Nasal Continuous Positive Airway Pressure in Pneumocystis carinii Pneumonia
Steven Kesten, FRCP, A. S. Reubke, FRCPG

ROUND THE WORLD

India
1415

IN ENGLAND NOW

1416

LETTERS TO THE EDITOR

Reversed Polarity of Vascularocclusive Potential and Neonatal Necrotising Enterocolitis
Dr M. R. Miller and others

Haemodilution in Renal Transplantation in Patients on Erythropoietin
Dr Jan Walmberg and others

Treatments for Neurotic Disorders
Prof D. F. Klein

Licensing Synthetic Intracerebral Tents
Mr Nicholas Johnson, MBCHB

Birthweight and Neonatal Mortality
Dr Alfredo Pisuere

Food Intolerance and Rheumatoid Arthritis
Dr Peppe Kuri and others; Prof L. Corrêa and others

Changes in Body Weight between Consecutive Pregnancies
Dr J. S. Santos and others

Salmonella enteritidis Phase Type 4 and Other Eggs
Dr John Paul, Dr Barry Batchelor

Cholesterol Side-effects of Tetrahydrozolimicoline
Prof Raymond Low

Peripheral Facial Paralysis Indicating HIV Infection
Dr Laurent Bele and others

HIV, Glaucoma, and Arterial Hypertrophy
Mr J. W. Fairley, FRCS, and others

Cut-Scratch Disease, Bartonella, and Kaposi Sarcoma
Dr S. Seeler

Inhibition of Cholinesterase by Pentamidine
Dr T. A. Aulen

Italian Epidemic of Waterborne Tularemia
Dr E. Mignani and others

Home Intravenous Immunoglobulin Therapy
Dr H. M. Chapel, Sister V. M. Brennan

Is Inactivated Poliovaccine more Expensive?
Dr J. P. Mouia-Pest and others

Heat-stable versus Heat-labile Vaccines
Dr C. F. Müller, Prof Günther Jung

Management of Dysentery by Community Health Workers
Dr Martin Kirkpatrick

Antibody Responses to Human Herpesvirus 6 and other Herpesviruses
Dr D. J. Moore and others; Dr Martin Andre; Dr Bernd Mau

Parvovirus-associated Thrombocytopenic Purpura
Dr N. K. Foreman and others

Clinical Trial Numbers and Confidence Intervals of Pre-specified Size
Mr S. J. Day, PHD

Danish Experience of Statutory Right of Patients to Access to Hospital Records
Dr Tor Anderson, Dr Georg Jørgensen

Better Surgeries get Better Results
Mr Richard Newby, FRCS, and others

Paying for Extended Medicare
Dr Brian Potter

ICRF Appeals
Dr L. A. Prize

Graver Diseases: the Thyroid not the Pancreas
Prof J. G. Scadding

Specific Detection of Toxornagonates
EGs by DNA Hybridisation
Dr A. Finsen and others

Non-surgical Left-atrial Atrial Bypass
Dr U. Bebic and others

Screening for Aortic Aneurysm
Mr Jack Collins, FRCS

Pelvic Irradiation and Tamoxifen as Risk Factors for Carcinoma of Corpus Uteri
Dr Lennart Härte

Erythromycin-resistant Streptococcus pneumoniae
Dr J. Vertegel and others; Dr R. E. Warren and others

Naevus of Nasal
Dr Nejat Akar

MEDICINE AND THE LAW

Counslic Surgery: Greater Duty to Warn of Risks
Dr A. Finsen and others

Doctors and Advertising

NOTES AND NEWS

MRC Activities—Official
Spate a Thought for the Victim
Help for Sick Doctors
After the Christmas Party
Cancer Incidence World Wide
Women's Health Concern
Healers, Quacks, and Lady Doctors
Postgraduate Education
Training Courses for HIV/AIDS Counsellors

CORRECTION

Fetal Obstetric Uropathy

INTERNATIONAL DIARY

DO NOT REMOVE
Discussion

This study is the largest experience to date with the benzodiazepine antagonist flumazenil in the treatment of HE. The effects of the drug were assessed clinically and by SEP recordings. The late components of cortical SEPs (peaks N4 and P3) appear to be highly sensitive indicators of cortical dysfunction in HE. 28 The results indicate that flumazenil may improve the HE that complicates both acute and chronic liver failure. Flumazenil treatment was associated with improvement in neurological status in 60% of episodes of HE; with one exception improvement occurred within a few minutes to an hour before HE improves after conventional therapies. The response to flumazenil in benzodiazepine intoxication is also very rapid. 13

The 60% improvement rate may even underestimate the potential efficacy of flumazenil in the treatment of HE since most of the patients in this study had been encephalopathic for many days before flumazenil treatment and had not responded to conventional therapy. Furthermore all 5 patients with clinical evidence of increased intracranial pressure due to brain oedema did not respond to flumazenil. Of these patients improved after treatment with mannitol. The remaining 4 died within 3 days of flumazenil administration.

In 6 of the 12 episodes responding to flumazenil there was an exacerbation of HE 0.5-4 h after stopping treatment, thus transient effect of the drug is consistent with its pharmacokinetics. 10 To achieve a sustained response continuous administration of the drug over longer periods may be necessary. Although these 12 episodes improved, no patient regained normal brain function at the end of treatment. The possibility that larger doses or a longer duration of treatment would have achieved complete improvement seems unlikely since, in benzodiazepine intoxication much lower doses are sufficient for recovery. 18

In addition an increased GABAergic tone may be only one of many abnormalities of brain function in patients with liver failure and correction of this particular abnormality may therefore induce incomplete improvement.

The mechanism by which flumazenil improves HE is uncertain. One possibility is displacement of an endogenous benzodiazepine-like substance from the GABA-benzodiazepine receptor. The presence of such a substance was suggested in the brains of animals with HE and in cerebrospinal fluid of patients dying with HE. 22

This study was supported by the Fonds zur Förderung der wissenschaftlichen Forschung (P6169 M). Flumazenil was provided by Hoffmann-La Roche, Basel, Switzerland.

Correspondence should be addressed to G. G., 1st Department of Medicine, University of Vienna, A-1090 Vienna, Austria.

REFERENCES


References continued at foot of next column
INTRODUCTION

TUMOUR treatment by passive serotherapy has had a long and largely unsuccessful history. The advent of monoclonal antibodies gave fresh impetus to this approach, but results with unmodified antibodies are generally unremarkable. Efforts to enhance activity in vivo are now largely focused on the conjugation of antibodies to toxins or radionuclides. However, we are convinced that physiological effector mechanisms are still among the most potent and have tried to find the optimum combinations of antibody specificity and isotype to exploit them fully.

One possible specificity is the CAMPATH-1 antigen. It does not readily undergo modulation and is abundantly expressed on virtually all lymphoid cells and monocytes, but not on other cell types. These properties make it a potential target for treatment of lymphoid malignant disorders and for immunosuppression. Several rat IgM and IgG antibodies to this antigen have been produced. The IgM (CAMPATH-1M) is intensely lytic with human complement and is widely used for depletion of T cells from bone marrow to prevent graft-versus-host disease. The IgG2b (CAMPATH-1G) is the most potent for cell killing and is used in the most potent and have tried to find the optimum combinations of antibody specificity and isotype to exploit them fully.

However, treatment with rat antibody is likely to be limited by an antihuman response. This problem should be reduced or eliminated by use of a human antibody. A reshaped human antibody (CAMPATH-1H) has been constructed—the hypervariable regions of the rat antibody were transplanted into normal human immunoglobulin genes. Human IgG1 was chosen since it had greater activity than other human isotypes both in complement lysis and in cell-mediated killing.

Here we describe the use of CAMPATH-1H to treat two patients with non-Hodgkin lymphoma. Although it was possible to continue treatment for up to 6 weeks without the development of a neutralising anti-human response, the main point of this report is to describe the efficacy of the antibody in clearing large masses of tumour cells. This is the first report of treatment with a fully reshaped human monoclonal antibody.

PATIENTS AND METHODS

Approval for the use of monoclonal antibodies was given by the ethical committee of Addenbrooke's Hospital and written consent was obtained from both patients.

Antibodies were obtained from culture supernatant of cells growing in a hollow fibre bioreactor (Acusys-J, Endotronics). CAMPATH-1G was purified by precipitation with ammonium sulphate; CAMPATH-1H was purified by affinity chromatography on protein-A-Sepharose. They were dissolved in phosphate-buffered saline, sterile filtered, and tested for pyrogen and sterility. Patients were prehydrated overnight and antibody, diluted in 50 ml saline, was infused over 2–4 h.

CAMPATH-1 expression on tumour cells was measured by flow cytometry and complement-mediated lysis. Serum concentrations of CAMPATH-1H were measured by immunofluorescence with normal lymphocytes. Southern blot analysis with an immunoglobulin J probe was used to detect residual tumour cells in DNA extracted from mononuclear fractions of bone marrow. Antikoglobin responses were sought by two techniques. The first was a solid-phase enzyme-linked assay using microtitre plates coated with CAMPATH-1H. After incubation with patients' serum samples, the assay was developed with biotin-labelled CAMPATH-1H followed by streptavidin-peroxidase. A mixture of monoclonal mouse antibodies against human IgG was used as a control and 500 ng/ml of this mixture could be detected. In the second assay, patients' serum samples were mixed with red cells coupled with CAMPATH-1H. Agglutination by 5 ng/ml of the control mixture could be detected. Immunoglobulin isotypes were determined by means of standard reagents and techniques from the Central Laboratory of the Netherlands Red Cross blood transfusion service.

RESULTS

Patient 1

A 69-year-old woman presented in 1983 with acute appendicitis. Massive splenomegaly was found (table) and the bone marrow was heavily infiltrated with lymphocytes, some of which had everted nuclei and a single nucleolus. There was weak membrane expression of IgM kappa. Computed tomography scan showed splenomegaly but no lymphadenopathy. Grade I, stage IVA non-Hodgkin lymphoma in leukaemic phase was diagnosed. Between 1983 and 1987 the patient received oral and intravenous chemotherapy with combinations of cyclophosphamide, vincristine, prednisolone, and chlorambucil, which induced partial responses, the minimum level of marrow infiltration being 40%. Two courses of splenic radiotherapy were given.
but the second (in April 1987) was curtailed since the spleen grew larger during the course.

In September 1987 the disease progressed with increases in blood lymphocytes (24 x 10^9 cells/l) and spleen size. The patient was treated with CAMPATH-1G for 8 days (fig 1A). This treatment completely cleared lymphoma cells from blood and marrow but only partially reduced spleen size. CAMPATH-1G induced fever, nausea, and vomiting, and the treatment was stopped on day 8 when it resulted in severe bronchospasm. (Such severe reactions have not been seen in twenty-one other patients who have received similar doses.) Reappearance of lymphoma cells in the blood was initially slow and the spleen size did not change for 5 months but there was little recovery of normal haemopoiesis. In March 1988 the patient began to lose weight and experienced drenching night sweats. The spleen enlarged and lymphoma cells reaccumulated in the blood. They had similar phenotype and identical rearranged immunoglobulin J_\gamma fragments to those seen before treatment. Marrow aspirate and trephine showed complete replacement of normal marrow by lymphoma cells (fig 2A); the patient became dependent on red-cell transfusions and was absolutely neutropenic.

The patient’s serum did not block binding of CAMPATH-1H or CAMPATH-1G to normal lymphocytes and the tumour cells were still sensitive to these antibodies in vitro, so we decided to treat her with CAMPATH-1H. The starting dose was 1 mg daily and, since it was well tolerated, the dose was increased to a maximum of 20 mg/day, though the usual dose was 4 mg/day owing to the small amount available. In all the patient received 126 mg over 30 days. The response was prompt; in 6 days the night sweats had abated, by day 10 there was pronounced reduction in splenomegaly and recovery of blood neutrophils, and by day 18 lymphoma cells were cleared from the blood (fig 1B). On day 28 a bone marrow aspirate and trephine were hypocellular but showed active myelopoiesis and erythropoiesis and no lymphoid cells (fig 2B). No CAMPATH-1-positive cells could be detected by flow cytometry. DNA from the mononuclear marrow cells was germline when probed with an immunoglobulin J_\gamma probe under conditions where clonal rearrangements could be detected in 0.2% of cells. Thus, we conclude that lymphoma cells were cleared from the marrow. The spleen volume was reduced about eight-fold (fig 3A, B), although it was still slightly larger than normal.

Other than fever occurring about 1 h after the end of antibody infusions there were no adverse effects of antibody treatment until the 5th week, when severe rashes occurred after each infusion. No antoglobulin response could be detected and the rate of clearance of antibody from the serum was unchanged. For the next 3 weeks the patient continued to experience occasional fever and rigors. She was given oral cotrimoxazole because of her lymphopenia, but no infective cause of these symptoms could be found.

In the next 4 months lymphocytes, which appeared morphologically normal, slowly reappeared in the blood (up to 0.2 x 10^7/l). They did not show the characteristic rearranged immunoglobulin fragments, and both CD5-negative and CD19-positive cells were present (table). Serum immunoglobulin levels, which had been very low since presentation, have risen towards normal (table). A marrow aspirate and trephine taken 50 days after the end of treatment were again hypocellular but had no lymphomatous infiltration. This marrow sample contained

### Table: Patient Characteristics Before and After Treatment with CAMPATH-1H

<table>
<thead>
<tr>
<th>Patient</th>
<th>Before</th>
<th>After*</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Cell size (ml)</strong></td>
<td>4400</td>
<td>500</td>
</tr>
<tr>
<td>Lymphadenopathy</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>99</td>
<td>72</td>
</tr>
<tr>
<td>% lymphoma cells</td>
<td>R/R</td>
<td>G/G</td>
</tr>
<tr>
<td>IgM fragment</td>
<td>Peripheral blood</td>
<td>8.7</td>
</tr>
<tr>
<td>Neutrophils (x 10^9)</td>
<td>31</td>
<td>135</td>
</tr>
<tr>
<td>Platelets (x 10^9)</td>
<td>37</td>
<td>50</td>
</tr>
<tr>
<td>Lymphocytes (x 10^9)</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Monocytes (x 10^9)</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Blood lymphocytes</td>
<td>0</td>
<td>0.04</td>
</tr>
</tbody>
</table>

*Made shortly after end of antibody treatment, except for lymphocyte phenotyping and serum immunoglobulins, which were assessed 6 weeks later.

**By computed tomography.**

ND = not done.

4% CAMPATH-1-positive cells and showed some oligoclonal rearrangements of immunoglobulin genes. However, by day 100, lymphoma cells were again detected in the blood and the spleen size had started to increase. A second course of 12 days’ therapy with CAMPATH-1H was completed with similar therapeutic benefit to the first and no adverse effects. Since the main reservoir of disease in this patient appeared to be the spleen, splenectomy was carried out at the end of this second course of treatment. At that time no tumour cells could be detected in blood or marrow. The patient is now well 37 days after the splenectomy. The lymphocyte count is low but she has normal neutrophil, platelet, and red-cell counts.

**Patient 2**

A 67-year-old man presented in April 1988 with splenic pain; there was 12 cm splenomegaly, and computed tomography scan of thorax and abdomen revealed retrocrural and para-aortic lymphadenopathy, the largest node measuring 3 cm in diameter (fig 3C). A blood count revealed 36.6 x 10^9 lymphocytes/ml, the majority being lymphoplasmacytoid cells which expressed surface IgG-kappa and were characterised by large cytoplasmic periodic-acid-Schiff-positive vacuoles which could be intensely stained with anti-IgG. A marrow aspirate contained 72% lymphomatous cells (fig 2C). DNA from blood mononuclear cells showed biallelic rearrangement of immunoglobulin J_\gamma genes but was germline with various T-cell receptor and oncogene probes. The lymphoma cells expressed the CAMPATH-1 antigen in amounts comparable with normal lymphocytes but were more resistant to complement-mediated lysis. Stage IVA grade I
Fig 2—Cytology of bone marrow cells.

A = patient 1 trephine before treatment with CAMPATH-IH; B = patient 1 trephine on day 43 (ie, 16 days after treatment); C = patient 2 aspirate before treatment with CAMPATH-IH; D = patient 2 aspirate on day 78 (ie, 35 days after treatment). Reduced by 58% from × 100 (A), × 1000 (C), × 400 (D).

Fig 3—Computed tomography scans showing affected spleen and lymph node.

A = patient 1 before treatment with CAMPATH-IH; B = patient 1 on day 57; C = patient 2 before treatment with CAMPATH-IH (retrocrural node arrowed); D = patient 2 on day 9.
lymphoplasmacytoid non-Hodgkin lymphoma was diagnosed.

The patient was offered CAMPATH-IH as primary therapy and received a total of 85 mg over 43 days. This resulted in clearance of the lymphoma cells and normal lymphocytes from blood (fig 4) and marrow (fig 2D), resolution of splenomegaly, and improvement in the lymphadenopathy. A computed tomography scan taken 8 days after the end of antibody treatment was normal (fig 3D). A bone marrow aspirate taken at the same time showed active haemopoiesis but no lymphoma cells, and no CAMPATH-1-positive cells could be detected by flow cytometry. DNA from the mononuclear fraction of this marrow showed only germline configuration when probed with the immunoglobulin J probe. By day 78 morphologically normal blood lymphocytes began to reappear and none of the vacuolated cells could be seen. The patient remains well and off therapy.

Some toxic effects of CAMPATH-IH were observed. The first dose was stopped after 3 mg had been given because of hypertension, possibly caused by tumour lysis. This problem was subsequently avoided by giving smaller doses at a slower rate and when lymphoma cells had been cleared from the blood, the dose was increased to a maximum of 8 mg over 4 h without any effect on blood pressure. Nevertheless, all doses induced fever (up to 38.5°C), and malaise for up to 36 h, but these were not severe enough to stop antibody treatment which, after the first week, was given on an outpatient basis. Treatment was stopped after 43 days because of the development of an urticarial rash after two successive antibody infusions.

Half-life of CAMPATH-IH

The concentration of CAMPATH-IH was measured in serum samples taken before and after antibody infusions and at other times throughout treatment. In theory, a dose of 4–6 mg corresponds to about 1 µg/ml in the plasma. In fact we could not detect free antibody till day 4–6, presumably because of rapid uptake by the tumour mass. After that, the rate of clearance was roughly constant, with the concentration being about 30–70% of the theoretical level immediately after infusion and about 5–20% after 24 h. The rate of clearance of CAMPATH-IH was possibly slightly slower than that of the rat CAMPATH-1G,3 but still much faster than that of normal human IgGl.13

Lack of Antiglobulin Response

The allotype of CAMPATH-IH is Glm(1,2,17),Krn(3). Patient 1 was Glm(1,3,17),Krn(3) and patient 2 was Glm(3),Krn(3), so both could theoretically have made an anti-allotype response as well as a response to the hypervariable regions. However, we failed to detect any antiglobulin to CAMPATH-IH either by the solid-phase enzyme-linked assay or by the more sensitive haemagglutination assay. In addition, the rate of clearance of CAMPATH-IH did not change and free antibody could be detected for up to 8 days after the last dose had been given. It is possible that the reactions experienced at the end of the course of treatment could have been provoked by contaminating non-human proteins in the antibody preparation.

DISCUSSION

The remissions achieved in these two patients show that it is possible to clear large numbers of tumour cells with small amounts of an unmodified monoclonal antibody. The effects in the first patient were far superior to the results of previous chemotherapy and radiotherapy. The selective lysis of lymphoma cells with recovery of normal haemopoiesis during the course of treatment was an important advantage, which allowed treatment to be given largely on an outpatient basis. We believe the choice of antibody specificity and isotype is important; indeed, it may be why we had more success than previous efforts with other monoclonal antibodies.14,15 The CAMPATH-IH antigen seems to be a good target because it is widely distributed and abundant, and does not suffer from antigenic modulation.2,8,16 This study shows that, as predicted, human IgGl can bring about cell lysis in vivo, though we cannot yet assess the relative importance of humoral or cellular mechanisms. There was no change in serum complement levels (CH50, C3, or C4 components) during antibody treatment (data not shown), but this does not exclude a role for C3 in cell clearance.

Although the two patients did not make any serologically detectable antiglobulin response, it would be premature to draw general conclusions about the immunogenicity of human monoclonal antibodies, since CAMPATH-IH itself is probably immunosuppressive and the patients were already immunosuppressed as a result of their disease. Nevertheless, it was encouraging that two courses of antibody treatment could be given, even in the patient who had previously had unusually severe reactions to the original rat antibody.

The long-term benefit of treatment with CAMPATH-IH can only be assessed in a much larger trial when it would probably be combined with more conventional chemotherapy and radiotherapy. It may have wider applications as an immunosuppressive agent for transplantation and possibly autoimmune disease, since we already know that the rat antibody CAMPATH-1G is a potent immunosuppressant in the short-term.

We thank the patients and families, nursing staff, medical colleagues, and Prof F. G. J. Hayhoe for their cooperation, encouragement and support; and Dr D. Gilmore, Dr H. S. Kruger-Gray, Prof R. R. A. Coombs, Mark

**Fig 4—Effect of CAMPATH-IH on blood counts in patient 2.**

▲ lymphocytes, △ neutrophils.
Worse than the Disease: Pitfalls of Medical Progress


Dr Dutton is a sociologist with a special interest in the development of health policy. She clearly shares Lord Salisbury’s view that doctors are a variety of expert who require to have their strong wine diluted by very large admixture of insipid commonness. On the evidence of this book she has a strong case. Four detailed histories of major medical developments are presented. Two of these initiatives caused considerable harm and suffering to a small number of people at enormous cost and without clinical benefit. The American swine flu mass immunisation programme was designed to protect against an epidemic that did not occur and resulted in severe neurological disease in some unlucky recipients. The artificial heart programme consumed vast federal funds over many years and, when tested (probably prematurely) in man, failed to extend life significantly but afforded a few individuals a miserable death. A third development, dextrihistidinol, was hailed as a wonder drug and widely put to unproven use until serious adverse sequelae were noted in the children of women who had received it. In the fourth case history, the development of recombinant DNA methods, there is no discernible evidence of physical harm, although the safeguards introduced in the early days, after public debate, were brushed aside under commercial and scientific pressures. In the absence of any harmful outcome, this last case is very much the odd man out; I suspect that it is included because of the early public consultation, although this consultation had little effect upon the course of events.

In the first three examples there is an element of being wise after the event. At least some of those involved acted from the purest of motives when there was considerable uncertainty about the paths to be taken. Later, market forces distorted clinical and scientific judgment, precipitating unjustified clinical use together with obstruction of necessary action by the regulatory authorities. It is a sorry tale, and if there is one obvious lesson it is that the marketplace is no testing ground for medical innovation of the sort discussed here. Where financial returns are involved, they only too easily corrupt scientific, clinical, and ethical judgment—in ways that are not always obvious to the participants at the time.

Dutton continues to swim against the tide by suggesting that governments must take responsibility for safeguarding society from the consequences of regarding medical developments as saleable commodities. This philosophy she sees as a variant of Tudor Hart’s inverse-care law whereby the areas of greatest need attract the least resources. The difficulty here is obvious from one of her case histories—the mass immunisation programme against swine influenza.

Here an early warning system was triggered too easily, a President in an election year needed to present a decisive image, and experts lost the courage of their convictions in the face of the high cost of possibly being proved wrong. The result was a programme that would have failed to stem an epidemic even if the epidemic had occurred. Where powerful governmental machinery existed it over-reacted in an incompetent way.

Dutton recognises the shortcomings of governmental machinery. Her solution is public accountability through other mechanisms at local and national level. She recognises the obvious difficulty presented by the way the popular voice is heard at present. This heavenly chorus “sings with a strong upper class accent. Probably about 90% of the people cannot get into the pressure system”. One model she sees in a favourable light is the citizens’ panel set up by the Cambridge (Massachusetts) City Manager to examine the potential risks of recombinant DNA research at two of the world’s leading universities. This unique approach employed non-experts as a jury. At a national level she proposes greater congressional oversight of medical innovation and perhaps the construction of an overall policy-making body within the United States Department