CONTENTS

Preface
List of Acronyms

Part I Foundations of Mechanical Design of Electronic Systems

1 Introduction
 1.1 Goals and Objectives
 1.2 Mechanical Development in Design of Electronic Systems
 1.3 Mechanical Design Aspects of Packaging
 1.3.1 Connections
 1.3.2 Thermal Management
 1.3.3 Manufacturing
 1.3.4 Maintenance
 1.3.5 Shock and Vibration
 1.3.6 Ergonomics
 1.4 Range of Products
 1.5 Business Aspects
 References
 Exercises

2 Electronic Components and Semiconductor Devices
 2.1 Introduction
 2.2 Conductors, Insulators, and Semiconductors
 2.3 Extrinsic Semiconductors
 2.4 The P-N Junction
CONTENTS

2.5 Semiconductor Diodes 26
2.6 Transistors 28
 2.6.1 Bipolar Transistors 29
 2.6.2 Metal Oxide Semiconductor Field Effect Transistors 33
2.7 Comparison of Transistor Types 36
2.8 Logic Gates 37
2.9 Gate Technologies 40
 2.9.1 Bipolar Gates 40
 2.9.2 MOSFET Gates 43
2.10 Power Delay Product 44
2.11 Scale of Integration 45
2.12 I/O Count and Rent's Rule 47
2.13 Memory Devices 49
 References 52
 Exercises 52

3 Circuit Analysis 55
3.1 Introduction 55
3.2 The Analog Method of Analysis 56
3.3 Transmission Line Theory 58
3.4 Sinusoidal Signal Propagation on a Transmission Line 60
3.5 Termination of Transmission Lines 62
 3.5.1 Open Circuit Termination 62
 3.5.2 Short Circuit Termination 63
 3.5.3 Transmission Lines with Arbitrary Termination Impedance 64
3.6 Pulse Propagation along a Low Loss Transmission Line 65
3.7 Effect of Termination on Pulse Propagation 66
 3.7.1 Open-Ended Line 66
 3.7.2 Short Circuit at the Load End 67
 3.7.3 Arbitrary Resistive Load at the Line End 69
3.8 Influence of a Finite Rise Time on Pulse Shape 71
3.9 Arbitrary Resistive Loads at Both Ends of the Line 73
3.10 Reflections from Discontinuities 76
3.11 Characteristic Impedance of Conductors 78
3.12 Transmission Lines on Circuit Boards 80
3.13 Resistance of Printed Circuit Lines 82
3.14 Logic Gate Characteristics 83
 References 88
 Exercises 88

Part II Packaging 93
4 First Level Packaging—The Chip Carrier 95
4.1 Introduction 95
4.2 Types of Chip Carriers 97
 4.2.1 Pin In-Hole Chip Carriers 99
 4.2.2 Leaded Surface-Mounted Chip Carriers 103
 4.2.3 Leadless Surface-Mounted Chip Carriers 106
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Chip-to-Chip Carrier Mounting</td>
<td>107</td>
</tr>
<tr>
<td>4.4</td>
<td>Chip-to-Chip Carrier Connections</td>
<td>108</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Automated Wire Bonding</td>
<td>109</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Tape-Automated Bonding</td>
<td>113</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Flip-Chip Connections to the Chip Carrier</td>
<td>113</td>
</tr>
<tr>
<td>4.5</td>
<td>Multichip Packages</td>
<td>115</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Hybrids</td>
<td>115</td>
</tr>
<tr>
<td>4.5.2</td>
<td>The Thermal Conduction Module</td>
<td>116</td>
</tr>
<tr>
<td>4.6</td>
<td>First Level Packaging for Other Components</td>
<td>119</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Resistors</td>
<td>119</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Capacitors</td>
<td>123</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Diodes</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>126</td>
</tr>
<tr>
<td>5</td>
<td>Second Level Packaging—Circuit Boards</td>
<td>129</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>129</td>
</tr>
<tr>
<td>5.2</td>
<td>Types of Printed Circuit Boards</td>
<td>134</td>
</tr>
<tr>
<td>5.3</td>
<td>Circuit Board Materials</td>
<td>135</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Copper Foil</td>
<td>143</td>
</tr>
<tr>
<td>5.4</td>
<td>Footprint Design</td>
<td>144</td>
</tr>
<tr>
<td>5.5</td>
<td>Component Placement</td>
<td>148</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Placement for Enhanced Wirability</td>
<td>149</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Placement for Enhanced Reliability</td>
<td>153</td>
</tr>
<tr>
<td>5.6</td>
<td>Routing Methods</td>
<td>158</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Surface Organization</td>
<td>158</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Design Rules for Routing</td>
<td>162</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Automatic Routing Programs</td>
<td>166</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Wiring Algorithms</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>176</td>
</tr>
<tr>
<td>6</td>
<td>Production of Printed Circuit Boards</td>
<td>182</td>
</tr>
<tr>
<td>6.1</td>
<td>Overview of the Production Process</td>
<td>182</td>
</tr>
<tr>
<td>6.2</td>
<td>Preparation of Master Layouts</td>
<td>184</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Manual Preparation of the Artwork</td>
<td>184</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Automated Artwork by Photoplotting</td>
<td>186</td>
</tr>
<tr>
<td>6.3</td>
<td>Lithography</td>
<td>187</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Photoresist Printing</td>
<td>187</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Etching</td>
<td>190</td>
</tr>
<tr>
<td>6.4</td>
<td>Drilling and Punching</td>
<td>192</td>
</tr>
<tr>
<td>6.5</td>
<td>Lamination</td>
<td>195</td>
</tr>
<tr>
<td>6.6</td>
<td>Plating</td>
<td>197</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Plated through Holes</td>
<td>198</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Panel and Pattern Plating</td>
<td>198</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Tin–Lead or Solder Plating</td>
<td>201</td>
</tr>
<tr>
<td>6.6.4</td>
<td>Gold Plating</td>
<td>202</td>
</tr>
<tr>
<td>6.7</td>
<td>Solder Masks</td>
<td>202</td>
</tr>
<tr>
<td>6.8</td>
<td>Pretininning</td>
<td>204</td>
</tr>
</tbody>
</table>
CONTENTS

6.9 Assembly 204
6.10 Solder and Solder Fluxes 208
6.11 Solder Methods 210
6.11.1 Solder Pots and Wave Soldering 211
6.11.2 Vapor Phase Soldering 212
6.12 Cleaning and Coating 213
6.13 Ceramic Circuit Boards 214
6.13.1 Ceramic Substrate Materials and Processes 215
6.13.2 Metallization 217
6.13.3 Glasses as Dielectrics and Seals 219
References 220
Exercises 221

7 Third Level Packaging 224
7.1 Introduction 224
7.2 Connectors 225
7.2.1 Connector Pins, Contacts, and Inserts 227
7.2.2 Connector Resistance and Plating Materials 233
7.2.3 Connector Forces 239
7.3 Back Panel, Wire Wrap Boards, and Cable Connections 241
7.3.1 Back Panels 241
7.3.2 Wire Wrap Panels 243
7.3.3 Cable Connected Boards 246
7.4 Power Supplies and Bus Bars 248
7.4.1 Batteries as Power Supplies 248
7.4.2 Power Supplies 249
7.4.3 Bus Bars 250
7.5 Card Racks 253
7.5.1 Card Guides and Retainers 254
7.6 Electronic Enclosures 256
7.6.1 Commercial Enclosures 256
7.6.2 Military Enclosures 259
7.7 Wires and Cabling 264
7.7.1 Wire Conductors 265
7.7.2 Wire Insulation 267
7.7.3 Wire to Cable 270
7.7.4 Wire Shielding 272
7.8 Fans and Cold Plates 273
7.8.1 Fans and Fan Noise 275
7.8.2 Cold Plates and Cold Rails 278
References 278
Exercises 279

Part III Analysis Methods 285

8 Thermal Analysis Methods—Conduction 287
8.1 Introduction 287
8.2 Reliability 288
8.2.1 Failure Rate 288
9 Thermal Analysis Methods—Radiation and Convection

9.1 Introduction 334
9.2 Laws Governing Heat Transfer by Radiation 335
 9.2.1 Shape Factors and Energy Exchange 335
 9.2.2 Influence of Surface Emissivity on Radiation Heat Transfer 339
 9.2.3 The Radiation Heat Transfer Coefficient 342
9.3 Convection Heat Transfer 344
9.4 Free or Natural Convection 345
 9.4.1 Free Convection on a Vertical Plate with Laminar Flow 348
 9.4.2 Free Convection on a Vertical Plate with Turbulent Flow 349
 9.4.3 An Approximate Relation for Free Convection for the Vertical Plate 350
 9.4.4 Free Convection Heat Transfer with Other Shapes 350
9.5 Forced Air Convection Coefficients 352
 9.5.1 Laminar Flow over a Flat Plate 352
 9.5.2 Turbulent Flow over a Flat Plate 355
 9.5.3 Combined Laminar and Turbulent Flow over a Flat Plate 356
 9.5.4 Convection from a Flat Plate with a Uniform Heat Flux 357
9.6 Forced Convection with Internal Flow—Ducts 357
 9.6.1 Average Velocity and Temperature 359
 9.6.2 Temperature Difference 361
9.7 Heat Transfer and Friction Coefficients for Duct Flow 362
 9.7.1 Summary 364
9.8 Air Flow in Electronic Enclosures
 9.8.1 Fluid Statics 365
 9.8.2 Enclosure Impedance and Fan Characteristics 367
 9.8.3 Fan Placement in the Enclosure 370
 9.8.4 An Electrical Analogy for Head Loss Determination 373
References 375
Exercises 376

10 Analysis of Vibration of Electronic Equipment 382
 10.1 Introduction 382
 10.2 Vibrating Systems with a Single Degree of Freedom 386
 10.2.1 Free Vibrations 386
 10.2.2 Forced Vibrations 390
 10.2.3 Transmission Coefficients 391
 10.3 Isolation of Systems from Exciting Forces 394
 10.4 Vibration of Axial Ledged Components 399
 10.5 Fatigue Analysis of Component Leads 401
 10.6 Vibration of Circuit Boards 404
 10.6.1 Improving the Vibration Behavior of Circuit Boards 408
 10.6.2 Stresses in Circuit Boards Due to Vibration 410
 10.6.3 Stresses in Copper Signal Traces 412
 10.7 Lead Wire Failures on Vibrating Printed Circuit Boards 413
 10.7.1 Stresses in Solder Joints 417
 10.8 The Theorem of Castigliano 419
 10.9 Fasteners 421
 10.9.1 Strength of Fasteners 424
 10.9.2 Bolt Preload 425
 10.10 Fastened Joints Loaded in Tension 425
 10.10.1 Stress and Fatigue Analysis 426
 10.11 Fastened Joints Loaded in Shear 428
References 430
Exercises 430

Index 437
TABLE 2.1
Resistivity ρ of select materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Classification</th>
<th>Resistivity ((\Omega\cdot\text{cm}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>Conductor</td>
<td>1.63×10^{-6}</td>
</tr>
<tr>
<td>Copper</td>
<td>Conductor</td>
<td>1.72×10^{-6}</td>
</tr>
<tr>
<td>Aluminum</td>
<td>Conductor</td>
<td>2.83×10^{-6}</td>
</tr>
<tr>
<td>Nickel</td>
<td>Conductor</td>
<td>6.9×10^{-6}</td>
</tr>
<tr>
<td>Platinum</td>
<td>Conductor</td>
<td>9.8×10^{-6}</td>
</tr>
<tr>
<td>Silicon</td>
<td>Semiconductor</td>
<td>1.56×10^{5}</td>
</tr>
<tr>
<td>Aluminum oxide</td>
<td>Insulator</td>
<td>1×10^{15}</td>
</tr>
<tr>
<td>Silicon oxide</td>
<td>Insulator</td>
<td>1×10^{14}</td>
</tr>
<tr>
<td>Epoxy</td>
<td>Insulator</td>
<td>1×10^{15}</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>Insulator</td>
<td>1×10^{18}</td>
</tr>
</tbody>
</table>

A PCB is given by:

$$R = \rho L / A \quad (2.1)$$

where L is the length of the conductor (cm)

A is the cross section area (cm2)

ρ is the resistivity (\(\Omega\cdot\text{cm}\))

The resistivity ρ depends on the atomic structure of the element and if there are a large number of loosely bound electrons in the outer shell, the resistivity is low as indicated in Table 2.1. It is evident from the results shown here that the resistivity of different types of materials can vary over a very wide range. For metal conductors ρ is of order 10^{-6} \(\Omega\cdot\text{cm}\) but for insulators ρ is of order 10^{12} \(\Omega\cdot\text{cm}\) or higher.

The atomic structure of insulating materials clearly shows the reason for the large values of ρ. Consider the atomic structure of SiO$_2$ shown in Fig. 2.2. Silicon has a full K shell, a full L shell and four electrons in the outer M shell. Oxygen has a full K shell and six of eight electrons necessary to fill the L shell. The