
United States Patent [19J

Bouton et al.

[54] RECONFIGURABLE VIDEO GAME
CONTROLLER WITH GRAPHICAL
RECONFIGURATION DISPLAY

[75] Inventors: Frank M. Bouton, Beaverton, Oreg.;
Robert L. Carter, Vancouver, Wash.;
Clarence A. Hoffman, Beaverton,
Oreg.; EricK. Juve, Aloha, Oreg.;
Rodney W. Kimmel, Beaverton, Oreg.

[73] Assignee: Thrustmaster, Inc., Tigard, Oreg.

[*] Notice: The term of this patent shall not extend
beyond the expiration date of Pat. No.
5,396,267.

[21] Appl. No.: 177,625

[22] Filed: Jan.S, 1994

Related U.S. Application Data

[63] Continuation-in-part of Ser. No. 78,763, Jun. 15, 1993,
abandoned, and Ser. No. 2,828, Jan. 7, 1993, Pat. No.
5,396,267, which is a continuation-in-part of Ser. No. 932,
501, Aug. 19, 1992, Pat. No. 5,245,320, which is a continu­
ation-in-part of Ser. No. 911,765, Jul. 9, 1993, abandoned.

[51] Int. CI.6
................................. A63F 9/24; G09C 3/02

[52] U.S. CI 463/36; 3451168; 3451161;
2731148 B

[58] Field of Search 273/434, 435,

[56]

4,321,851
4,392,211
4,483,230
4,501,424
4,516,777
4,588,187
4,659,313

273/437, 438, 439, 85 G, 148 B, DIG. 28;
345/161, 168, 156, 157

References Cited

U.S. PATENT DOCUMENTS

3/1982 Adachi .. 84/1
711983 Nakano et al 365/200

11/1984 Yamauchi 84/1
2/1985 Stone et al .. -
5/1985 Nikora 273/148 B
5/1986 Dell 273/148 B
4/1987 Ruster et al. 434/45

111
US005551701A

[11] Patent Number:

[45] Date of Patent:

5,551,701
*Sep. 3, 1996

4,703,302
4,716,542
4,739,128
4,804,940
4,824,111
4,852,031
4,868,780
4,924,216
4,976,435
5,134,395
5,245,320
5,286,202
5,296,871
5,389,950
5,396,267

10/1987 Hino et al 338/293
1211987 Peltz et al ..
4/1988 Grisham 345/156
2/1989 Takigawa et al 341/133
4/1989 Hoye et al 2731148 B
711989 Brasington .
9/1989 Stern 364/900
5/1990 Leung 273/148 B

12/1990 Shatford et al 273/148 B
711992 Stern 345/156
9/1993 Bouton 345/167
2/1994 de Gyarfas et al. 434/43
3/1994 Paley .
2/1995 Bouton 345/156
3/1995 Bouton 3451168

Primary Examiner-Jessica J. Harrison
Attorney, Agent, or Firm-Marger, Johnson, McCollom &
Stolowitz, P.C.

[57] ABSTRACT

A video game/simulator system in a personal computer (PC)
with game port and keyboard port includes a joystick
includes a base and a joystick handle pivotally mounted on
the base for two-dimensional movement. The joystick con­
troller is connectable to both the game port of the personal
computer and to the keyboard port via a second, throttle
controller. The throttle and joystick controller inputs are
reconfigurable to work with different video game/simulator
programs by downloading a new set of keycodes from the
personal computer via the keyboard port to a microcontroller
and nonvolatile memory in the throttle controller. The
throttle and joystick controller have variable inputs which
can be input to the PC in either analog or digital form. The
digital inputs can be calibrated by changing their corre­
sponding keycodes. A multi-stage trigger switch is hingedly
mounted on the joystick for actuation by a user's index
finger. The multi-stage trigger has a default position, a first
actuated position, and a second actuated position and can be
configured to fire a weapon in the first position and control
a camera in the second position during operation of the video
game/simulator.

38 Claims, 14 Drawing Sheets

Comcast, Exhibit-1007
1

d

F
IG

.
1

~
--
~

1®
'11

1
~

~

,,
~

_
-
M

,
t
 --.

~--
1

sa

J"!.

·-·~
~

"'

3
8

~
~
~

-~-
~I

ljij
0

'"
'
~--

H

1a

r,
1/i

lr,
I

~
'~

':
/
(~

.
·"'

~,,:
;/

3
6

((

 ~

4
3

26

~

~--=
--~

 e'o
56

45

27-~

'--~
 1

flll
il,

"'

22

~~
--
--

1
0

/

-
46

2

0

ILp;
~~:=

==::
::!

\
1

l
~

l
8

I
I

f .. '::l r ~ ~

0
.,

,3
4

12

.....

+::
-

0
1

... 0

1

0
1

~

... ...
..:

~ =

~

2

U.S. Patent Sep. 3, 1996 Sheet 2 of 14 5,551,701

FIG. 2 g f

/
72 e

FIG. 3 q p
r

m

/
84 0

3

U.S. Patent Sep. 3, 1996 Sheet 3 of 14 5,551,701

FIG. 4

t---

u

/
v

86
·x

FIG. 5 Y
z ----,. 94

4

U.S. Patent Sep. 3, 1996 Sheet 4 of 14

FIG. 6

f _,_,___

9

FIG. 7 k
1-~

m

n

0
,106

5,551,701

h

.
J

94

96

98
100

p

5

U.S. Patent

YES

Sep.3, 1996

DETERMINE
NUMBER OF

CONTROLLERS

DETERMINE
NUMBER OF INPUTS

GET KEYCODE

INPUTS=INPUTS-1

TRANSMIT
KEY CODES

Sheet 5 of 14 5,551,701

150

162

CONTROLLERS =
CONTROLLERS-1

YES

160

FIG. 8

164

6

U.S. Patent Sep.3, 1996

STORE KEYCODE

174

KEYCODES =
KEYCODES -1

Sheet 6 of 14 5,551,701

START.

YES { 180

LOOK-UP KEYCODE

TRANSMIT
KEY CODE

182

FIG. 9

7

U.S. Patent Sep. 3, 1996 Sheet 7 of 14

START

,, 1 186

EDIT
RECONFIGURATION

FILE

_e190
,...-----~-------,

GENERATE
RECONFIGURATION

PACKET

1 192

TRANSMIT KEYCODES

STOP

5,551,701

TEXT
EX I TOR

~
184

RECONFIG.
PROGRAM

~
188

FIG. 10

8

U.S. Patent Sep.3, 1996

START

YES

GET_BYTE

NUM_BITS = K

GET_BITS

SET~BITS.

REQ_KBD

NUM_BITS =
NUM_BITS- 2

STOP

Sheet 8 of 14 5,551,701

402
400

J

418

NUM_BYTES =
NUM_BYTES- 1

YES

410

412

414

FIG. 11

416

9

F
IG

.
12

ID
IS

P
L

A
Y

r

7
2

0
0

3
4

 \
R

U
D

D
E

R
S

"R

C
S

"

3
2

36

l

A

JO
Y

 S
T

IC
K

11
F

C
S

11

v

12

23

\
2

4

M
E

M
O

R
Y

\
1

3
-
-

..A
J.P

C
__.

.

-1
G

A
M

E

I

2
3

A
-

j

G
A

M
E

 P
O

R
T

I

~
1
4

. 2
3

8
 -
~1

 R
E

C
O

N
 I

I K
E

Y
B

O
A

R
D

 P
O

R
T

I

4
6
~
 ~
2
0

~
1
8

50

I
A

D
A

P
T

E
R

45

~
6
2

y

;a
~
0

1
6

8

j_
./

4
1

16

16

A
 \

 1
6C

56

5

8

l
\

)
P

IT
C

H

)
o

o
o

R

O
LL

T

H
R

O
T

T
LE

I

K
E

Y
B

O
A

R
D

S

W
IT

C
H

E
S

__
..

11
W

C
S

"

I I

C
j

• rJ
1

• ~

~

~
 =

~

0
0

!'!

)

'?

~
 \C

\C

="

0
0

t:r

'
!'!

)
!'!

) '"""

\C

;;
 ,,J

::.
.

ti
l

-.. ti
l

ti
l
~

-.. ...
..:

~
0 ~

10

F
IG

.
13

tT

O
 P

C

I
. G

A
M

E
 P

O
R

T
~
2
0

2~8

4
t

t
-1

>
--

-4
6

26
4

25
2

21
4

I I I I I I I I

1

T
O

P
C

N
O

N
-V

O
LA

T
IL

E
 I

;-

20
4

M
E

M
O

R
Y

E

E
P

R
O

M

L
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~

-2
3

6

d • TJ
).

• ~

~

f""
''"

~
 =

f""
''"

'J
).

~

tt
l ~ Q

0 """
'
~

,j::
o..

0
1

"' 0

1

0
1

~

"'
:J

Q

~

11

U.S. Patent Sep. 3, 1996 Sheet 11 of 14 5,551,701

FIG. 14

44
302

AFTER BURNER RANGE
GENERATES AB INC-DEC
CHARACTERS.

THROTTLE RANGE
'------; GENERATES THR INC-DEC

CHARACTERS.
IDLE RANGE GENERATES

'-----------t ENGINE START, ENGINE
IDLE CHARACTERS.

12

U.S. Patent

YES

Sep. 3, 1996 Sheet 12 of 14

START

CAL_ MODE

NUM_POSITIONS
=N

POStTION
THROTTLE

PRESS
BUTTON

SAMPLE
THROTTLE

NUM_POSITIONS-1

ASSIGN
KEY CODES

STOP

502

504

510

512

514

516

5,551,701

FIG. 16

500

J

13

U.S. Patent

42
Vee I S11

S22

Snn

FIG. 17

FIG. 19
TOPC

GAME PORT

Sep. 3, 1996 Sheet 13 of 14

I
212

20

204

216
218

I ouT
__.

208

A/01

202 MICRO-
CONTROLLER

MICRO­
CONTROLLER

NON-VOLATILE
MEMORY
EEPROM

227

202

223

5,551,701

219

TIMER

(68A)

14

U.S. Patent Sep.3, 1996

INCREMENT
COUNTER

FIG. 18

Sheet 14 of 14 5,551,701

VALUE= UP

VALUE=DOWN

VALUE= LEFT

VALUE= RIGHT

VALUE= CENTER

15

1
RECONFIGURABLE VIDEO GAME
CONTROLLER WITH GRAPHICAL

RECONFIGURATION DISPLAY

RELATED APPLICATION DATA

5,551,701
2

This application is a continuation-in-part of application
U.S. Ser. No. 08/078,763, filed Jun. 15, 1993, now aban­
doned, and a continuation-in-part of application U.S. Ser.
No. 08/002,828 filed Jan. 7, 1993, now U.S. Pat. No.

10
5,396,267, which is a continuation-in-part of application
U.S. Ser. No. 07/932,501 filed Aug. 19, 1992, now U.S. Pat.
No. 5,245,320, which is a continuation-in-part of application
U.S. Ser. No. 07/911,765 filed Jul. 9, 1992, now abandoned,
and continued as application U.S. Ser. No. 08/140,329, filed 15
Oct. 20, 1993, now abandoned in favor of continuation
application U.S. Ser. No. 08/206,204, filed Mar. 2, 1994,
now U.S. Pat. No. 5,389,950.

PC microprocessor for controlling analog functions in the
video game/simulation program. The handle also includes
four discrete switches that are operable by the user's fingers
to control discrete functions in the video game/simulation
program. The joystick controller therefore consumes two of
the analog inputs and all four of the discrete inputs.

Attempting to circumvent these limitations, video game
and simulator programmers have implemented many com­
mands by programming function keys on the PC keyboard.
This approach detracts from the realism of simulation,
which is particularly important to flight simulation video
games. Developers have strived to attain more realism by
designing microprocessor-based input devices which output
keycodes to the PC keyboard port emulating function keys
on the PC keyboard. One example is disclosed in U.S. Pat.
No. 4,852,031 to Brasington. The assignee of the present
invention has also marketed a throttle controller that outputs
keycodes to the PC keyboard port. These efforts have been
successful but require a manufacturer to design the control-A portion of the disclosure of this patent document

contains material which is subject to copyright protection.
The copyright owner has no objection to facsimile repro­
duction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyrights
whatsoever.

BACKGROUND OF THE INVENTION

This invention relates generally to controllers for video
games and simulators implemented on a computer and more
particularly to reconfiguring game controllers to correspond
to a particular video game.

Conventionally, a personal computer (PC) is enabled to be
controlled by external manual control devices by means of
a game card, which provides an external game port into
which control devices, such as a joystick, can be plugged. To
provide widespread compatibility, which is essential to the
ability to mass market a wide variety of video games and
simulation programs, industry standards have been devel­
oped for game cards for personal computers such as those
commonly referred to as IDM-compatibles. The universal
adoption of these standards means that any external manual
input device designed to control such computers and soft­
ware must be compatible with the industry-standard game
port. Any input device lacking such compatibility will not be
able to be used with conventional personal computers
equipped with standard game boards and will not be widely
accepted.

The problem is that the industry standard game port
provides only a limited number of inputs: four discrete
signal inputs for receiving binary signals signifying "On"
and "Off'' and four analog signal inputs for receiving vari­
able voltage signals, such as output by a potentiometer,
which are continuously variable over a limited range. The
number of game boards that can be plugged into a conven­
tional PC is also limited, to one. Consequently, the number
of controllers supported by a standard game port, and the
number of allowable functions communicated thereby, are
severely restricted.

For example, a PC configured as a combat aviation video
game/simulator as shown in FIG. 1 has a joystick controller
and a foot-pedal rudder controller. The joystick convention­
ally has a handle pivotally coupled to a base for forward!
rearward movement and left/right movement by the user.
The handle is connected in the base to transducers, such as
potentiometers, which are coupled to two of the analog
inputs of the game port to input proportional signals to the

20 ler to transmit a unique keycode for each individual con­
troller input function.

Each video game has its own set of keycodes that it
recognizes, with each keycode effectuating a corresponding
response within the video game. There is no standard set of

25 keycodes throughout the video game industry. Efforts to
convert the keycodes supplied by a video game input to
those required by a pre-existing video game program typi­
cally require a terminate-and-stay-resident ("TSR") program
running on the computer concurrently with the video game.

30 TSRs consume valuable memory and can potentially conflict
with existing programs:

Another method of providing compatibility with new or
existing video games requires the manufacturer to supply an

35
updated version of the controller firmware to the user,
usually in the form of a programmable-read-only-memory
("PROM"). This technique has several disadvantages. The
first is that there is additional expense to the manufacturer in
providing the updated firmware, which is ultimately passed

40 on to the user. The second disadvantage is that most video
game users are either unqualified or unwilling to install the
PROM into their game controller. Installing the PROM
incorrectly can render the controller inoperable by damaging
the PROM or other electronic components due to electro-

45 static-discharge (ESD). Moreover, many video game users
are simply unwilling to disassemble their game controllers
for fear of damaging the device.

A related problem with video game controllers is a
limitation on the number of inputs that can be supported by

50 an individual controller. Currently, due in large part to the
exponential growth in personal computer performance,
video games can process many more inputs than can be
supported on the one or two controllers that can be reason­
ably handled by an individual user. As a result, only a select

55 few of the available video game inputs are actually used by
the user.

The problem is exacerbated by real-time video games
such as flight simulators where the user is required to supply
the appropriate input in a timely manner or terminate the

60 simulator, i.e., crash. The user in these real-time video
games does not have time to change controllers or even to
reposition the user's hands on the current controllers. For
example, when engaging an adversary during simulated air
combat, the user must be able to activate a camera to be

65 begin recording the engagement. The user cannot take the
time or the risk to reposition his hands for fear of losing sight
of the adversary.

16

5,551,701
3

Accordingly, a need remains for a way to add camera
activation capability to a video game system which does not
require the user to reposition the user's hands.

SUMMARY OF THE INVENTION 5

4
controller so as to retain the last set of downloaded kcycodcs
even after the video program has been terminated. The
throttle controller's reconfiguration engine reconfigures the
input devices of the game controllers so as to transmit a
reconfiguration kcycode downloaded to correspond to a
particular controller input when that input is actuated.

In another aspect of the invention, a multi-stage trigger
switch is mounted on a joystick controller. The multi-stage
trigger has a default position, a first actuated position, and a

It is, therefore, an object of the invention is to enable the
user to reconfigure their video game controllers to match the
users's individual preference for location of desired func­
tions on the controller.

Another object of the invention is to enable the user to
reconfigure their video game controllers to match the user's
video game/simulator of choice.

Another object is to enable the user to add camera
activation capability to a video game system.

10 second actuated position. The first and second actuated
positions can be assigned any desired key code to correspond
to any desired function by the reconfiguration program. In
the preferred embodiment, the first actuated position corre­
sponds to a camera command and the second actuated

15 position corresponds to a fire activation command.
Another object is to enable the user to reconfigure the

camera activation function to match a particular video
game/simulator.

A further object of the invention is to eliminate the need
for a terminate and stay resident ("TSR") program running
on the computer for usc with the video game controllers.

A significant advantage of the invention is the ability to
retain the configuration information even after the video
program has been terminated and the machine is turned off
while enabling the configuration to be changed electrically

20 without physical replacement of the storage devices.

One aspect of the invention enables the individual
switches and input devices of the game controllers to be
reconfigured to match a target video game format. The video 25
game/simulator system includes a personal computer (PC)
running a video game program during a functional mode and
a reconfiguration program during a reconfiguration mode.
The video system can include several game controllers such
as a joystick, a throttle controller, and a foot-pedal rudder 30
controller. In the preferred embodiment of the invention, the
throttle controller includes microcontroller circuitry that acts
as both a video game controller and a reconfiguration
engine. In an alternative embodiment, the reconfiguration
electronics are included in a joystick controller. The throttle 35
controller, including the reconfiguration electronics, is
coupled to a keyboard interface port to receive reconfigu­
ration keycodes downloaded from the PC to the throttle
controller during the reconfiguration mode. The throttle
controller also allows the keyboard to operate in a conven- 40
tiona] manner during the functional mode. A joystick is
coupled to the throttle controller to receive joystick input
signals therefrom. The throttle controller transmits keycodes
via the keyboard interface port corresponding to the inputs
received by the controller, including its own, during the 45
functional mode. The key codes transmitted by the controller
to the PC need to correspond to those required by the
particular video game/simulation program to effectuate a
user's desire response to the program. To meet this need for
different programs, the PC includes means for downloading 50
the reconfiguration keycodes to the throttle controller recon­
figuration engine over the keyboard interface port during the
reconfiguration mode.

Another advantage of the invention is the ability to
provide both analog and digital throttle, pitch, and roll to the
computer.

A further advantage of the invention is the ability to
calibrate the controllers and thereby use less precise com­
ponents in the controllers.

The foregoing and other objects, features and advantages
of the invention will become more readily apparent from the
following detailed description of a preferred embodiment of
the invention which proceeds with reference to the accom­
panying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a video game/simulator
system including a personal computer and several game
controllers connected according to the invention.

FIG. 2 is a two-dimensional graphical display of the
joystick of FIG. 1 as displayed on a video display prior to
reconfiguration.

FIG. 3 is a two-dimensional graphical display of the
joystick of FIG. 1 after reconfiguration.

FIG. 4 is a two-dimensional graphical display of a frontal
view of the throttle controller of FIG. 1 as displayed on a
video display prior to reconfiguration.

FIG. 5 is a two-dimensional graphical display of a rear
view of the throttle controller of FIG. 1 as displayed on a
video display prior to reconfiguration.

FIG. 6 is a two-dimensional graphical display of a frontal
view of the throttle controller of FIG. 1 as displayed on a
video display after reconfiguration.

A reconfiguration program runs on the personal computer
prior to invoking the video game program. The rcconfigu­
ration program preferably presents a graphical representa­
tion of the individual game controllers and allows the user

FIG. 7 is a two-dimensional graphical display of a rear
55 view of the throttle controller of FIG. 1 as displayed on a

video display after reconfiguration.

to input a keycode corresponding to each of the controller
inputs. The user can either type the keycodes in individually
or, alternatively, specify a pre-stored file including a previ- 60

ously-entered set of keycodes. Thus, the user can save
separate reconfiguration file in the PC memory for a number
of separate video games. The reconfiguration program fur­
ther enables the user to calibrate the game controllers during
the reconfiguration mode. Finally, the reconfiguration pro- 65

gram downloads the keycodes to the throttle controller
circuitry to be stored in a non-volatile memory in the

FIG. 8 is a flowchart of the reconfiguration program
operating in the host personal computer of FIG. 1.

FIG. 9 is a flowchart of a program operating in the game
controller of FIG. 1 which receives the reconfiguration
information from the host computer.

FIG. 10 is a flowchart of a process for rcconfiguring the
game controller by creating a textual reconfiguration file
using a text editor.

FIG. 11 is a flowchart showing the operation of the
transmit keycodes step of FIGS. 9 and 10.

17

5,551,701
5

FIG. 12 is a block diagram of the reconfiguration video
game/simulation system of FIG. 1.

FIG. 13 is a schematic level diagram of the circuitry used
in the system of FIG. 12.

FIG. 14 is a cross section of the joystick of FIG. 1 5

showing details of a dual stage trigger according to the
invention.

6
ADDRESS, Ser. No. 07/932,501, filed Aug. 19, 1992, which
is a continuation in part of copending application VIDEO
GAME/FLIGHT SIMULATOR CONTROLLER WITH
SINGLE ANALOG INPUT TO MULTIPLE DISCRETE
INPUTS, Ser. No. 07/911,765, filed Jul. 9, 1992, both of
which are incorporated herein by reference.

Preferably, for running aviation video games and simu­
lation programs, both a throttle controller 30 and a joystick
controller 32 are connected to the computer, as well as a

FIG. 15 is an illustration of the operation of the throttle of
FIG. 1.

FIG. 16 is a flow chart of a routine for calibrating the
throttle of FIG. 1.

FIG. 17 is a schematic view of the joystick hat coupled to
a game board circuit as shown in FIG. 1.

10 foot-pedal rudder controller 34. The joystick controller 32
includes cable 36 having a game port connector 38. The
game port connector 38 is connectable to a mating game port
connector 38M, like game ports 20 and 22, on throttle

FIG. 18 is flow chart for an input control routine to be 15

used in a video game or simulator software for interpreting
analog outputs from the joystick hat switch of FIG. 1.

FIG. 19 is a more detailed schematic of the three position
switch arrangement and associated circuitry of the throttle
controller of FIG. 13. 20

APPENDIX A is an example of a reconfiguration file for
a throttle controller according to the invention.

controller 30. The joystick controller 32 includes a plurality
of input devices including a multi-stage switch 39, switches
40, hat 42, as well as the joystick handle 44. All of the input
information, including the state of the switches and hat, is
conveyed over the cable 36 to the throttle controller 30 for
further processing as described further below.

Referring now to FIG. 14, the multi-stage trigger switch

APPENDIX B is a printout of an example of source code
for programming the host computer to operate according to
the invention.

APPENDIX C is a printout of an example of source code
for programming the microcontroller to operate according to
the invention.

39 is hingedly mounted on a front side of the joystick
controller handle 44 at a position where a user's index finger
normally resides when using the joystick. The multi-stage
trigger 39 includes a trigger lever 300 that is hingedly

25 mounted on the handle 44 by a pivot member 302. The
trigger lever is received in a slot along the front side of the
handle 44 to allow the trigger lever to be movable towards
the handle 44. An actuator member 304 is connected to an
inner wall of the trigger lever 300 to actuate a switch S2. A

30 spring 306 is coupled between the underside of the trigger
lever 300 and a switch Sl. The spring 306 biases the lever
300 outward.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT OF THE

INVENTION

FIG. 1 shows a video game/simulation system 10 for
35

simulating operation of a complex system having a plurality
of user-controlled functions such as a combat aviation video
game program. As shown in FIG. 1, the system includes a
conventional personal computer (PC) 12. Referring also to
FIG. 12, the personal computer includes a microprocessor

40
13 operable under control of a video game/simulation pro­
gram stored in memory 23 during a functional mode or,
according to the invention, operable under control of a
reconfiguration program during a reconfiguration mode. The
design and operation of the reconfiguration program and

45
circuitry is described below with reference to FIGS. 2-11.
The computer also includes an input/output bus for connect­
ing peripheral input and output devices to the microproces­
sor 13, e.g., a game card 30, and a keyboard port 18 for a
conventional keyboard 16. A conventional video display

50
(200) is used for displaying images produced by operation of
the program in the microprocessor.

Included on the computer 12, typically on the backside as
shown in FIG. 1, are the input or output ports of the
computer. The computer 12 includes a keyboard interface 55
port 18 for, under normal operations, connecting the key­
board 16 to the computer, as well as a video port 24 for
connecting to the display.

Also included on the computer 12 are two game ports 20
and 22. The dual game ports 20 and 22 are shown as if game 60

board 26 were inserted into the computer input/output bus.
The multi-ported game board 26 inserts along horizontal
guides within the computer such that male edge connector
28 makes electrical contact with the input/output bus of the
computer. The multi-ported game board 26 is described 65

further in commonly assigned U.S. Pat. No. 5,245,320,
MULTIPORT GAME CARD WITH CONFIGURABLE

The two switches S1 and S2 are fixedly mounted in the
handle 44 for selective actuation by the trigger lever 300.
The spring 306 is mounted on an actuator stem 308 of switch
S1 to be actuated thereby when the spring 306 is compressed
by the trigger lever 300. A flat spring 310 is mounted
opposite a switch actuator stem 312 of switch S2. The flat
spring 310 is interposed between the actuator member 304
and the actuator stem 312 to require an additional force
beyond that required to actuate S1 to be exerted on the
trigger lever 300 in order to actuate switch S2. The flat
spring 310 is actually somewhat of a misnomer because the
flat spring 310 is actually concave.

The multi-stage trigger switch 39 has a default unactuated
position, a first actuated position, and a second actuated
position. The unactuated position corresponds to the posi­
tion shown in FIG. 14 wherein neither switch S1 or S2 are
actuated. The first actuated position corresponds to where
the trigger lever 300 is slightly compressed thereby actuat­
ing only switch Sl. In the preferred embodiment, actuating
switch S1 would activate a video camera in the video game.
The second actuating position corresponds to having the
trigger lever 300 completely depressed with sufficient force
to cause the actuator member 304 to deform the flat spring
310 and thereby depress actuator stem 312. Thus, in the
second actuated position both switch S2 and S1 are actuated.
In the preferred embodiment, the second actuated position
activates the weapons system in the video game/simulator.

In an alternative embodiment, the multi-stage trigger 39
can have a plurality of individual positions, e.g., three or
four, limited mainly by the travel of the switch. In the
preferred embodiment of the invention, the joystick control­
ler 32 adds an additional conductor to the cable 36 to
transmit an electrical position signal which indicates
whether the switch is in the second actuated position. Thus,

18

5,551,701
7

cable 36 has a total of nine conductors for all of the joystick
outputs. If the multi-stage switch 39 has more than two
actuated positions, the cable requires an additional conduc-

8
received from the personal computer over the cable 62, as
described further below. In the preferred embodiment, the
nonvolatile memory is a 1 Kx8 serial EEPROM, part number
93LC46 or equivalent, manufactured by Microchip of Chan-tor for each additional position, or the use of a discrete

switch multiplexing circuit. 5 dlcr, Ariz.

Referring again to FIG. 1, the throttle controller 30 is
shown connected to game port 20 of game card 26 ultimately
residing in the housing of computer 12, as described above.
The throttle controller 30 includes a cable 41 having a game
port connector 43 at one end. Connected to the connector 43 10

is a mating game port Y-connector 45 which couples the
throttle controller output signals from cable 41 and also the
foot-pedal rudder controller position signals from signal line
50 across cable 46 to connector 48 which is connected to
game port 20. The foot-pedal rudder controller signal line 50 15

is coupled to an analog signal line of cable 46 unused by
throttle controller 30. Optionally, a calibration knob 52 is
connected to game port 20 across signal line 54, and is used
to calibrate the controller input signals.

The throttle controller 30 further includes a keyboard 20

input port 56 which is shown coupled to the keyboard 16
through a keyboard output cable 58. The keyboard input port
56 receives the kcycodes transmitted from the keyboard 16
across cable 58 responsive to a user depressing one of the
keyboard keys. The throttle controller 30 also includes a 25

keyboard input/output port 60 which is coupled to the
computer keyboard interface 18 across cable 62.

The microcontroller 202 further includes A-to-O con­
verter inputs 208 and 210 (A/01, A/02) for converting an
analog input voltage signal received from input devices 30,
32 to corresponding digital values. The microcontroller 202
further includes a plurality of I/0 ports (230, 232, 238, 256,
260) for reading from and writing to the other electronic
components. In addition, the microcontroller has an internal
nonvolatile memory (not visible) wherein the executable
code for the microcontrollcr is stored. Alternatively, the
executable code could be located in an off-chip nonvolatile
memory and even the nonvolatile memory 204 itself,
depending on the particular microcontroller selected.

Coupled to the analog-to-digital inputs 208 and 210 are
rheostats 212 and 214, respectively. Rheostat 212 corre­
sponds to the output of the hat switch 42 located on the
joystick handle 44 as shown in FIG. 1. Thus, moving the hat
switch 42 changes the resistance of the rheostat 212 and,
therefore, the current produced by the rheostat. A preferred
embodiment of rheostat 212 is shown in FIG. 17. A switch
216 is interposed between rheostat 212 and the A-to-O input
208. Connected between the switch 216 and an analog input
of the game port 20 is an analog signal line 218. Line 220
is connected between the switch 216 and the A-to-O input
208. A resistor R1 is coupled between line 220 and ground The throttle controller 30 has a plurality of input devices

including discrete switches 64, three-way switches 66 and
68, and throttle 70. The throttle 70 can either be two separate
throttle members, i.e., split-throttle, as in the preferred
embodiment, or a single throttle member. In addition,
throttle controller 30 can include a trackball mounted on the
throttle handle ncar where the thumb naturally rests on the
handle, as described in U.S. Pat. No. 5,245,320. If the
trackball is included, the trackball encoder outputs can be
coupled to a serial input 27 of the computer to act as a
"mouse" to move a cursor on the computer display 200
(FIG. 12).

30
to convert the rheostat 212 to a potentiometer, i.e., a variable
voltage source, when switch 216 is set to connect the
rheostat 212 to the line 220. Switch 216 corresponds to
switch 68B shown in FIG. 1. Switch 216, therefore, enables
the hat switch 42 to be operated either in an analog mode

35
wherein the rheostat output is coupled to the analog game
port input, or a digital mode wherein the rheostat output is
coupled to the A-to-O input 208 and thereafter converted to
a corresponding digital kcycode which is then transmitted to
the personal computer via the keyboard interface 18.

40 Referring now to FIG. 17, a preferred embodiment of the
rheostat 212 and hat switch 42 circuit is shown. Each switch
in the circuit corresponds to one of the discrete settings on
the hat switch, i.e., center, top," bottom, left, and right. The
circuit is arranged so that each switch Sll, S22, ... Snn is
connected in series with a corresponding resistor Rll, R22,
... Rnn to form a single switching subcircuit and all of the
switching subcircuits are connected between the common
input voltage node and a single output node coupled to said
one analog output signal line. In this circuit it is preferred for
each resistor to have a different value of resistance so that
the actuation of each switch produces a separate discrete
current level IouT through switch 216, when the switch 216
is set in the analog mode. Alternatively, the hat switch circuit
can be arranged in a ladder circuit with the switches Sll,

Referring to FIG. 12, a block diagram of the above­
described configuration is shown. Shown in FIG. 12 is a
display 200 coupled to the video port 24 of the personal
computer 12. Also shown in FIG. 12 arc keyboard indicator
lights 16A, 16B and 16C on keyboard 16 representing the 45
current state of the NUM lock key, the CAPS lock key and
the SCROLL lock key. The state of the keyboard lights
16A-16C is controlled by the personal computer 12 during
normal mode operation, as is known in the art of computer
programming. The personal computer 12 transmits the 50
desired state of these lights via the keyboard port 18 to the
keyboard 16 during normal operations. The invention uses
this capability to download reconfiguration keycodcs to the
throttle 30 during the reconfiguration mode, as described
further below.

Referring now to FIG. 13, a more detailed schematic level
drawing of the throttle electronics is shown. The throttle
electronics include a microcontrollcr 202, which, in the
preferred embodiment, is a PIC16C71 manufactured by
Microchip of Chandler, Ariz. Coupled to the microcontrollcr 60

202 is a nonvolatile memory 204 over bus 206. The non­
volatile memory 204 stores keycodes corresponding to the
individual input devices, e.g., switches 40. The nonvolatile
memory is a read-write memory such as a electrically­
erasable programmable read-only memory (EEPROM). The
nonvolatile memory must be both read and write so that
microcontroller 202 can store reconfigurable keycodcs

55 S22, ... Snn connected between the common input node and
a series at output nodes coupled in series by separate
resistors to a single output node coupled to said one analog
output signal line. In that circuit it is preferred for each
resistor to have the same value of resistance.

Included in the game board is a timer 219 that produces
a digital pulse having a pulse width proportional to the
current I0 UT coupled thereto. The game board timer 219
converts the different discrete current levels on the analog
output signal line 218 into different duration signals. A

65 subroutine, shown in FIG. 18, is included in the video
game/simulation program for timing the different duration
signals and selecting a unique control command in the

19

5,551,701
9

program in accordance with the timed duration. In this way,
the personal computer interprets each different discrete level
of signal as a separate discrete command and inputs such
command to the video game/simulation program to effect a
corresponding change in the displayed images produced by 5

the program.

A similar routine to that shown in FIG. 18 is included in

10
interface is from the keyboard to the personal computer to
transmit the keycodes to the computer responsive to actu­
ating the keyboard keys. Typical PC software operates on an
interrupt basis accepting keycodes whenever input via the
keyboard port, rather than waiting to poll the keyboard.
However, the personal computer does on occasion transmit
data the other way, i.e., from the personal computer to the
keyboard. The typical occasion during which the personal
computer transmits information to the keyboard is to change

the microcontroller 202 firmware for interpreting the dis­
crete voltage levels produced at the analog-to-digital input
208 when switch 216 is placed in the digital mode setting.
Each discrete voltage level is assigned a corresponding
keycode. When that discrete voltage level is sensed at the
analog-to-digital input 208, the assigned corresponding key­
code is transmitted to the personal computer over the
keyboard interface port.

10 the state of the lights 16A-16C on the keyboard. The
invention takes advantage of this capability to facilitate
downloading the reconfiguration keycodes during the recon­
figuration mode as described below with respect to FIG. 11.

In order to intercept the data transmitted from the PC over

Referring again to FIG. 13, a rheostat 214, corresponding
to the throttle handle 70 position, is coupled to either one of
the analog inputs of the game port 20 or the A-to-D input
210. Switch 280A, which corresponds to the three position
switch 68A of FIG. 1, connects the rheostat 214 output to
either line 222 connected to the game port 20 or line 224
connected to the A-to-D input 210. Line 224 also has a
resistor R2 coupled thereto for converting the rheostat 214

15 the keyboard interface, as well as to allow keycodes to be
transmitted to the personal computer, the clock line 226 and
the data line 228 are coupled to microcontroller I/0 ports
230 and 232, respectively. A double throw switch 234 is
interposed in lines 226, 228 between the keyboard interface

to a potentiometer when the rheostat is coupled to theA-ta-D
input 210. Thus, the throttle controller 30 can either be
operated in an analog mode or a digital mode, depending on
the state of switch 280A. The analog throttle is used in
so-called "Type 0" games, whereas the digital throttle mode

20 and the keyboard to allow the microcontroller to selectively
disable the keyboard 16. Switch 234 is a digital switch or
multiplexer which has a control input 236 connected to
microcontroller output port 238 via control line 240. The
signal on control line 240, therefore, selectively enables or

is used in 'Types 1 and 2" games.

25 disables the keyboard by either opening or closing switch
234. The microcontroller 202 opens switch 234, as shown in
FIG. 13, responsive to the throttle controller 30 being placed
in the reconfiguration mode by setting the three position
switch 68A to the calibration position. In the preferred

The three position switch includes a third position shown 30 embodiment, the switch 234 is part number CD40HCT66
manufactured by National Semiconductor of Santa Clara,
Calif.

as a separate switch 280B in FIG. 13. The third position
places the throttle in a calibration mode as described further
below. The third position of the switch 280B can also be a
separate switch that is switchable between the calibration

35
mode and a normal mode. The third position of the switch
is shown as a connecting a common supply voltage VCC to
an input/output port 221 of the microcontroller 202 in the
calibration mode and a ground voltage in the functional
modes, i.e., the digital and analog modes. When the switch

40
is placed in the third position, the microcontroller senses a
voltage on port 221 and the microcontroller branches to a
calibration routine responsive thereto. The operation of the
calibration routine is described below.

The various discrete switches on the two controllers 30
and 32 are coupled to controller 202 via multiplexer (MUX)
250. MUX 250 is a 2N to l multiplexer. MUX 250 includes
2N inputs and a single output 254. The plurality of discrete
switches on the controllers are multiplexed to the microcon­
troller because of the limited number of available I/0 ports
in the microcontroller 202. In the event that a more sophis­
ticated microcontroller is employed, the multiplexing
scheme shown in FIG. 13 would not be necessary. The
multiplexer 250 further includes select inputs 252 that are
coupled to microcontroller output port 256 via bus 258. The
signal on bus 258 determines which of the 2N inputs are
passed through to output 254. The single multiplexer output
254 is connected to controller input port 260 via input line
262.

The throttle discrete switches 264 are coupled to the input
to multiplexer 250. The throttle discrete switches 264 are
also coupled to the game port 20. Similarly, the throttle
discrete inputs 266 are coupled to the multiplexer 250
inputs. Using this configuration, the microcontroller can
sample the states of each of the discrete switches 264 and
266 by sequentially changing the select signals on bus 258
and reading the corresponding output on line 262.

A more detailed schematic of the three way switch 68A is 45
shown in FIG. 19. In FIG. 19, the switch 68A has a signal
line 227 coupled to a select input 225 of switch 280A that
selects between the digital and analog modes of the throttle.
Switch 280A in FIG. 19 is a digital switch that switches
states responsive to the signal on select input 225. Two 50
resistors R4 and R5 pull lines 227 and 223 to ground when
switch 68A is in a middle position corresponding to the
analog mode. When the switch 68A is in a top position,
corresponding to the calibration mode, the supply voltage
vee is coupled to input/output port 221 via line 223. 55

Similarly, when the switch 68A is in a bottom position,
corresponding to the digital mode, vee is coupled to select
input 225 via line 227, which causes switch 280A to switch
states.

The remaining analog outputs 268 of the joystick are
coupled to game port 20. The two analog outputs, in the
preferred embodiment, correspond to the pitch and roll

60 signals produced by the joystick responsive to movement of
the joystick handle.

The microcontroller 202 is also responsible for coordi­
nating communication with the PC over the keyboard inter­
face 18. A PC keyboard interface, as is known in the art, is
a bi-directional interface. The interface consists of clock line
226 and data line 228, which lines are coupled to the
keyboard interface port 18 via cable 62. Although the 65

interface is bi-directional, in a typical personal computer
substantially all of the communication over the keyboard

The controller 30 electronic circuitry shown in FIG. 13
controls all of the transmission to and from the personal
computer. The microcontroller 202 coordinates substantially
all of the communication to and from the personal computer,
with the possible exception of those signals that connect
directly to the personal computer via the game port 20. As

20

5,551,701
11

indicated above, the microcontrollcr has two primary modes
of operation: a functional mode; and a rcconfiguration mode.

The functional mode is characterized primarily by trans­
mission of kcycodes from the controller 30 to the personal
computer. These keycodcs can either be input from the 5
keyboard 16 or generated by microcontroller 202 responsive
to actuation of one of the input devices on the controllers 30
or 32.

12
video game. If the video game user selects a program which
uses kcycodes which do not match those supplied by the
manufacturer, or the user desires to change the function of
one or more of the controller inputs, the initial keycode set
is no longer satisfactory. In accordance with the invention,
the user can switch into a rcconfiguration mode by invoking
a reconfiguration program on the computer 12 and changing
the state of the three-way switch 68A.

In one embodiment, the reconfiguration program presents Other potential embodiments of electronics circuitry suit­
able for transforming input signals to keycodes are described
in U.S. Pat. No. 4,716,542 issued to Peltz ct a!. and U.S. Pat.
No. 4,852,031 issued to Brasington, which are incorporated
herein by reference.

The reconfiguration mode, however, is characterized pri­
marily by transmission of keycodes from the personal com­
puter to the controller 30 via the keyboard interface. During

10 a graphical representation of each of the game controllers on
the display, along with a menu of configuration assignments.
FIG. 2 shows such a representation of the joystick, located
generally at 72. Each discrete switch 74, 76, and 78 has a
separate unique character associated therewith, "a", "c", "d",

15 respectively. Similarly, hat 82 has four different characters
associated with it, i.e., "c", "f', "g", "h", corresponding to
the four separate positions of the hat 82. Also, the first and
second actuated positions of the multi-stage switch 80 arc
initially assigned unique kcycodes "B" and "b", rcspcc-

the reconfiguration mode, the microcontroller disables the
keyboard 16 to ensure that the transmission received from
the personal computer is not passed on to the keyboard 16.
The keycodcs arc transmitted from the personal computer
microprocessor 13 to the microcontroller 202 in a serial
fashion using the keyboard protocol, as is known in the art.
Any number of data formats can be used to transmit the
reconfiguration keycode data from the personal computer to

25
the controller 30. Once the downloaded keycodes are
received by the microcontroller 202, the keycodcs are stored

20 tively.

in the nonvolatile memory 204 where they are subsequently
retrieved when a corresponding input device on the control­
lers 30 and 32 is actuated. This mode is further described in
the next section. 30

Many other video games/simulation system configura­
tions are possible without departing from the inventive
principles described herein. For example, the joystick con­
troller 32 and the throttle controller 30 can be interchanged 35
with the joystick controller 32 having the reconfiguration
electronics therein. In that case, however, the controller
electronics shown in FIG. 13 would then be incorporated
into the joystick controller 32. The joystick controller 32
could then be operated independently. With the joystick 32 40
and the throttle 30 thus interchanged, the joystick would
then be coupled to the game card 26 and the throttle
controller 30 would be coupled to the joystick controller 32.
Furthermore, the joystick controller 32 would have a key­
board input board connectable to the keyboard 16, as well as 45
a keyboard input/output port connectable to the computer
keyboard port 18. This configuration would thus allow for a
rcconfigurable joystick without the need for the throttle
controller 30. Similarly, any other type of controller can be
designed to substitute for the throttle controller 30 while 50
retaining the rcconfiguration capability.

Additionally, the system configuration described herein­
above has focused on the use of the computer keyboard port
for transmitting the reconfiguration keycodes from the com­
puter to the controller. However, several other bi-directional 55

computer I/0 channels could provide similar capability, e.g.,
RS-232, Bi-directional Centronics. In addition, the "ADB"
bus on the Apple computers would provide a similar trans­
mission path. Additional circuitry, however, is necessary
within the controller to communicate over the asynchronous 60

ADB bus.

Rcconfiguring the Game Controllers

The program indicates which kcycodc, as represented by
the corresponding character, currently corresponds to each
input. Although single-character key codes arc shown herein,
it is apparent that multi-character keycodcs can likewise be
used. When the rcconfiguration program is initially invoked,
the inputs will have no characters associated with them since
none will have yet been assigned. Alternatively, the com­
puter can store the currently assigned kcycodes or, in the
preferred embodiment, the kcycodcs can be transmitted
from the throttle controller 30 to the personal computer 12.

The reconfiguration program will prompt the user to input
the desired key codes for each of the controller inputs. In the
preferred embodiment, the program simply steps from one
input to the next, responsive to the user depressing the
desired keyboard character until all of the inputs have been
assigned. Referring now to FIG. 3, shown generally at 84 is
a graphically representation of the joystick after the joystick
inputs have been reassigned. Following the reconfiguration
program, for example, the first and second actuated positions
of the multi-stage switch 80 are reassigned to keycodes "L"
and "1", respectively. Were there more than two actuated
positions each would be assigned an individual keycodc
corresponding to the desired input function. In the preferred
embodiment, the first actuated position corresponds to a fire
command, i.e., "L", and the second actuated position cor-
responds to a camera activation command, "!", for a video
flight game/simulator.

Referring now to FIGS. 4 and 5, frontal and rear views of
the throttle controller 30, as shown on the display, arc shown
generally at 86 and 102, respectively. As with the joystick in
FIG. 2, each of the throttle inputs has a current kcycodc
associated with it. Discrete input switches 88, 94, 96, and 98
each have a single unique keycode associated with them, and
three-way switch 100 has a single unique keycodc associ­
ated with each switch setting. Input 90, however, has two
keycodcs associated with it. This corresponding to two of
the three switch settings of three-way switch 100. For
example, when switch 100 is in a first position, correspond­
ing to keycode "a", discrete input 90 corresponds to kcycodc
"t." In contrast, when switch 100 is in a second position,
corresponding to keycodc "b", discrete input 90 corresponds
to kcycode "u". Similarly, discrete switch 92 has three
separate kcycodes, "v", "w"; and "x", corresponding to the

Each joystick input and throttle input has an initial
corresponding kcycodc assigned by the manufacturer of the
controller. Typically, the initial keycodes match a prevalent

65 three switch settings "a", "b", and "c", respectively.
Once the desired kcycodes have been entered, the user

commands the rcconfiguration program to download the

21

5,551,701
13 14

new keycodes to the throttle controller. The computer syn­
chronizes with the throttle controller over the keyboard
interface and then transmits a packet of data to the throttle
controller over the keyboard port interface 18. In the pre­
ferred embodiment, the data packet includes one or more 5
keycodes for each of the controller inputs, each input having

has two modes of operation: a normal mode wherein the
program detects controller inputs; and a reconfiguration
mode wherein the controller receives the reconfiguration
keycodes transmitted from the host computer. In the pre­
ferred embodiment, the user can switch the controller
between these two modes by setting switch 68 to the

a corresponding datum, for example, at a predetermined
offset into the packet. In order to avoid contention for the
keyboard interface, in the preferred embodiment, the user is
prompted to avoid actuating any of the keyboard inputs. If
more than one key code is used for each controller input, the
desired number of keycodes are entered in the manner
described above.

The throttle controller 30 receives the data packet from
the computer 12 and stores the keycodes into the non­
volatile memory 114, where it is stored until the controller
is subsequently reconfigured, at which time it is overwritten.

After operation of the reconfiguration program has been
completed, the user simply exits the program and sets the
throttle controller three-way switch 68 to a setting corre­
sponding to the functional mode. A flowchart of the recon­
figuration program operating in host computer 12 is shown
in FIG. 8.

appropriate setting, as described above.
The program of FIG. 9 commences in step 168 by

determining the state of the controller. This step, in the
10 preferred embodiment, involves sampling the state of the

switch 68. If the controller is in the reconfiguration mode,
the program awaits receipt of a reconfiguration keycode in
step 170. When a keycode is received, in step 172, the
keycode is stored in a memory, preferably a non-volative
memory such as EEPROM 114, at a predetermined location

15 corresponding to the specified controller input. The number
of inputs remaining to be received is decremented in step
174. If there are additional keycodes to be received, the
program transitions to step 170 and "busy-waits" for addi­
tional keycode transmission from the host. If all of the

20 keycodes have been received, the program in step 176
transitions to step 168 and waits for the controller to be
switched to normal mode.

The reconfiguration program begins by determining the
number of controllers present in the video game/simulator
system in step 150e. This information can either be input by 25

the user or set to default to a standard configuration. The
program next enters a loop which begins by comparing the
number of controllers to zero in step 152. If the number of
controllers is not equal to zero, in step 154, the program
determines the number of inputs for one of the controllers, 30

e.g, joystick. The program displays the corresponding con­
troller on the screen as shown in FIGS. 2-7, or displays a
fill-in list of inputs as described below with reference to FIG.

Once the controller is placed in normal mode, the program
transitions to step 178 and awaits an input signal on any of
the controller inputs received thereby. In the preferred
embodiment, the program samples all of the inputs in a
round-robin fashion. Once an input signal is detected, the
program "looks-up" the corresponding keycode at the pre-
determined memory location in step 180. The program then
transmits that keycode to the host computer to the keyboard
input port 18 over cable 62. The program then transitions
back to step 168 to determine the current state of the
controller. Alternatively, switch 68 can be coupled to an

10.
The program then prompts the user in step 158 to input a

keycode for one of the inputs, as described above. The
program advances to the next input in step 160 and decre­
ments the number of inputs 160 remaining to be assigned a
keycode. Steps 156 through 160 continue until all of the
inputs for the current controller have been assigned. In the
event that more than one keycode is associated with a
particular input, the program would not automatically move
to the next input device after the user has input only a single
character. Instead, the program would wait for a special
character to be entered, i.e., one that is not normally asso­
ciated with any desired input keycode. Alternatively, a
mouse could be used to reposition the curser in the next
input field adjacent the next input.

Once all of the inputs have been assigned, for the first
controller (step 156) the remaining number of controllers to
be reconfigured is decremented in step 162. If there are any
remaining controllers, the steps 154-160 are repeated for
each controller.

If there are no controllers remaining to. be reconfigured
(step 152), the program branches to step 164 and transmits
the keycodes input during the reconfiguration program to the
throttle controller 30. The keycodes are transmitted in a
predetermined format with each key code corresponding to a
particular input in the video game/simulator system. The
flowchart of FIG. 8 is sufficient to allow one skilled in the
art of computer programming to write a computer program
operable on the host computer to implement the reconfigu­
ration program. A preferred embodiment of step 164 is
shown in FIG. 11, described below.

Referring now to FIG. 9, a flowchart of a program
operable on the throttle controller is shown. The program

35
interrupt line such that toggling the switch invokes a inter­
rupt service routine which determines the state of the
controller without explicitly polling the switch 68. The
flowchart of FIG. 9 is sufficient to allow one skilled in the
art of computer programming to write a corresponding

40
computer program operable on the throttle controller 30.

In addition to the graphical method for inputting recon­
figuration keycodes during the reconfiguration program, the
invention further includes a second embodiment of the
reconfiguration program wherein the reconfiguration key-

45 codes are input using a conventional text editor. A flowchart
of the method using the text editor is shown in FIG. 10.
Referring now to FIG. 10, in the first step 184 a text editor
is invoked on the computer. Once in the text editor, a
reconfiguration file is edited using conventional techniques

50 in step 186. The reconfiguration file can be either supplied
by the controller manufacturer, or, alternatively, can be
created by the user. The reconfiguration file contains a list of
the controller inputs and the corresponding keycodes asso­
ciated with those controller inputs. The controller inputs are

55 labelled according to a predetermined labelling convention
supplied by the controller manufacturer. Adjacent a control­
ler input label is the keycode or keycodes associated with
that particular controller input.

In the event that the controller input has more than a
60 single state, e.g., the multi-stage trigger 39 described above,

one or more keycodes are listed for each state of the input.
Another example is the throttle stick on the throttle control­
ler 30. Some throttle controllers have a digital throttle mode
wherein a keycode is generated responsive to incremental

65 movements of the throttle stick. For the digital throttle then,
a plurality of key codes are listed for the digital throttle stick
input, each keycode corresponding to a successive incre-

22

5,551,701

15
mental position of the throttle stick. An example reconfigu­
ration file is shown in Appendix A.

16
Finally, in step 416, the variable NUM_BITS is decre­

mented by two and then transitions back to step 408 to
compare once again the variable NUM_BITS to 0. The
sequence of steps 408 through 416 are repeated until the

5 number of bits finally reach 0; that is, there are no remaining
bits to be transmitted in the current byte.

Once the reconfiguration file has been edited, the text
editor can then be terminated and the second embodiment of
the reconfiguration program invoked in step 188. This
rcconfiguration program 188 differs from the above-de­
scribed reconfiguration program in that the reconfiguration
kcycodes arc not entered graphically. This embodiment of
the rcconfiguration program contains two steps. In the first
step 190, a reconfiguration packet is generated from the 10
rcconfiguration file generated in step 186 above. A rccon­
figurationpacket is generated by parsing through the rccon­
figuration file and assembling a binary reconfiguration
packet having the desired format.

Once in the desired format, the reconfiguration packet, 15
including the reconfiguration kcycodes, is transmitted to the
controller from the computer in step 192. This step is
essentially the same as step 164 of FIG. 8. In both cases, the
kcycodes arc transmitted using a predetermined protocol
over the keyboard interface. Protocols necessary to transmit
the keycodes efficiently and reliably are well-known in the 20

art and are not described further herein.

Once all of the bits of the current byte have been trans­
mitted from the personal computer to the controller 30 over
the keyboard port, i.e., NUM_BITS=O, the variable NUM_
BYTE is decremented by 1 in step 418. Step 418 then
transitions to step 404 where the variable NUM_BYTES is
compared to 0 to sec whether or not there are remaining
bytes to be transmitted to the controller. If there are remain­
ing bytes, step 404 transitions to step 405 and a new current
byte is selected and the above-described sequence is
repeated. If the number of remaining bytes is 0, however, all
of the bytes will have thus been transmitted and the method
400 is be concluded in step 420.

Calibrating the Game Controllers

The invention described herein also allows for the analog
controller inputs to be calibrated. The calibration process
described hereinafter enables the controller functions to be
precisely calibrated to the corresponding video game pro-

Referring now to FIG. 11, the preferred method of trans­
mitting the keycodes from the computer to the controller is
shown. The method 400 shown in FIG. 11 uses the bits in the
keyboard status byte in the personal computer, i.e., memory
location 0:417 H. The BIOS within the personal computer
monitors the status of these bits and, if such status is
changed, downloads the present state of the bits to the
keyboard to change the state of the corresponding lights. In
particular, the method 400 uses bits 4, 5 and 6 to transmit
two bits of information at a time. The third bit is used to
ensure that at least one of the status bits changes during each
iteration of the inner loop of the method steps 408 through
416, as described below.

The method begins at step 402 by determining the number
of bytes required to be downloaded to the controller 30. The
variable NUM_BYTES is then set equal to the number of
bytes N to be downloaded. In step 404, the variable NUM_
BYTES is compared to zero to see whether another byte
needs to be transmitted to the controller. If NUM_BYTES
does not equal zero, the next byte to be transmitted is
retrieved in step 405. Next, the number of bits in the byte is
set in step 406. The number of bits is an even number,
typically eight, but depending on the number of parity bits,
this number can vary.

In step 408, the variable NUM_BITS is compared to
zero. If NUM_BITS docs not equal zero, step 410 is
executed and the first two bits of the current byte to be
downloaded are extracted from the current byte. The
extracted bits arc then written out to the keyboard status byte

25 gram functions. It allows for less tolerant components to be
used in the controller which thus lowers the overall cost of
the controller. The calibration process, in the preferred
embodiment, is conducted on the throttle stick 70 of FIG. 1.
A throttle has a range of travel as shown in FIG. 15. The

30 travel extends from an off position 450 to a full after burner
(AB) position 456. In between these two extreme positions
are the idle detent position 452, the throttle detent position
454, and a plurality of subdivisions, e.g., 458 through 466.
The detent positions allow the user to place the throttle in

35 one of two known positions by simply finding the desired
detent.

The full range of thrust of the throttle can be subdivided
into an idle range between 450 and 452, a throttle range

40
extending between 452 and 454, and an after burner range
extending from 454 to 456. Each of these individual ranges
is then further subdivided into individual subdomains. The
subdomains determine the resolution of the throttle stick.
The greater the number of subdomains, the greater the

45 resolution of the throttle. The number of subdomains is
specified by the user in the reconfiguration file, as described
above, and a character or keycodc is assigned to each
subdomain. The exact character assigned is a function of the
type of game in which the throttle is employed. For Type I

50
games, the same character is associated with each individual
subdomain. In Type 2 games, however, a unique character is
assigned to each individual subdomain. The characters
assigned in the reconfiguration file are then downloaded to
the controller in the manner described above.

in step 4 12 along with a third bit which ensures that at least
one of the three bits is different than the current value of the
bits in the status byte. For example, if the previous two bits
went to the keyboard status byte were 00 and the third bit 55
was also a 0 and the current two bits arc also 00, then the
third bit would need to be set to a I so that at least one of
the three bits is toggled.

The preferred method of calibrating the throttle is shown
in FIG. 16. First, the throttle is put into the calibration mode
in step 502 by placing the three-way switch 68A in the
calibration position and then returning the three-way switch
to the digital position. The three-way switch is placed briefly The method then in step 414 executes a keyboard status

request which causes the BIOS to compare the current state 60 in the calibration position to signal to the microcontroller
that a calibration sequence is about to occur. Alternatively,
the personal computer could download a calibration keycodc
which would indicate to the controller that the calibration is
about to occur.

of the keyboard status byte with the prior state of the
keyboard status byte. The keyboard status byte is changed
from the prior state, by virtue of a change in at least the third
bit. The BIOS then proceeds to download the keyboard
status byte to the controller 30 over the keyboard interface 65
port. The downloaded status byte is intercepted by the
microcontrollcr 202, as described above.

Once in the calibration mode, the number of positions of
the throttle controller is determined in step 504. For the
throttle controller shown in FIG. 15, there arc four discrete

23

5,551,701
17

positions in which the throttle can be placed, i.e., positions
450, 452, 454, and 456.

In step 506, the number of positions is compared to 0; and

18
representation via the A-to-D converter. Then the number of
remaining positions is decremented in step 514 and the
number of positions is compared against 0 in step of 506.

if not equal to 0, the process transitions to step 508. In step
508, the throttle is manually put in a first calibration posi- 5

tion. In the preferred embodiment, this first throttle position

Assuming there are remaining positions, this sequence of
steps 508 through 514 are repeated for each of those
remaining positions. In the preferred embodiment, the
throttle is calibrated at the after-burner detent position 454
as well as the full after-burner position 456. Once all of the

is in the full off position 450. Next, in step 510, the user is
prompted to press a predetermined button on the throttle
controller to signal that the throttle is in the first calibration
position.

In step 512, the microcontroller 202 within the throttle
controller samples an output signal produced by the throttle
rheostat on line 224 configured as a potentiometer by switch
280A, to determine a baseline voltage level for the throttle
in the full off position 450. The microcontroller A-to-D
converter converts this baseline voltage level to a corre­
sponding digital representation. This digital representation is
stored for subsequent use in step 516 wherein keycodes are
assigned to each of the individual throttle positions, as
described further below.

In step 514, the number of positions remaining to be
calibrated is decremented and the number of positions is
again compared to 0 in step 506. If the number of positions
does not equal 0, the method transitions to step 508 wherein
the user is prompted to position the throttle to a second
calibration position. For a simple two-step calibration, this
would correspond to the full after-burner position 456.
However, in the preferred embodiment, the user is prompted
to place the throttle in the idle detent position 452. Then, in
step 510, the user is prompted to again press the same
predetermined button which signal to the microcontroller
that the throttle is in the desired second calibration position.
Then, again, the microcontroller samples the output of the
throttle rheostat in step 512 and converts it to a digital

10
throttle calibration positions have been calibrated, individual
keycodes are assigned to the each of the calibration positions
in step 516. These are the keycodes that have been previ­
ously downloaded to the throttle controller 30 which corre­
spond to the particular positions. In addition, however, an

15 individual keycode is associated with each of the subdo­
mains within the full throttle range. The number of subdo­
mains is specified in the reconfiguration file, as described
above, and all of the reconfiguration key codes correspond­
ing to each of the individual subdomains is downloaded

20 during the reconfiguration mode. The microcontroller sub­
divides the voltage range sampled during the calibration
process and assigns individual keycodes to the correspond­
ing voltage ranges within that full range.

25
Having described and illustrated the principles of the

invention in a preferred embodiment thereof, it should be
apparent that the invention can be modified in arrangement
and detail without departing from such principles. For
example, is should be apparent that the number and type of

30
game controllers can be altered without departing from the
scope of the invention. Also, the microcontroller and non­
volatile memory could be in the joystick, coupled directly to
the keyboard port, rather than the throttle controller. We
claim all such modifications and variation coming within the
spirit and scope of the following claims.

24

19

FCS

GAMEl

BTNUBENT

BTNMBF8

BTN LB SCRLCK

BTNHU 83

BTNHRFlO

BTNHLe

BTNHDF9F9

BTNHMN

wcs

5,551,701

APPENDIX A

BTN 1 RUINS DEL RM INS DEL RD f

BTN 2 RU z n RM z n RD g

BTN 3 RUt RM t RD I

BTN 4 RU r RM r RD SHFTD SCRLCK SHFTU

BTN 5 RUxRMxRD w

BTN6b

RKRUPF6

RKRMDF5

RKRDN\

THR 24 5 = - I I . ,

20

25

5,551,701
21 22

APPENDIXB

Program MKXLoad;

I Vl.OO- 10/17/93 -Initial Release}
I V1.01- 10/18/93- Fixed error in WCSGEN which cut program at 123 bytes
}
I V1.10- 10/19/93- Deleted CAM and Added BTN TG commands}
I V1.20 -10/21193- Combined Compile and Download Functions)
I Corrected DN Error }
(V1.21- 10/23/93 -Modified Throttle Logic to avoid errors on missing THR
}
I Added Memory Out Line Number}
I Added IN Flag l
{ Vl.22 - 10/28/93 -Added Errors for Release Codes without Press Codes l
I V1.23 - 10/29/93 -Added Errors for Invalid Press and Null Release Codes
}
I V1.25 - 10/29/93 - Added support for non-.ADV files, extra message at
startup I
I V2.00 - 11112/93 - Changed download method to use keyboard status
command}
{ V2.01 - 11112/93 -Added reset operation to startup,enabled key flag xmit
)

Uses

KBLink,WCXColor,WinTTI5,FastTTT5,DOS,CRT,WCXError,WCXUtils,
WCXVars,WCXComp,WCXGen,WCXDnLd{WCXObjl;

Var
Ch: Char;
MssgLeader: String;

Begin
MkWin(1,1,80,25,Black,Black,O);
WCSBox(1, 1,80,3,MK2TitleBorder,MK2TitlePaper);
FastWrite(15,2,Attr(MK2Titleink,MK2TitlePaper), 'ThrustMaster Mark II

WCS Compile/Download Utility v4.01');
WCSBox(3,5, 78,25,MK2PromptBorder ,MK2PromptPaper);

FastWrite(30,6,Attr(MK2PromptTitle,MK2PromptPaper),'DOWNLOADING
INSTRUCTIONS');

DumpJunk;
InitRTError;

26

23

IsCompiling:=False;
IfParamStr(2) ="Then

Begin
U seFlags:=False

End
Else

Begin
U seFlags:=True

End;

5,551,701

User FileN arne:= UCase(Paramstr(l));
IfUserFileName ="Then

Begin
Error('No .ADV File Specified')

End;
IfPos('.',UserFileName) = 0 Then

Begin
UserFileName:=UserFileName+'.ADV'

End;
If (Not Exist(UserFileName)) And Not WCSErr Then

Begin
Error('Can"t Find '+UserFileName)

End;
If Not WCSErr Then

Begin
FastWrite(5,8,Attr(MK2Promptlnk,MK2PromptPaper),

24

'1. To enter Download Mode, place the Red WCS Mode Switch in
the ANALOG');

FastWrite(5,9,Attr(MK2Promptlnk,MK2PromptPaper),
' position, then switch it to the CALIBRATE position and press

ENTER.');
WaitEnter;
WCSBeep;
Attrib(5,8,75,9,MK2DimPromptlnk,MK2DimPromptPaper);
FastWrite(5, 11,Attr(MK2Promptlnk,MK2PromptPaper),

'2. To begin Download, press Button #1 on the WCS and then
IMMEDIATELY');

FastWrite(5, 12,Attr(MK2Promptlnk,MK2PromptPaper),
' release it. It may take several seconds to clear the WCS buffer.');

WaitAcknowledge;
Attrib(5, 11, 75, 12,MK2DimPromptlnk,MK2DimPromptPaper);
IsCompiling:=True;
CompileProgram;
IsCompiling:=False;

27

25

If Not WCSErr Then
Begin

GenObjectCode;

5,551,701

If Not WCSErr Then
Begin

DownloadObjectCode;
End

End;
IfWCSErr Then

Begin
ShowStatus;
MssgLeader:='3. File Not Transferred.'

End
Else

Begin
MssgLeader:='3. Transfer is complete. ';

26

Attrib(8, 14, 73,20,MK2DimMssgink,MK2DimMssgPaper);
End;

FastWrite(5,22,Attr(MK2Promptlnk,MK2PromptPaper),
MssgLeader+'Pull the throttle all the way back, place the');

FastWrite(5,23,Attr(MK2Promptlnk,MK2PromptPaper),
' Red Mode Switch in the DIGITAL position and press Button #1.');

WaitAcknowledge2;
Attrib(8, 14, 73,20,MK2DimMssglnk,MK2DimMssgPaper);
Attrib(5,22,75,23,MK2DimPromptlnk,MK2DimPromptPaper);
DumpJunk;
KBClearStatus

End;
Sign Off;
RmWin;
ClrScr;

End.

28

27

Unit KBLink;

Interface

Uses
DOS,CRT,WCSVars;

5,551,701

Procedure KBSendByte(ByteToSend: Byte);
Procedure KBClearStatus;

Implementation

($F+l

Procedure KBSendBits(ByteToSend: Byte);
Var

Temp: Byte;
Begin
If U seFlags Then

Begin
Mem[Seg0040:$0017]:=(ByteToSend * 16) And $70;
IfKeyPressed Then

End
Else

Begin
Temp:=(ByteToSend And $07);
Asm
jmp @send_it

@wait_ibe:
in al,$64
and al,$02
jnz @wait_ibe
retn

@wait_obf:
in al,$64
and al,$01
jz @wait_obf
retn

@clear_ob:

28

29

29

in al,$64
and al,$01
jz @end_cob
in al,$60
jmp @clear_ob

@end_ cob:
retn

@send_it:
push bp
eli
call @clear_ob
call @wait_ibe
mov al,$ed
out $60,al
call @wait_obf
in al,$60
call @wait_ibe
mov al,[temp]
out $60,al
call @wait_obf
in al,$60
sti
pop bp

End
End

End;

1$F-l

5,551,701

Procedure KBSendByte(ByteToSend: Byte);
Var

ByteMap: Array[0 .. 3] of Byte;
I: Integer;
Ch: Char;

Begin
ByteMap[3):=ByteToSend And $03;
ByteMap[2):=((ByteToSend And $0C) Div 4) Or $04;
ByteMap[1):=((ByteToSend And $30) Div 16);
ByteMap[O]:=((ByteToSend And $CO) Div 64) Or $04;
For I:=O To 3 Do

Begin

30

30

5,551,701
31

KBSendBits(ByteMap[I]);
End

End;

Procedure KBClearStatus;
Begin

32

31

5,551,701
33

If U seFlags Then
Begin

Mem[Seg0040:$0017]:=$70;
IfKeyPressed Then

' Delay(lO);
Mem[Seg0040:$0017]:=0;
If Key Pressed Then

' End
End;

Begin
End.

34

32

35

Program MK2Calibrate;
Uses

5,551,701
36

WCXColor,DOS,CRT,KBLink,WCX.Vars,WCXUtils,MiscTTT5,FastTTT5,
Win'ITT5;
Var

Ch: Char;

Begin
MkWin(1,1,80,25,Black,Black,O);
WCSBox(l, 1,80,3,MK2TitleBorder,MK2TitlePaper);
FastW rite(15,2,Attr(MK2Titlelnk,MK2TitlePaper), 'ThrustMaster Mark II

WCS Calibration Utility v4.00');
WCSBox(3,5, 78,25,MK2PromptBorder,MK2PromptPaper);
DumpJunk;
IfParamStr(l) ="Then

Begin
U seFlags:=False

End
Else

Begin
U seFlags:=True

End;
KBClearStatus;
FastWrite(28,6,Attr(MK2PromptTitle,MK2PromptPaper),'CALIBRATION

INSTRUCTIONS');
FastWrite(5,8,Attr(MK2Promptink,MK2PromptPaper),'l. To enter

Calibrate Mode, place the Red WCS Mode Switch in the ANALOG');
FastWrite(5,9,Attr(MK2Promptlnk,MK2PromptPaper),' position, then

switch it to the CALIBRATE position and press ENTER.');
WaitEnter;
WCSBeep;
Attrib(5,8, 75,9,MK2DimPromptlnk,MK2DimPromptPaper);

FastWrite(5,11,Attr(MK2Promptlnk,MK2PromptPaper),'2. To begin
Calibration, press Button #1 on the WCS and then IMMEDIATELY');

FastWrite(5,12,Attr(MK2Promptlnk,MK2PromptPaper),' release it. It
may take several seconds to clear the WCS buffer.');

WaitAcknowledge;
Attrib(5,11,76,12,MK2DimPromptlnk,MK2DimPromptPaper);
Send To Throttle(Calibra teCmd);
FastWrite(5,14,Attr(MK2Promptlnk,MK2PromptPaper),'3. Place the Red

WCS Mode Switch in the DIGITAL position, then pull the');
FastWrite(5,15,Attr(MK2Promptlnk,MK2PromptPaper),' Throttle all the

33

5,551,701
37

way back and press Button #1.');
WaitAcknowledge;

38

Attrib(5,14, 75, 15,MK2DimPromptink,MK2DimPromptPaper);
FastWrite(5,17,Attr(MK2Promptlnk,MK2PromptPaper),'4. Move the

Throttle forward to the first detent and press Button #1.');
W aitAcknowledge;
Attrib(5, 17,7 5,17 ,MK2DimPromptlnk,MK2DimPromptPaper);

FastWrite(5,19,Attr(MK2Promptlnk,MK2PromptPaper),'5. Move the
Throttle forward to the second detent and press Button #1.');

WaitAcknowledge;
Attrib(5,19,75,19,MK2DimPromptlnk,MK2DimPromptPaper);

FastWrite(5,21,Attr(MK2Promptlnk,MK2PromptPaper),'6. Move the
Throttle all the way forward and press Button #1.');

WaitAcknowledge;
Attrib(5,21,75,21,MK2DimPromptlnk,MK2DimPromptPaper);

FastWrite(5,23,Attr(MK2Promptlnk,MK2PromptPaper),'7. Pull the
Throttle all the way back and press Button #1.');

WaitAcknowledge;
Attrib(5,23,75,23,MK2DimPromptlnk,MK2DimPromptPaper);
DumpJunk;
KBClearStatus;
WCSBox(11,13,70,17,MK2MssgBorder,MK2MssgPaper);

FastWrite(32,14,Attr(MK2MssgTitle,MK2MssgPaper),'CALIBRATION
COMPLETE');

FastWrite(20,15,Attr(MK2Mssglnk,MK2MssgPaper),'Calibration of the
Mark II WCS is complete.');

FastWrite(29,16,Attr(MK2Mssgink,MK2MssgPaper),'Press Any Key to
Continue');

WaitKey;
RmWin;
ClrScr;

End.

34

39

Unit WCXBtn;
Interface

Uses

5,551,701
40

DOS,CRT,WCXUtils,WCXV ars,WCXError,WCXCmd,WCXTkn;

Procedure DoButton;
Procedure DoFixMT;

Implementation

Procedure DoToggleBtn;
Begin

GetNextToken;
With CurrentToken Do

Begin
IfTokeniD = TFlag Then

Begin
AddCommand(ToggleOp);
GetPrStrings;
GetNextToken;
If TokeniD = TFlag Then

Begin
GetPRStrings

End
Else

Begin
Error('Second PR Strings in Toggle Definition are Missing');

End
End

Else
Begin
PutTokenBack;
GetPRStrings

End
End

End;

Procedure DoUMDBtn;
Begin
With CurrentToken Do

Begin
AddCommand(UMDOp);

35

41

DoToggleBtn;
GetN extToken;
If TokeniD = RM Then
Begin

DoToggleBtn;
GetNextToken;

5,551,701

If TokeniD = RD Then
Begin

DoToggleBtn
End

Else
Begin

Error('Missing /D Strings')
End

End
Else

Begin
Error('Missing 1M Strings')

End
End

End;

Procedure DoBtnMT;
Begin
If GameType <> 0 Then

GetPRStrings
Else

Error('BTN MT Codes Cannot Be Used for Game Type 0')
End;

Procedure DoFixMT;
Var

I: Integer;
Begin

IfOpCodes[MT,O] = 1 Then
Begin

CountMem(2);
OpCodes[MT,O]:=$CO;
ShiftCodes[MT,0]:=254;
CharCodes[MT,0]:=8;
OpCodes[MT,l]:=$CO;
ShiftCodes[MT,1]:=254;
CharCodes[MT, 1]:=8;

42

36

43

End
Else

Begin
I:=O;

5,551,701

While OpCodes[MT,I] = $40 Do
Begin

I:=I + 1
End;

If (OpCodes[MT,I] = 0) Or (OpCodes[MT,I] = $80) Then
Begin

CountMem(1);
OpCodes[MT,I + 1]:=$CO;
ShiftCodes[MT,I + 1]:=254;
CharCodes[MT,I + 1]:=8;

End;
OpCodes[MT ,IJ:=$80

End
End;

Procedure DoBtnHM;
Begin
AddCommand(BtnHMOp);
GetPRStrings

End;

Procedure DoBtnStd;
Begin

CountMem(-1);
With CurrentToken Do

Begin
GetN extToken;
If TokeniD = RU Then

Begin
DoUMDBtn

End
Else

Begin
PutTokenBack;
DoToggleBtn

End
End

End;

44

37

45

Procedure DoBtnRkr;
Var

I: Integer;
Begin

With CurrentToken Do
Begin

CountMem(-1);
GetPRStrings;

5,551,701

If OpCodes[ButtonSelect,O] <> $40 Then
Begin

For 1:=127 DownTo 1 Do
Begin

46

OpCodes[ButtonSelect,I] :=OpCodes[ButtonSelect,I -1];
CharCodes[ButtonSelect,I]:=CharCodes[ButtonSelect,I-1];
ShiftCodes[ButtonSelect,I]:=ShiftCodes[ButtonSelect,I -1];

End;
CountMem(l);
OpCodes[ButtonSelect,0]:=$40;
CharCodes[ButtonSelect,0]:=$07;
ShiftCodes[ButtonSelect,0]:=254;
ButtonPointer:=ButtonPointer+ 1

End;
End

End;

Procedure DoButton;
Begin

GetNextToken;
With CurrentToken Do

Begin
If TokeniD = 0 Then

Begin
Case TokenNumVal Of

1: ChangeToCW1,'W1');
2: ChangeToCW2,'W2');
3: ChangeTo(W3,'W3');
4: ChangeTo(W4,'W4');
5: ChangeTo(W5,'W5');
6: ChangeTo(W6,'W6');

Else
ChangeTo(EndFile,'EOF');

End
End;

38

47

ButtonSelect:=TokeniD;
ButtonPointer:=-1;
Case TokeniD Of

5,551,701

HM: DoBtnHM; 151
UP ,DN: DoBtnRkr;

HU .. HL,W4 .. W5,Wl .. TG: DoBtnStd; {6 .. 221
MT: DoBtnMT; {221

Else
Error('lnvalid Button ID')

End;
If Not WCSErr Then

EndButton;
End

End;

Begin
End.

48

39

5,551,701
49 50

first_cmd equ OcOh ; first download/calibrate command
cal_cmd equ Oc2h ; select calibrate command
dl_cmd equ {Oclh " cal_cmd) ; select download command

40

51

Unit WCXCmd;
Interface

5,551,701

Uses
DOS,CRT,WCXUtils,WCXVars,WC:XError,WCXTkn;

Procedure ChangeTo(NewiD: Integer; NewGroup: String);
Procedure DoPRChar;
Procedure AddCommand(OpCode: Byte);
Procedure EndButton;
Procedure GetPRStrings;

Implementation

Procedure ChangeTo(NewiD: Integer; NewGroup: String);
Begin

With CurrentToken Do
Begin
TokeniD:=NewiD;
TokenGroup:=NewGroup

End
End;

Procedure DoPRChar;
Var

ShfTemp: Byte;
Begin

ButtonPointer:=ButtonPointer + 1;
With CurrentToken Do

Begin
OpCodes[ButtonSelect,ButtonPointer]:=$40;
IfTokenGroup ='IN' Then

Begin
CountMem(l);
ShiftCodes[ButtonSelect,ButtonPointer]:=254;
CharCodes[Bu ttonSelect,ButtonPoin ter]:= 7;
GetNextToken;
If TokenisChar Then

Begin
PutTokenBack

End
Else

52

41

5,551,701
53

Begin
Error(' A Character Must Follow a IN Command')

End
End

Else
Begin
ShfTemp:=O;
If TokenlsShf Then

ShfTemp:=ShfTemp + 1;
If TokenlsCtl Then

ShfTemp:=ShfTemp + 2;
If TokenlsAlt Then

ShfTemp:=ShfTemp + 4;
ShiftCodes[ButtonSelect,ButtonPoin ter]:=ShfTemp;
If ShiftFlags[ShfTemp,TokenCharCode] = 255 Then

Begin

54

CountMem(2);
ShiftMap[ShfTemp,ShiftCount[ShfTemp]]:=TokenCharCode;
CharCodes[ButtonSelect,ButtonPointer]:=ShiftCount[ShfTemp];
ShiftFlags[ShfTemp,TokenCharCode]:=ShiftCount[ShfTemp];
ShiftCount[ShfTemp]:=ShiftCount[ShfTemp]+l;

End
Else

Begin
CountMem(l);

CharCodes[ButtonSelect,ButtonPointer]:=ShiftFlags[ShfTemp,TokenCha
rCode];

End
End

End
End;

Procedure AddCommand(OpCode: Byte);
Begin

CountMem(l);
ButtonPointer:=ButtonPointer + 1;
OpCodes[ButtonSelect,ButtonPointer]:=0;
CharCodes[ButtonSelect,ButtonPointer] :=OpCode;
ShiftCodes[ButtonSelect,ButtonPoin ter]:=254;

End;

Procedure EndButton;

42

5,551,701
55

Begin
OpCodes[ButtonSelect,ButtonPointer] :=0;

End;

Procedure GetPRStrings;
Begin

With CurrentToken Do
Begin

GetNextToken;
If TokeniD = PFlag Then

Begin
GetNextToken

End;
If TokeniD "' RFlag Then

Begin
Error('Release Codes (/R) Must Have Press Codes (IP)')

End
Else

Begin
If Not TokenisChar Then

Begin
Error('Invalid Press Code')

End
Else

Begin
While TokenisChar Do

Begin
{ WriteLn(TokenGroup,' TokenlsChar'); I
DoPrChar;
GetNextToken

End;
(WriteLn(TokenGroup);
WriteLn(ButtonSelect,' ',ButtonPointer);}
OpCodes[ButtonSelect,ButtonPointer]:=$80;
IfTokeniD = RFlag Then

Begin
If ButtonSelect = HM Then

Begin

56

Error('Release Codes Cannot Be Used With BTN HM');
End

Else
Begin

GetNextToken;

43

57
5,551,701

If TokenisChar Then
Begin

OpCodes[ButtonSelect,ButtonPointer]:=$CO;
While TokenlsChar Do

Begin
DoPRChar;
GetN extToken

End·
OpC;des[ButtonSelect,ButtonPointer]:=$80;

End
Else

Begin
Error('Null Release Code Encountered')

End
End

End;
PutTokenBack

End
End

End
End;

Begin
End.

58

44

59

Unit WCXColor;
Interface
Uses

DOS,CRT,WCXUtils;
Var

5,551,701

MK2Titlelnk: Byte; { MK2 Title Block)
MK2TitlePaper: Byte; { MK2 Title Background
MK2Promptlnk: Byte; { MK2 Prompt Area Text

60

MK2PromptPaper: Byte; (MK2 Prompt Area Background
MK2PromptTitle: Byte; I MK2 Prompt Area Title)
MK2Mssglnk: Byte; I MK2 Message Area Text J
MK2MssgPaper: Byte; I MK2 Message Area Background
MK2MssgTitle: Byte; I MK2 Message Area Title J
MK2DimMssgBkGnd: Byte;
MK2DimMssgFGnd: Byte;
MK2DimPromptFGnd: Byte;
MK2DimPromptBkGnd: Byte;
MK2PromptBorder: Byte;
MK2MssgBorder: Byte;
MK2TitleBorder: Byte;
MK2DimMssgPaper: Byte;
MK2DimMssglnk: Byte;
MK2DimPromptPaper: Byte;
MK2DimPromptlnk: Byte;

MK2Beep: Byte;
MK2Dim: Byte;

Const

I MK22 Beep OFF/ON I
I MK22 Prompt Dimming OFF/ON

KeyStrs: Array[0 .. 9] of String= ('MK2TITLEINK','MK2TITLEPAPER',
'MK2PROMPTINK','MK2PROMPTP APER',
'MK2PROMPTTITLE','MK2MSSGINK',
'MK2MSSGPAPER','MK2MSSGTITLE',
'MK2BEEP','MK2DIM');

Implementation
Var

InFile: Text;
CFGLine: String;

Procedure ParseParameter(StrToParse: String);
Var

45

5,551,701
61

I: Integer;
TStr: String;
NStr: String;
TVal,Code: Integer;
ParmStr: String;

Begin
NStr:=";
TStr:=StrToParse;
TStr:= UCase(TStr);
TStr:=LTrim(TStr);
IfPos('MK2',TStr) = 1 Then

Begin
I:=Pos('=',TStr);
Ifl > 1 Then

Begin
ParmStr:=Copy(TStr, 1,I -1);
I:=I+1;
While TStr[I] In ['0' . .'9'] Do

Begin
NStr:=NStr + TStr[l];
I:=l+1

End;
I:=O;
While (I < 10) And (ParmStr <> KeyStrs[I]) Do

Begin
l:=l + 1;

End;
If (I < 10) And (NStr <> ")Then

Begin
Val(NStr, TV al,Code);
Case I Of

0: MK2Titlelnk:=TVal;
1: MK2TitlePaper:=TV al;
2: MK2Promptlnk:=TVal;
3: MK2PromptPaper:=TVal;
4: MK2PromptTitle:=TVal;
5: MK2Mssgink:=TV al;
6: MK2MssgPaper:=TVal;
7: MK2MssgTitle:=TVal;
8: MK2Beep:=TVal;
9: MK2Dim:=TV al;

End

62

46

63

End
End

End
End;

Begin
ClrScr;

5,551,701

MK2Titlelnk:= Black;
MK2TitlePaper:= LightGray;
MK2Promptlnk:= White;
MK2PromptPaper:= Blue;
MK2PromptTitle:= LightCyan;
MK2Mssglnk:= White;
MK2MssgPaper:= Red;
MK2MssgTitle:= Yellow;
MK2Beep:= 1;
MK2Dim:= 1;
If Exist('MARK2. CFG') Then

Begin
Assign(InFile,'MARK2.CFG');
Reset(InFile);
While Not EOF(InFile) Do

Begin
ReadLn(InFile,CFGLine);
ParseParameter(CFGLine)

End;
Close(InFile);

End;
MK2PromptBorder:=MK2PromptPaper + 8;
MK2MssgBorder:=MK2MssgPaper + 8;
MK2TitleBorder:=MK2TitlePaper + 8;
IfMK2Dim > 0 Then

Begin
IfMK2Promptlnk > 8 Then

Begin
MK2DimMssglnk:= MK2Promptlnk - 8;
MK2DimPromptlnk:= MK2Promptink - 8

End
End

Else
Begin
MK2DimMssglnk:= MK2Promptlnk;
MK2DimPromptlnk:= MK2Promptlnk

64

47

5,551,701
65

End;
MK2DimMssgPaper:= MK2PromptPaper;
MK2DimPromptPaper:= MK2PromptPaper;
MK2PromptBorder:=MK2PromptPaper + 8;
MK2MssgBorder:=MK2MssgPaper + 8;
MK2TitleBorder:=MK2TitlePaper + 8

End.

66

48

67

Unit WCXComp;
Interface

5,551,701
68

Uses
DOS,CRT,WCXVars,WCXError,WCXTkn,WCXBtn,WCXThr,WCXGame;

Procedure CompileProgram;

Implementation

Procedure CompileProgram;
Begin

Done:=False;
WCSErr:==False;
Repeat

Begin
With CurrentToken Do

Begin
GetN extToken;
Case TokeniD Of

Game: DoGame;
Btn,Rkr: DoButton;

Thr: DoThrottle;
EndFile: Done:=True;

Else
Error('GAME, RKR, BTN, or THR Expected')

End
End

End
Until (Key Pressed Or Done Or WCSErr);
If Not WCSErr Then

Begin
DoFixMT

End
End;

Begin
End.

49

69

Unit WCXDnld;
Interface

Uses

5,551,701
70

WCXColor,WinTTT5,FastTTT5,DOS,CRT,WCXUtils,WCXVars,WCXErro
r,KBLink;

Procedure DownloadObjectCode;

Implementation

Const
FirstCmd: Byte == $0CO;
DownloadCmd: Byte == $0Cl;

Procedure DownloadObjectCode;
Var

I: Integer;
N eedDot: Boolean;
PCtr: Integer;
GCol,GRow: Integer;

Begin
KBClearStatus;
WCSBox(8, 14, 73,20,MK2MssgBorder,MK2MssgPaper);
FastWrite(15,15,Attr(MK2MssgTitle,MK2MssgPaper),' FILE

TRANSFER IN PROGRESS');
FastWrite(l5,16,Attr(MK2Mssgink,MK2MssgPaper),'Please do not disturb

the keyboard or the Mark II WCS');
FastWrite(15,17,Attr(MK2Mssgink,MK2MssgPaper),' while the file

is being transferred.');
FastWrite(15,19,Attr(MK2Mssgink,MK2MssgPaper),' START

R H H H R R H H R R H R R R R R R R H H R R R R R < FINISH');
Delay(50);
NeedDot:==False;
GCol:=29;
GRow:==19;
PCtr:==O;
SendToThrottle(DownloadCmd);
For I:=O To MaxPgmSize Do

Begin
SendToThrottle(U serProgram[l]);
NeedDot:=Not NeedDot;

50

71

IfNeedDot Then
Begin
Delay(lO)

End;
PCtr:=PCtr+ 1;

5,551,701

IfCCPCtr=5) And CMaxPgmSize=124)) Or CPCtr=10) Then
Begin

PCtr:=O;
Plain Write(GCol,GRow ,'t');
GCol:=GCol+ 1;

End
End;

End;

Begin
End.

72

51

5,551,701
73

Unit WCXError;

Interface
Uses
MiscTIT5,WCXColor,DOS,CRT,WCXTkn,WCXVars;

Procedure Error(ErrorString: String);
Procedure MyExit;
Procedure InitRTError;
Procedure ShowStatus;
Procedure SignOff;

Implementation
Uses

WCXUtils,FastTIT5;

Var
EStrl,EStr2: String;
ErrorReported: Boolean;

Function ErrorFileName: String;
Var

TStr: String;
P,L: Integer;

Begin
TStr:= U serFileName;
While Pos('\',TStr) <> 0 Do

Begin
P:=Pos('\',TStr);
L:=Length(TStr)- P;
TStr:=Copy(TStr ,P+ l,L);

End;
L:=Length(TStr);
IfPos('.',TStr) = L Then

Begin
TStr:=Copy(TStr, l,L-1)

End;
ErrorFileName:=TStr

End;

Procedure SignOff;
Var

StatX: Integer;

74

52

75

TStr1,TStr2: String;
Begin

5,551,701

WCSBox(ll, 13, 70,17 ,MK2MssgBorder ,MK2MssgPaper);
IfWCSErr Then

Begin
If Error Reported Then
Begin

76

EStr1:=ErrorFileName+' Has Not Been Downloaded to the Mark II'
End;

FastWrite(32, 14,Attr(MK2MssgTitle,MK2MssgPaper),'COMPILE/LOAD
ERROR');

StatX:=41 - (Length(EStrl) Div 2);
Fast Write(StatX,15,Attr(MK2Mssglnk,MK2MssgPaper),EStrl);
StatX:=41 - (Length(EStr2) Div 2);
FastWrite(StatX,16,Attr(MK2Mssglnk,MK2MssgPaper),EStr2)

End
Else

Begin
Str(PgmPtr+3:0,Tstrl);
S tr(MaxPgmSize+4:0, TStr2);

FastWrite(33,14,Attr(MK2MssgTitle,MK2MssgPaper),'DOWNLOAD
COMPLETE');

EStrl:=ErrorFileName+' Used '+TStrl+' of'+TStr2+' Available Bytes';
StatX:=41- (Length(EStrl) Div 2);
FastWrite(StatX,l5,Attr(MK2Mssglnk,MK2MssgPaper),EStrl);
StatX:=41 - (Length(EStr2) Div 2);
FastWrite(StatX,l6,Attr(MK2Mssglnk,MK2MssgPaper),EStr2);

End;
WaitKey;

End;

Procedure ShowStatus;
Var

StatX: Integer;
Begin
ErrorReported:=True;
WCSBox(8,14,73,20,MK2MssgBorder,MK2MssgPaper);

FastWrite(34,15,Attr(MK2MssgTitle,MK2MssgPaper),'COMPILER
ERROR');

FastWrite(13,16,Attr(MK2Mssglnk,MK2MssgPaper),
'The following has been reported by the Mark II Compiler:');
StatX:=41 - (Length(EStrl) Div 2);

53

5,551,701
77 78

FastWrite(StatX, 17 ,Attr(MK2Mssgink,MK2MssgPaper),EStrl);
EStrl:='The File '+ErrorFileName+' Can Not Be Transferred to the Mark

II';

StatX:=41- (Length(EStrl) Div 2);
FastWrite(StatX,19,Attr(MK2Mssglnk,MK2MssgPaper),EStrl);

{
FastWrite(18,19,Attr(MK2Mssgink,MK2MssgPaper),
'and Will Not Be Transferred to the MARK II WCS.');

)
Beep;
Delay(2000);

End;

Procedure Error(ErrorString: String);
Begin
If lsCompiling Then

Begin
Str(LineNumber:O,EStrl);
EStrl:='ERROR at line '+EStrl+': '+ErrorString;

End
Else

Begin
EStrl:='ERROR: '+ErrorString

End;
WCSErr:=True

End;

Procedure RTError(ErrorString: String);
Begin

Error(ErrorString);
ErrorAddr:=Nil

End;

Var
ExitSave: Pointer;
ErrCode: Integer;

{$F+)
Procedure MyExit;
Begin
ExitProc:=ExitSave;
ErrCode:=ExitCode;

54

79

If ExitCode > 0 Then
Begin

Case ErrCode of

5,551,701

2: RTError('File Not Found');
3: RTError('Path Not Found');
4: RTError('Too Many Files Open');

80

5: RTError('Disk/Directory Full or File is Write-Protected');
100: RTError('Disk Read Error');
101: RTError('Disk Write Error');
150: RTError('Disk is Write-Protected');
152: RTError('Disk Read Error');
154: RTError('CRC Error');
156: RTError('Disk Seek Error');
158: RTError('Sector Not Found');
162: RTError('General Hardware Failure');

Else
Begin

If ErrCode < 200 Then
Begin

RTError('Unknown Disk/System Error')
End

Else
Begin
RTError('Unknown Error. Send the .ADV File to Thrustmaster')

End
End

End
End

End;
($F-l

Procedure InitRTError;
Begin

ExitSave:=ExitProc;
ExitProc:=@My Exit

End;

Begin
ErrorReported:=False;
WCSErr:=False;
EStrl:='The .ADV file has been downloaded to the Mark II WCS.';
EStr2:='Press Any Key to Continue';

End.

55

81

Unit WCXGame;
Interface

5,551,701

Uses
DOS,CRT,WCXVars,WC:XError,WCXTkn;

Procedure DoGame;

Implementation

Procedure GameError;
Begin

GameType:=O;
Error('Invalid Game Type')

End;

Procedure RateError;
Begin
Error('Invalid Rate Parameter')

End;

Procedure DoGame;
Begin
With CurrentToken Do

Begin
GetNextToken;
IfTokenlsNum Then

Begin
GameType:=TokenN urn Val;
If CGameType < 0) or (GameType > 2) Then

Begin
GameError

End
Else

Begin
GetNextToken;
IfTokenlsNum Then

Begin
RateParameter:=((TokenNumVal- 20) * 3) Div 2;
If RateParameter < 0 Then

RateParameter:= 1;
IfRateParameter > 254 Then
RateParameter:=254;

82

56

83

End
Else

Begin
RateError

End
End

End
Else

Begin
GameError

End
End

End;

Begin
End.

5,551,701
84

57

85

Unit WCXGen;
Interface

5,551,701

Uses
DOS,CRT,WCXVars,WCXError,WCXTkn;

Procedure GenObjectCode;

Implementation

Procedure WriteProgram(ByteToWrite: Byte);
Var

TStr: String;
Begin
If Not WCSErr Then

Begin
IfPgmPtr > MaxPgrnSize Then
Begin

Str(MemOutLine,TStr);
Error('Out of Memory at Line'+ TStr)

End
Else

Begin
UserProgram[PgmPtr]:=ByteToWrite;
PgmPtr:=PgmPtr + 1

End
End

End;

Procedure GenObjectCode;
Var

BaseChar: Byte;
BTemp: Byte;
I,J,BVal: Integer;

Begin
PgmPtr:=l;
BTemp:=RateParameter;
If BTemp=O Then

BTemp:=l;
WriteProgram(BTemp);
BaseChar:=8;
For I:=O To 7 Do

Begin

86

58

5,551,701
87

BaseChar:=BaseChar + ShiftCount[l];
WriteProgram(BaseChar);

End;
For 1:=0 To 7 Do

Begin
If ShiftCount[l] > 0 Then

Begin
For J:=O To ShiftCount[l] Do

Begin
IfShiftMap[I,J] > 0 Then

Begin
WriteProgram(ShiftMap[l,J]);

End
End

End;
End;

BaseChar:=8;
For 1:=0 To 7 Do

Begin
BTemp:=ShiftCount[I];
ShiftCount[I]:=BaseChar;
BaseChar:=BaseChar + BTemp;

End;
IfOpCodes[HM,O] = 1 Then

BVal:=HM + 1
Else

BVal:=HM;
For l:=BVal to TG Do

Begin
J:=O;
Repeat

Begin

88

If(ShiftCodes[I,J] < 254) lAnd (CharCodes[I,J] > 7) }Then
Begin

CharCodes[l,J]:=CharCodes[l,J]+ ShiftCount[ShiftCodes[I,J]];
End;

BTemp:=OpCodes[I,J] OR CharCodes[I,J];
WriteProgram(BTemp);
J:=J+l;

End
Until (ShiftCodes[I,Jl = 255) Or WCSErr;

End;
If Not WCSErr Then

59

89

Begin
If Game Type = 0 Then

Begin
WriteProgram(O)

End
Else

Begin

5,551,701

If OpCodes[THR,O] = 1 Then
Begin
Error('No THR Statement Found')

End
Else

Begin
1:=0;
Repeat

Begin
If ShiftCodes[THR,IJ < 254 Then

Begin

90

CharCodes[THR,I]:=CharCodes[THR,IJ+
ShiftCount[ShiftCodes[THR,IJJ;

End;
WriteProgram(CharCodes[THR,I]);
I:=l + 1

End
Until (Shift.Codes[THR,I] = 255) Or WCSErr;

End;
If Not WCSErr Then

Begin
I:=O;
Repeat

Begin
If(ShiftCodes[MT,I] < 254)(And (CharCodes[MT,I] > 7) }Then

Begin
CharCodes[MT,I]:=CharCodes[MT ,I]+

ShiftCount[ShiftCodes[MT,I]];
End;

BTemp:=OpCodes[MT,I] OR CharCodes[MT,I];
WriteProgram(BTemp);
I:=l + 1

End
Until (ShiftCodes[MT,IJ = 255) Or WCSErr;

End
End

60

91

End;
If Not WCSErr Then

Begin
UserProgram[O]:=O;

5,551,701

For 1:=1 to MaxPgmSize Do

92

UserProgram[O]:=(UserProgram[O] + UserProgram[I]) And $FF
End

End;

Begin
End.

61

5,551,701
93 94

ThrustMaster Mark II WCS Calibration Utility v2.02

1. To enter Calibrate Mode, place the Red WCS Mode Switch in the
ANALOG

position, then switch it to the CALIBRATE position and press ENTER.

2. To begin Calibration press Button #1 on the WCS and then
IMMEDIATELY

release it. It may take several seconds to clear the WCS buffer.

3. Place the Red WCS Mode Switch in the DIGITAL position, then pull
the

WCS Throttle all the way back and press Button #1.

4. Move the Throttle forward to the first detent and press Button #1.

5. Move the Throttle forward to the second detent and press Button #1.

6. Move the Throttle all the way forward and press Button #1.

7. Pull the Throttle all the way back and press Button #1.

62

95

Unit WCXObj;
Interface

5,551,701

Uses
DOS,CRT,WCXVars,WCXError;

Procedure DownloadObjectCode;

Implementation
Var

ObjectFile: File of Byte;

Function MakeHex(HexVal: Byte): String;
Const
HexChrs: String= '0123456789ABCDEF';

Var
Lo,Hi: Byte;

Begin
Lo:=HexVal And 15 + 1;
Hi:=HexVal Div 16 + 1;
MakeHex:=HexChrs[Hi]+ HexChrs[Lo];

End;

Procedure DownloadObjectCode;
Var

PgmPtr: Integer;
I: Integer;

Begin
Assign(ObjectFile,'COMPILED.OBJ');
ReWrite(ObjectFile);
For 1:=0 To MaxPgmSize Do

Write(ObjectFile, U serProgram[I]);
Close(ObjectFile);

End;

Begin
End.

96

63

5,551,701
97 98

UNIT WCXScrn;

Interface

U s e s
Crt,WCXUtils,FastTTI5,MiscT'.IT5,MenuT'.IT5,IOTTT5,WinTTI5,KeyTI
T5,PullTTT5;

Const

{ Sign On Colors }

CSBorder: Byte =White;
CSText: Byte = White;
CSBkgnd: Byte = Blue;
CSBright: Byte = Yellow;

MSBorder: Byte =Black;
MSText: Byte =Black;
MSBkgnd: Byte = LightGray;
MSBright: Byte =Black;

{ Standard Screen Colors }

CHiF: Byte = Black;
CHiB: Byte = Cyan;
CLoF: Byte =White;
CLoB: Byte = LightGray;
CMsgF: Byte = White;
CMsgB: Byte = Brown;

MHiF: Byte = White;
MHiB: Byte= Black;
MLoF: Byte = Black;
MLoB: Byte = LightGray;
MMsgF: Byte =Black;
MMsgB: Byte =LightGray;

Procedure ClearMessage;
Procedure TempMessage(TopLine,BottomLine: String; FGnd,BGnd: Byte);
Procedure ProcMessage(TopLine: String; FGnd,BGnd: Byte);
Procedure WaitMessage(TopLine,BottomLine: String; FGnd,BGnd: Byte);
Procedure SignOn(ProgramName,CopyrightMessage: String);

64

5,551,701
99

Var
HiF,HiB,LoF,LoB,MsgF,MsgB: Byte;

Implementation

Var
ColorMonitor: Boolean;
MessageChar: Char;
SBright,SBorder ,SText,SBkgnd: Byte;
ScreenMinX,ScreenMin Y,ScreenMaxX,ScreenMaxY: Byte;

100

Procedure TempMessage(TopLine,BottomLine: String; FGnd,BGnd: Byte);
Var

TLine,BLine: String;
Lin,Col,T,B,W,X: Integer;

Begin
Lin:=12;
T:=Length(TopLine) Div 2;
B:=Length(BottomLine) Div 2;
W:=Max(Length(TopLine),Length(BottomLine));
X:=WDiv2;
Col:=38- X;
MkWin(Col,Lin,Col + W + 3,Lin + 3,FGnd,BGnd,2);
PlainWrite(40- T,Lin + l,TopLine);
PlainWrite(40- B,Lin + 2,BottomLine)

End;

Procedure WaitMessage(TopLine,BottomLine: String; FGnd,BGnd: Byte);
Begin

TempMessage(TopLine,BottomLine,FGnd,BGnd);
Beep;
MessageChar:=GetKey;
RmWin

End;

Procedure ProcMessage(TopLine: String; FGnd,BGnd: Byte);
Var

TLine,BLine: String;
Lin,Col,T,W,X: Integer;

Begin
T:=Length(TopLine) Div 2;
W:=Length(TopLine);

65

101

X:=WDiv 2;
Col:=40- X;

5,551,701

FBox(20, 12,60, 14,FGnd,BGnd,2);
PlainWrite(40- T,13,TopLine);

End;

Procedure ClearMessage;
Begin
FBox(20,12,60,14,HiF,HiB,O)

End;

102

Procedure SignOn(ProgramName,CopyrightMessage: String);
Var

SLine: Integer;
SColumn: Integer;
SWidth: Integer;
SHeight: Integer;

Var
I: Integer;
Ch: Char;

Begin
MkWin(ScreenMinX,ScreenMinY,ScreenMaxX,ScreenMaxY,HiF,HiB,2);
Delay(500);
SHeight:=3;
SLine:=2;
SWidth:=73; {Max(Length(ProgramName),Length(CopyrightMessage))+l;

l
SColumn:=((Lo(WindMax)- Lo(WindMin)) Div 2) + Lo(WindMin)-(SWidth

Div 2);

GrowFBox(SColumn,SLine,SColumn+SWidth+2,SLine+SHeight,SBorder
,SBkgnd,2);
WriteCenter(SLine+ l,SBright,SBkgnd,ProgramN arne);
WriteCenter(SLine+2,SText,SBkgnd,CopyrightMessage);
Repeat

Until KeyPressed;
MessageChar:=ReadKey;
RmWin

End;

66

103

Procedure SetUpColors;
Begin
If ColorMonitor Then

Begin
Hif:=CHiF;
Hib:=CHiB;
LoF:=CLoF;
LoB:=CLoB;
MsgF:=CMsgF;
MsgB:=CMsgB;
SBorder:=CSBorder;
SText:=CSText;
SBkgnd:=CSBkgnd;
SBright:=CSBright;

End
Else

Begin
Hif:=MHiF;
Hib:=MHiB;
LoF:=MLoF;
LoB:=MLoB;
MsgF:=MMsgF;
MsgB:=MMsgB;
SBorder:=MSBorder;
SText:=MSText;
SBkgnd:=MSBkgnd;
SBright:=MSBright;

End
End;

Begin

5,551,701

lf(BaseOfScreen = $BOOO) Then
ColorMonitor:=False

Else
ColorMonitor:=True;

SetUpColors;
ScreenMinX:=Lo(WindMin)+ 1;
ScreenMiny:=Hi(WindMin)+ 1;
ScreenMaxX:=Lo(WindMax)+ 1;
ScreenMaxY:=Hi(WindMax)+ 1;

End.

104

67

5,551,701
105 106

Unit WCXTbls;

Interface

Const
KeyWords: String=' HM HU HR HD HL UP W4 '

+'W6 W5 DN Wl W2 W3 LB MB UB TG MT'
+'IT IP /R IU 1M 1D SHF ALT CTL GAMEBTN RKR THR

EOF'
+'CAPS';

Shifted Chars
String='-!®#$%"&*()_ +QWERTYUIOP(}ASDFGHJKL:"ZXCVBNM<>? I';

U n Shifted Chars
String="1234567890-=qwertyuiop[]asdfghjkl;"zxcvbnm,./\';

Keys: Array[0 .. 99] Of String[6] = ('",'1','2','3','4','5',
'6','7','8','9','0','-',
'=','BSP','TAB','Q','W','E',
'R','T','Y','U','l','O',
'P','[',']','A','S',
'D','F','G','H','J','K',
'L',';',"",'ENT','LSFT','Z',
'X','C', 'V' ,'B','N','M',
'''' 'f 'RSFT' 'LCTL' 'LALT'
'SPb ;RALT','RCTL','INS' 'DEL' 'LAROW'

' ' ' ' ' ' 'HOME','END','UAROW','DAROW','PGUP','PGDN',
'RAROW','NUML','KP7','KP4','KPl','KPf,
'KP8','KP5','KP2','KPO','KP*','KP9',
'KP6','KP3','KP.','KP-','KP+','KPENT',
'ESC','Fl','F2','F3','F4','F5',
'F6','F7','F8','F9','FlO','Fll',
'F12','SCRLCK','\','/N',' ');

KeyCodes: Array[0 .. 99] of Byte =($0E,$16,$1E,$26,$25,$2E,
$36,$3D,$3E,$46,$45,$4E,
$55,$66,$0D,$15,$1D,$24,
$2D,$2C,$35,$3C,$43,$44,
$4D,$54,$5B,$1C,$1B,
$23,$2B,$34,$33,$3B,$42,
$4B,$4C,$52,$5A,$12,$1A,
$22,$21,$2A,$32,$31,$3A,

68

107

Implementation

Begin
End.

5,551,701

$41,$49,$4A,$59,$14,$11,
$29,$39,$14,$70,$71,$6B,
$6C,$69,$75,$72,$7D,$7A,
$7 4,$77 ,$6C,$6B,$69,$4A,
$75,$73,$72,$70,$7C,$7D,
$74,$7 A,$71,$7B,$79,$5A,
$76,$05,$06,$04,$0C,$03,
$0B,$83,$0A,$01,$09,$78,
$07 ,$7E,$5D,O,O);

108

69

109

Program Test;
Uses

CRT,DOS;

5,551,701

Procedure WaitAcknowledge;
Var

I: Integer;
Ch: Char;

Begin
For 1:=1 To 10 Do
Begin

Repeat
Until Key Pressed;
Ch:::ReadKey;
Write(!)

End
End.

110

70

111

Unit WCXThr;
Interface

5,551,701
112

Uses
DOS,CRT,WCXUtils,WCXVars,WCXError,WCXCmd,WCXTkn;

Procedure DoThrottle;

Implementation

Procedure GetTSteps;
Begin
With CurrentToken Do

Begin
GetNextToken;
IfTokenisNum Then

Begin
NThrottleSteps:=TokenN urn Val;
AddCommand(NThrottleSteps);
GetN extToken;
IfTokenisNum Then
Begin
NABSteps:=TokenNumVal;
AddCommand(NABSteps)

End
Else

Begin
Error('Invalid AB Step Count')

End
End

Else
Begin

Error('Invalid Throttle Step Count')
End

End
End;

Procedure DoTTypel;
Var
I: Integer;

Begin
With CurrentToken Do

Begin

71

113

Add Command(4);
GetTSteps;
If Not WCSErr Then

Begin

5,551,701

GetPrStrings;
IfButtonPointer = 8 Then

Begin
For 1:=0 To ButtonPointer Do

Begin
OpCodes[ButtonSelect,I]:=O;

End
End

Else
Begin
Error('Error In Throttle Control Characters');

End;
End

End
End;

Procedure DoTType2;
Var
1: Integer;
Begin
With CurrentToken Do

Begin
AddCommand(5);
GetTSteps;
If Not WCSErr Then

Begin
GetPrStrings;

114

If ButtonPointer = NThrottleSteps + NABSteps + 2 Then
Begin
For 1:=0 To ButtonPointer Do

Begin
OpCodes[ButtonSelect,l]:=O;

End
End

Else
Begin

Error('Error In Throttle Control Characters');
End;

End

72

115

End
End;

Procedure DoThrottle;

5,551,701

Begin
ButtonSelect:=CurrentToken.TokeniD;
ButtonPointer:=-1;
Case GameType Of

1: DoTTYpe1;
2: DoTTYpe2;

Else
Begin

Error('Throttle Declared For Game Type 0');
End

End
End;

Begin
End.

116

73

117

Unit WCXTkn;
InterFace

5,551,701

Procedure GetNextToken;
Procedure PutTokenBack;
Procedure KillCurrentLine;

Type
WCSToken = Record

TokenGroup: String[8];
TokeniD: Integer;
TokenlsChar: Boolean;
TokenCharCode: Byte;
TokenisNum: Boolean;
TokenNumVal: Integer;
TokenisShf: Boolean;
TokenisAlt: Boolean;
TokenlsCtl: Boolean;
TokenError: Boolean;

End;

Var
CurrentToken: WCSToken;

Implementation

Uses
DOS,CRT,WCXUtils,WCXTbls,WCXVars;

Var
CurrentLine: String;
UseLastToken: Boolean;
CurrentGroup: String;
Needinit,Done: Boolean;
lnFile: Text;

Function NextGroup: String;
Var

Loc: Integer;
Begin
IfNeedlnit Then

Begin
Assign(InFile, U serFileN arne);

118

74

119

Reset(InFile);
Needinit:=False;
Done:=False;
CurrentLine:=";
U seLastToken:=False;
CurrentGroup:=";
LineNumber:=O

End;

5,551,701

While (Length(CurrentLine) = 0) And Not Done Do
Begin
If Not EOFCinFile) Then

Begin
ReadLn(lnFile,CurrentLine);
CurrentLine:=CleanStr(Curren tLine);
LineNumber:=LineNumber+ 1;

End
Else

Begin
Done:=True;
CurrentGroup:='EOF';
Close(InFile);

End
End;

If Not Done Then
Begin

Loc:=Pos(' ',CurrentLine);
If Loc > 0 Then
Begin

CurrentGroup:=Copy(CurrentLine,1,Loc-1);

120

CurrentLine:=Copy(Curren tLine,Loc+ l,Length(CurrentLine)-Loc);
End

Else
Begin

CurrentGroup:=CurrentLine;
CurrentLine:="

End
End;

NextGroup:=CurrentGroup
End;

Procedure KillCurrentLine;
Begin

CurrentLine:="

75

121

End;

Procedure PutTokenBack;
Begin

U seLastToken:;::;True
End;

5,551,701

Procedure InitCurrentToken2;
Begin
With CurrentToken Do

Begin
TokeniD:;::;O;
TokenNumVal:=O;
TokenCharCode:=O;
Token Group:=";
TokenlsChar:=False;
TokenlsN um:=False;
TokenError:=False;

End
End;

Procedure InitCurrentToken;
Begin
With CurrentToken Do

Begin
TokenlsShf:=False;
TokenlsAlt:=False;
TokenisCtl:=False;
InitCurrentToken2

End
End;

Function IsNumber(NumStr: String): Boolean;
Const

NStr: String = '0123456789';
Var

I: Integer;
Temp: Boolean;

Begin
Temp:=True;
For 1:=1 To Length(NumStr) Do

Begin
IfPos(NumStr[I],NStr) = 0 Then

122

76

123

Begin
Temp:=False

End
End;

IsN umber:=Temp
End;

Procedure SetCharCode;
Var

I, Tmp: Integer;
Begin

With CurrentToken Do
Begin

5,551,701

IfLength(TokenGroup) = 1 Then
Begin

Tmp:=Pos(TokenGroup,ShiftedChars);
IfTmp > 0 Then

Begin
TokenlsShf:=True;
TokenGroup:= UnshiftedChars[Tmp];

End
End;

1:=0;
While (I < 99) And (UCase(TokenGroup) <> Keys[I]) Do

Begin
I:=I + 1

End;
If I< 99 Then

Begin
TokenCharCode:=KeyCodes[l];
TokenlsChar:=True

End
End

End;

Procedure CheckTokenError;
Begin
With CurrentToken Do

Begin

124

If((Not TokenisChar) And (Not TokenlsNum) And (TokeniD = 0) Or
((TokenlsShf Or TokenlsAlt Or TokenisCtl) And Not TokenlsChar))

Then
TokenError:=True

77

125

End
End;

Procedure GetNextToken;
Var

ECode: Integer;
Begin
If Not UseLastToken Then

Begin
InitCurrentToken;
With CurrentToken Do

Begin
Repeat

Begin

5,551,701

InitCurrentToken2;
TokenGroup:=NextGroup;

126

If (Length(TokenGroup) > 1) And
(Pos(UCase(TokenGroup),KeyWords) > 0) Then

Begin
TokeniD:=Pos(UCase(TokenGroup),KeyWords) Div 4;
lf(TokeniD = Shf) Or (TokeniD =Caps) Then

TokenlsShf:=True;
IfTokeniD = Alt Then

TokenlsAlt:=True;
IfTokeniD = Ctl Then

TokenlsCtl:=True;
End

End
Until Key Pressed Or (Not (TokenlD In [Caps,Shf,Alt,Ctl]));
IfTokeniD = 0 Then

Begin
IflsNumber(TokenGroup) Then

Begin
TokenlsN um:=True;
Val(TokenGroup, TokenN urn Val,ECode);

End;
SetCharCode

End
End;

CheckTokenError
End;

U seLastToken:=False;
End;

78

127

Begin
Needlnit:=True

End.

5,551,701
128

79

5,551,701
129

Unit WCXUtils;

Interface

Procedure WCSBeep;
Function UCase(InStr: String): String;
Function LTrim(InStr: String): String;
Function RTrim(InStr: String): String;
Function DeREM(PLine: String): String;
Function CleanStr(PLine: String): String;
Function Exist(Filename: String): Boolean;
Procedure WaitAcknowledge;
Procedure WaitAcknowledge2;
Procedure WaitEnter;
Procedure DumpJunk;
Procedure SendToThrottle(ByteToSend: Byte);
Procedure CountMem(NBytes: Integer); .
Function Max(FirstVal, SecondVal: Integer): Integer;
Procedure WaitKey;
Procedure WCSBox(Xl,Yl,X2,Y2,FG,BG: Byte);

Const
DownloadCmd: Byte = $0Cl;
CalibrateCmd: Byte = $0C2;

Implementation

130

U s e s
WCXColor,MiscTTT5,WCXVars,DOS,CRT,KBLink,FastTTT5,WinTTT5;

Procedure WCSBox(Xl,Yl,X2,Y2,FG,BG: Byte);
Begin

FBox(Xl,Yl,X2,Y2,FG,BG,l);
AttribCXl+l,Y2,X2,Y2,Black,BG);
Attrib(X2,Yl,X2, Y2,Biack,BG)

End;

Procedure WCSBeep;
Begin

If MK2Beep > 0 Then
Begin
Sound(lOOO);
Delay(20);

80

131

NoSound
End

End;

Procedure WaitKey;
Var

Ch: Char;
Begin

Repeat

Until Keypressed;
Ch:=ReadKey

End;

5,551,701

Function Max(FirstVal, SecondVal: Integer): Integer;
Begin
If SecondVal > First Val Then

Max:=SecondVal
Else

Max:=FirstVal
End;

Procedure CountMem(NBytes: Integer);
Begin

IfMemOutLine = 0 Then
Begin

MemUsed:=MemUsed + NBytes;
IfMemUsed > MaxPgmSize Then

Begin
MemOutLine:=LineN umber;

End
End

End;

Procedure WaitAcknowledge;
Var

Ch: Char;
Begin

Ch:='';
Repeat

If Key Pressed Then
Ch:=ReadKey

Until (Ch = Chr(13)) Or CCh = Chr(8));

132

81

133

WCSBeep;
IfNeedPgmSize Then

Begin
N eedPgmSize:=False;
If Ch = Chr(13) Then

Begin
MaxPgmSize:=124

End
Else

Begin
MaxPgmSize:=252

End
End;

Delay(lOOO);
End;

5,551,701

Procedure WaitAcknowledge2;
Var

Ch: Char;
Begin

Ch:='';
Repeat
If Key Pressed Then

Ch:=ReadKey
Until (Ch = Chr(13)) Or CCh = Chr(8));
WCSBeep;
IfNeedPgmSize Then

Begin
NeedPgmSize:=False;
If Ch = Chr(l3) Then

Begin
MaxPgmSize:=124

End
Else

Begin
MaxPgmSize:=252

End
End;

Attrib(8,14, 73,20,MK2DirnMssglnk,MK2DimMssgPaper);
Delay(lOOO);

End;

Procedure WaitEnter;

134

82

135

Var
Ch: Char;

Begin
Ch:='';
Repeat

IfKeyPressed Then
Ch:=ReadKey

Until Ch = Chr(13);
End;

5,551,701

Procedure SendToThrottle(ByteToSend: Byte);
Begin

KBSendByte(ByteToSend)
End;

Procedure DumpJunk;
Var

Ch: Char;
Begin

Repeat
While KeyPressed Do

Ch:=ReadKey;
Delay(500)

Until Not Key Pressed
End;

Function Exist(Filename: String): Boolean;
Var

Inf: SearchRec;
Begin

FindFirst(Filename,AnyFile,Inf);
Exist:= (DOSError = 0);

End;

Function DeREM(PLine: String): String;
Var

TempStr: String;
Loc: Integer;

Begin
TempStr:=PLine;
Loc:=Pos('REM', UCase(TempStr));
If Loc = 1 Then

Begin

136

83

137

TempStr:="
End

Else
Begin
If Loc > 0 Then

Begin

5,551,701

TempStr:=Copy(TempStr, 1,Loc-1)
End;

End;
DeREM:=TempStr

End;

Function UCase(lnStr: String):String;
Var

I: Integer;
TempStr: String;

Begin
IfLength(InStr) > 0 Then

Begin
TempStr:=";
For 1:=1 to Length(1n8tr) Do

Begin
TempStr:=Concat(TempStr,UpCase(InStr[I]));

End;
UCase:=TempStr

End
Else

Begin
UCase:="

End
End;

Function LTrim(InStr: String):String;
Var

I: Integer;
TmpStr: String;

Begin
TmpStr:=lnStr;
IfLength(InStr) > 0 Then

Begin
1:=1;

138

While ((InStr[l] ='+')Or (InStr[I] ='')Or (InStr[I] = Chr(9)))
And (l <= Length(InStr)) Do

84

139

Unit WCXVars;
Interface

Uses
DOS,CRT;

Const
HM=1;
HU=2;
HR=3;
HD=4;
HL=5;
UP=6;
W4=7;
W6=8;
W5 =9;
DN= 10;
W1 = 11;
W2 = 12;
W3 = 13;
LB = 14;
MB = 15;
UB = 16;
TG = 17;
MT= 18;
TFiag= 19;
PF!ag= 20;
RF!ag = 21;
RU= 22;
RM =23;
RD= 24;
SHF= 25;
ALT= 26;
CTL= 27;
GAME=28;
BTN= 29;
RKR= 30;
THR= 31;
ENDFILE = 32;
CAPS= 33;

EndPgmOp = 0;
NullbuttonOp = 1;

5,551,701
140

85

141

Umd0p=2;
ToggleOp = 3;
Thl0p=4;
Th20p=5;
BtnHMOp= 6;
UndefDp = 7;

Type

5,551,701

UsrPgm = Array[0 .. 252] Of Byte;

Var
MemUsed: Integer;
MemOutLine: Integer;
LineNumber: Integer;
WCSErr: Boolean;
RateParameter: Integer;
GameType: Integer;
NThrottleSteps: Byte;
NABSteps: Byte;
Done: Boolean;
OutFile: Text;

· CheckSum: Byte;
UserFileName: String;
ShiftFlags: Array[0 .. 7,0 .. 255] of Byte;
ShiftMap: Array[0 .. 7,0 .. 63] of Byte;
ShiftCount: Array[0 .. 7] of Byte;
OpCodes: Array[0 .. 32,0 .. 128] of Byte;
CharCodes: Array[0 .. 32,0 .. 128] of Byte;
ShiftCodes: Array[0 .. 32,0 .. 128] of Byte;
UserProgram: UsrPgm;
ButtonSelect: Integer;
ButtonPointer: Integer;
IsCompiling: Boolean;
UseFlags: Boolean;
MaxPgmSize: Integer;
NeedPgmSize: Boolean;
PgmPtr: Integer;

Implementation
Var
I,J: Integer;

Begin
For I:=O to 7 Do

142

86

143

Begin
For J:=O To 255 Do

Begin
ShiftFlags[I,J]:=255

End
End;

For 1:=0 to 7 Do
Begin

ShiftCount[1]:=0;
For J:=O To 63 Do

Begin
ShiftMap[I,J]:=O;

End
End;

For 1:=0 to 32 Do

5,551,701

Begin
OpCodes[1,0]:=NullButtonOp;
CharCodes[1,0]:=0;
ShiftCodes[1,0]:=255;
For J:=l To 128 Do

Begin
OpCodes[1,J]:=O;
CharCodes[1,J]:=0;
ShiftCodes[1,J]:=255;

End
End;

For 1:=0 To 252 Do
Begin

UserProgram[1]:=0
End;

ButtonSelect:=O;
ButtonPointer:=O;
GameType:=O;
RateParameter:= 1;
1sCompiling:=False;
MemOutLine:=O;
Mem U sed:=26;
MaxPgmSize:=252;
NeedPgmSize:=True;

End.

Begin
1:=1 + 1

144

87

5,551,701
145

End;
LTrim:=Copy(InStr,I,Length(InStr)- I+ 1);

End
Else

Begin
LTrim:="

End
End;

Function RTrim(InStr: String):String;
Var

1: Integer;
TempStr:String;

Begin
IfLength(InStr) > 0 Then

Begin
l:=Length(InStr);
While (InStr[I] = '')And (I > 0) Do

Begin
1:=1- 1

End;
TempStr:=Copy(InStr,1,l);

End
Else

Begin
TempStr:="

End;
RTrim:=TempStr

End;

Function CleanStr(PLine: String): String;
Var

Temp1,Temp2: String;
1: Integer;
Spaces: Boolean;

Begin
Temp 1:=LTrim(DeRem(PLine));
Temp2:=";
Spaces:=False;
For 1:=1 To Length(Temp1) Do
Begin

IfTemp1[1] = Chr(9) Then
Begin

146

88

147

Templ[I]:=''
End;

If Temp l[I] = ' ' Then
Begin
If Not Spaces Then

Begin

5,551,701

Temp2:=Temp2 + Templ[I];
Spaces:= True

End
End

Else
Begin

Spaces:=False;
Temp2:=Temp2 + Templ[I]

End
End;

CleanStr:=RTrim(Temp2)
End;

Begin
End.

148

89

5,551,701
149

APPENDIXC

; MAIN_LP is the main program executive loop

main_lp

call get_buttons ; read the buttons

150

btfsc wcs_flagsl,calibrate_mode ; check if download requested

goto download ; do the download routine

movlw 04h ; get char pace constant

movwf inst_ptr

callread_current

movwf char _pace

movlw Och

movwf inst_ptr

call read_current

addlw 04h

; set pointer

; get char pace

; save it

; point to max char id

; read max char id

; offset to user base - 1

movwfinst_ptr ; set instruction pointer to user pgm

bcfwcs_flagsl,scan_done ; clear the done flag

bsfwcs_flagsl,no_change ; set the no changes flag

scan_lp

call fetch_next

movfw char_code

andlw Of8h

iorwf op_code,w

skpnz

goto do_special

; get next instruction

; get character code

; see if its an char code> 7

; or op code not 0

; do char code if so

; else do op case handler

; DO_CODE processes the string, determines if a code needs to be sent,

and sends the code. When the program gets here, the IP will have been

positioned to point to the first byte of the press code for the correct

press/release string. All UMD and TT codes are already processed.

90

5,551,701
151 152

do_ code

btfss delta_2,bttn_changed ; if this button didn't change, skip

goto end_and_rotate ; done, rotate inputs

bcfwcs_flagsl,no_change; say something changed

btfsc inbyte_2,bttn_pressed ; if it wasn't a press, then skip

goto was_pressed

was_released

call skip_string;

call chk_for_release

skpnz

goto send_release

kill_rptg_char

; dump the press string

; 0 if release code exists

; done if not

; send release if it exists

btfss wcs_flagsl,is_repeating ; see if a char is repeating

goto end_and_rotate ; done if not

bcfwcs_flagsl,is_repeating ; kill the flag

call tx_break ; kill the character

goto end_and_rotate

send_release

call fetch_next

was_pressed

call send_string

end_and_rotate

call skip_button

call get_next_button

end_scan

; now your done

; point to start of release code

; send the press/release string

; slough the rest of the code

; rotate buttons, set button flags

btfss wcs_flagsl,scan_done

goto scan_lp

; see if all have been processed

btfsc wcs_flagsl,no_change ; see if anything changed on this pass

call do_rptg_char ; send another repeat code if not

91

5,551,701
153 154

goto main_lp

; END_PGM executes special op 00- end of user program

end_pgm

bsfwcs_flagsl,scan_done ; terminate scan

goto end_scan ; finish the current scan loop

; LOCATE_ 'IT executes opcode 03. It positions the IP to the correct toggle

; string based on the tt_flag for the current button.

locate_tt

btfsc tt_flags_2,toggle_on ; is the toggle flag set

goto scan_lp

call skip_code

goto scan_lp

; no, get first string

; skip first pr code

; do other string

; LOCATE_UMD executes opcode 04. It positions the IP based on the

current

rocker state to the correct one of 3 sets of strings available when UMD

codes are defined. Skips 2 if down, 1 if center, none if up.

locate_umd

btfss adc_result,rkr_up

call skip_code

btfsc adc_result,rkr_dn

call skip_code

goto scan_lp

; see if rocker is up

; skip one if not up

; see if rocker is down

; skip one if it's down

92

5,551,701
155 156

; SKIP _CODE skips the remainder of the code pointed to by IP. On entry,

the

the IP points to the byte before the code which is to be skipped. On exit,

the IP points to the last byte in the press/release string. Use to locate

the correct UMD string.

skip_code

sc_l

call fetch_next

call chk_for_tt

skpz

goto sc_l

call fetch_next

call sc_l

call fetch_next

call skip_string

call chk_for_release

skpz

return

goto step_and_skip

; get first byte of code

; check for tt code

; skip tt code

; skip the press string

; returns O=release follows

; yes, process release code

; step into release, skip it

; SKIP _STRING sloughs off the rest of the current string. It returns

; with IP pointing to the last byte in the current string.

skip_string

call chk_code_Ol

skpz

return

step _and_ski p

call fetch_next

; see if its a continue code

; if so, keep going

; otherwise, IP > last byte

; get next code

93

5,551,701
157 158

goto skip_string ; and loop

; SKIP _BUTION advances the IP to the last byte of the current button. It

; skips bytes until the opcode is 0 and the opchar is not 03 (get tt).

skip_button

sb_l

movfw op_code

skpz

goto sb_l

call chk_for_tt

skpz

return

call fetch_next

goto skip_button

; get opcode

; if its 0, check for tt code

; otherwise

; if its a tt code, continue

; otherwise done

; get next code

; and loop

; FETCH_NEXT increments the instruction pointer and fetches the

; next instruction from the EEPROM.

fetch_next

call read_next

movwf op_code

andlw 03fh

movwf char_code

swapf op_code,f

rrf op_code,f

rrf op_code,w

andlw 03h

movwf op_code

return

; increments ip, reads that byte

; save opcode

; kill op bits

; save the character code

; recall op code

; move it right two bits

; and put it in accumulator

; kill the rest of it

; save it

94

5,551,701
159 160

; CHK_FOR_TI checks for a toggle definition when the opcode is 0. It

returns

; 0 if the code is tt, non-zero otherwise.

chk_for_tt

movfw char_code

goto chk_for_cmmn

; get character code

; CHK_FOR_RELEASE returns 0 if the last byte in the string was an opcode

11,

; indicating that a release string is attached.

chk_for_release

movfw op_code

chk_for_cmmn

xorlw 03h

return

; get terminal opcode

; 0 if it is opcode 3 or opchar 3

95

5,551,701
161 162

READ_THROTTLE reads the throttle input. Just sets it up and jumps into

read_adc.

read_ throttle

movlw throttle_adc_id

goto read_adc

; get throttle id for adc read

; READ_HAT reads the hat switch input. Just sets it up and falls into

read_adc.

read_hat

movlw hat_adc_id ; get hat id for adc read

; READ_ADC reads the analog digital input specified by thew register.

; on entry, the w register holds the address of chO, chl, ch2, ch3.

; the result is returned in adc_result.

read_adc

iorlw Oclh

movwf adcon_O

movlw .25

movwf adc_result

read_adcl

decfsz adc_result,f

goto read_adcl

bsf adcon_O,go

nop

nop

read_adc2

btfsc adcon_O,go

; internal rc adc elk, channel,adon

; wait for sample/hold amplifier delay

; use adc_result as temp register

; convert it

; delay

; delay

; if still go, loop

96

163

goto read_adc2

retlw 0

5,551,701
164

; conversion result now in adc_result

97

5,551,701
165 166

; GET_BUTI'ONS reads the buttons once per loop. On exit, the inbyte_1 and

inbyte_2 registers have been set with the current state of the inputs

and the delta_1 and delta_2 registers have the change information in

them. The analog_mode flag will be set if analog throttle if the base

switch is in the analog position and the calibrate_mode flag will be

set if it is in the calibrate position.

get_buttons

movlw b'00000111'

tris port_b

clrftemp_2

getb_2

clrc

movfw temp_2

movwftemp_1

rlf temp_1,f

rlftemp_1,f

rlftemp_1,w

movwf port_b

bsf port_b,sel__g1

bsf port_b,sel__g2

bcf port_b,sel__g1

clrc

btfss port_a,sw__g1

setc

rrfinbyte_1,f

bsf port_b,sel_g1

bcf port_b,sel_g2

eire

btfss port_b,sw __g2

; set port b i/o status, k_clk, k_data,

; g2_sense are input, others are out

; 0 the address counter

; clear carry

; get counter contents

;save

; move to address positions

; end up with address in w

; set address on port

; tum off group 1

; tum off group 2

; tum on group 1

; assume input is open

; if input is 1, you're right

; otherwise, say closed

; put put it into group 1 holding reg

; tum off group 1

; tum on group 2

; assume it's open

; bit set, you're right

98

5,551,701
167 168

; say closed setc

rrfinbyte_2,f

bsf port_b,sel_g2

incftemp_2,f

movlw8

subwftemp_2,w

skpz

; put in group 2 holding reg

; turn off group 2

goto getb_2

; update address counter

; is it 8 yet?

; if so, done

; otherwise, loop

; SET_MODE sets up the mode control bits based on position of the base

rocker swtich. Note that the calibrate and analog base mode input

contacts are inverted from the states of the other buttons due to

the hardware configuration.

set_mode

bcfwcs_flagsl,calibrate_mode ; clear calibrate mode

btfss inbyte_2, 7 ; check calibrate mode

bsfwcs_flagsl,calibrate_mode ; set calibrate mode

bcfwcs_flagsl,analog_mode ; clear analog mode

btfss inbyte_2,6 ; check analog mode

bsfwcs_flagsl,analog_mode ; set analog mode

move_rkr

bcf inbyte_l,rkr_dn

btfsc inbyte_2,4

bsfinbyte_l,rkr_dn

clear_hat_bits

movlw OOfh

andwfinbyte_2,f

; clear cam bit in inbyte_l

; move rkr dn input

; mask off non-hat bits

; kill hat bits in inbyte_2

99

5,551,701
169 170

; DO_HAT reads the hat and sets the appropriate bit in inbyte_2 to

correspond

; to the current hat state. If the hat is centered, no bits are set. The

; results are HC < 100 < HL < 125 < HD < 160 < HR < 206 < HU.

do_hat

call read_hat

movlw 4

movwftemp_1

hat_lp

movfw temp_1

call get_hat_level

subwf adc_result, w

skpc

goto hat_end

decfsz temp_1,f

goto hat_lp

hat_end

movfw temp_1

call get_hat_mask

iorwfinbyte_2,f

; read the hat switch

; initialize hat counter

; set hat position counter

; get current hat count

; get level

; set carry if adc_result > test value

; so you've got it

; otherwise decrement the hat counter

; and loop for next

; recall current hat counter

; get correct mask for hat position

; or with rest of inputs

; SET_DELTAS sets the delta bit registers after the new inputs are

generated.

Because of the action of get_next_button, on entry the delta registers

contain the previous button state values.

; ENABLE FOR TEST

call read_bttns ;DEBUG ONLY

100

171

set_ deltas:

movfw inbyte_1

xorwf delta_1,f

andwf delta_1,w

xorwftt_flags_1,f

movfw inbyte_2

xorwf delta_2,f

andwf delta_2,w

xorwf tt_flags_2,f

set_umd_flags

clrf adc_result

btfsc inbyte_1,rkr_dn

bsf adc_result,rkr_dn

btfsc inbyte_2,rkr_up

bsf adc_result,rkr_up

return

5,551,701
172

; get first input byte

; xor w/previous, set delta reg 1

; delta and on

toggles toggle bit

; get second input byte

; xor w/previous, set delta reg 2

; delta and on

toggles toggle bit

; use adc result for temp flags

; won't need adc 'til throttle(last)

; since MT codes have no umds

; used in locate umd because the

; real inputs rotate

; GET_NEXT_BUTTON does a 32-bitrotate of the current input states and

current delta values. It is called 16 times per scan by the button

processor.

get_next_button

rlf inbyte_1,f

rlf inbyte_2,f

rlf delta_l,f

rlf delta_2,f

rotate_tt

bcf status, carry

rlf tt_flags_1,f

; rotate first input to carry

; into second input, second to carry

; into first deltas, first to carry

; into second delta

; clear the carry

; rotate low to carry

101

173

rlf tt_flags_2,f

skpnc

bsf tt_flags_l,O

return

5,551,701
174

; rotate carry to high

102

5,551,701
175 176

; Case statements used by various routines

; DO_SPECIAL sorts out opcodes 0 .. 7 for the main loop

do_special

movfw char_code

addwfpcl,f

goto end_pgm

goto end_and_rotate

goto locate_umd

goto locate_tt

goto throttle

goto throttle

goto btn_hm

goto end_pgm

; get special code

; indirect jump

; end of user program

; null button - do nothing

; find correct umd string

; find correct toggle string

; throttle type 1

; throttle type 2

; btnhmcode

; not defined

; GET_HAT_LEVEL is the look up for the hat switch ADC comparison

values.

get_hat_level

addwfpcl,f

retlw OOOh

retlw Od2h

retlw OaOh

retlw 07dh

retlw 064h

; place holder

; is it right?

; is it down?

; is it left?

; is it neutral?

; GET_HAT_MASKis the look up for the current hat position bit.

get_hat_mask

103

5,551,701
177 178

addwfpcl,f

retlw 080h ; its up

retlw 040h ; its right

retlw 020h ; its down

retlw OlOh ; its left

retlw OOOh ; its neutral

; GET_NEW _STEP returns the new throttle step for zones 2 and 4, 0

otherwise

get_new _step

addwfpcl,f

retlw 0

retlw 0

goto z2_step

retlw 0

goto z4_step

; no step in zone 0 ·

; no step in zone 1

; set throttle step in zone 2

; no step in zone 3

; set ab step in zone 4

; T_TYPE_l vectors based on the last throttle state. It jumps into

; the tl_xx tables to handle the transition to the new throttle state.

t_type_l

tl_Ox

movfw old_throttle_zone

addwfpcl,f

goto tl_Ox

goto tl_lx

goto t1_2x

goto t1_3x

goto t1_4x

; offset

104

5,551,701
179 180

movfw new _throttle_zone

addwfpcl,f ; offset

goto tl_OO

goto tl_Ol

goto tl_02

goto tl_03

goto tl_04

tl_lx

movfw new _throttle_zone

addwfpcl,f ; offset

goto tl_lO

goto tl_ll

goto tl_l2

goto t1_13

goto t1_14

tl_2x

movfw new _throttle_zone

addwfpcl,f ; offset

goto tl_20

goto t1_21

goto tl_22

goto t1_23

goto t1_24

tl_3x

movfw new _throttle_zone

addwfpcl,f ; offset

goto tl_30

goto tl_31

goto t1_32

goto tl_33

105

5,551,701
181 182

goto t1_34

t1_4x

movfw new_throttle_zone

addwf pcl,f ; offset

goto t1_40

goto tl_41

goto t1_42

goto t1_43

goto t1_44

; T_TYPE_2 vectors based on the last throttle state. It jumps into

; the t2_xx tables to handle the transition to the new throttle state.

t_type_2

movfw old_throttle_zone

addwf pcl,f ; offset

goto t2_0x

goto t2_1x

goto t2_2x

goto t2_3x

goto t2_4x

t2_0x

movfw new_throttle_zone

addwf pcl,f ; offset

goto t2_00

goto t2_01

goto t2_02

goto t2_03

goto t2_04

t2_1x

106

5,551,701
183 184

movfw new_throttle_zone

addwfpcl,f ; offset

goto t2_10

goto t2_11

goto t2_12

goto t2_13

goto t2_14

t2_2x

movfw new_throttle_zone

addwfpcl,f ; offset

goto t2_20

goto t2_21

goto t2_22

goto t2_23

goto t2_24

t2_3x

movfw new_throttle_zone

addwfpcl,f ; offset

goto t2_30

goto t2_31

goto t2_32

goto t2_33

goto t2_34

t2_4x

movfw new_throttle_zone

addwfpcl,f ; offset

goto t2_40

goto t2_41

goto t2_42

goto t2_43

107

5,551,701
185 186

goto t2_44

; SEND_TSTRING handles the special code for mt press and mt release

send_tstring

movfw op_code

addwfpcl,f

goto recall_send

goto snd_str_l

goto recall_rptg

return

108

5,551,701
187 188

; SEND_STRING sends the string at IP to the keyboard.

send_string

call chk_code_Ol

skpz

goto one_char

snd_str_l

movlw 007h

xorwf char_code,w

skpz

call recall_send

snd_str_2

call fetch_next

call chk_code_Ol

skpnz

goto snd_str_l

goto recall_send

chk_code_Ol

movfw op_code

xorlw Olh

return

; see if its a continue code

; if so, run string

; otherwise, single char, send it

; is it character #7?

; used for RKR no repeat

; don't send it if it is

; get char code and send it

; get next char

; is it continue

; no, send it and quit

; yes, send it and fetch

; send it

; get op code

; zero if code 01

; BTN_HM handles the special case for the hat center position

btn_hm

comf inbyte_2, w

andwf delta_2, w

andlw OfOh

skpz

; get inverted hat states

; and with changes (any hat open up?)

; mask other buttons

; if none opened, skip the string

109

189

goto snd_hm

call step_and_skip

goto scan_lp

snd_hm

call snd_str_2

goto scan_lp

5,551,701

190

; otherwise, send the hm string

; skip the hm string

; back for next

; send the hm string

; back for next

; ONE_CHAR sends the current char, sets up repeat if press

one_ char

btfss inbyte_2,bttn_pressed ; can repeat if press

go to recall_send ; send single char if not

call recall_rptg ; send the first repeating char

movlw .250 ; do 200 millisecond additional delay

goto ack_delay

; On entry, the character to be sent is in w. In all cases, it is the

; WCS character ID which is passed, not the actual scan code.

; SEND_CHAR sends a single complete character to the keyport.

recall_send

movfw char_code

send_char

call char_trans

goto tx_break

; recall the character code

; translate and send make code

; send the break code

; SEND_RPTG_CHAR sets up the repeating char logic. It also handles

opcodes

; 10 and 11 for send_string.

110

5,551,701
191 192

recall_rptg

btfsc wcs_flagsl,is_repeating ; is a char repeating?

call tx_break ; kill current char

no_rpt

bsf wcs_flags l,is_repeating

movfw char_code

; set the repeating character flag

goto ct_continue ; translate and send make code

; CHAR_ TRANS converts the WCS character code into the correct scan

; and CTL, ALT, and SHF informtion.

char_trans

btfss wcs_flagsl,is_repeating ; is one repeating

goto ct_continue ; send if not

movwf temp_3 ; save new character

call tx_break ; break the current character

bcfwcs_flagsl,is_repeating ; clear the repeater flag

movfw temp_3 ; recall new char

ct_continue

ct_lp

rnovwfcurrent_char

rnovfw inst_ptr

movwf ternp_3

rnovlw 04h

rnovwf inst_ptr

clrf ternp_2

goto ct_lpl

incf ternp_2,f

ct_lpl

; save character

; save the IP

; point to NV - 1

; clear the char stat register

; increment shift state

111

193

call read_next

subwf current_ char, w

skpnc

goto ct_lp

set_flags

movfw wcs_flags2

andlw Of8h

iorwftemp_2,w

movwf wcs_flags2

movlw 05h

addwf current_char,w

movwf inst_ptr

call read_current

movwf current_ char

movfw temp_3

movwf inst_ptr

5,551,701

; get next max id

; compare to char code

; went negative, done

; loop back

; get flags

;mask

; add new bits

; offset for char lookup

; add char code

; set pointer for lookup

; get the scan code

; save the scan code

; recall previous IP

194

; TX_MAKE sends the character in w to the pc. The character is already

; translated. Appropriate CTL, ALT, and SHF states are added

tx_make

call shift_em

resend_make

movfw current_char

; tx_m2

goto tx_key

; send the shift codes

; get scan code

; send it

; TX_BREAK sends the character in current_ char to the pc, preceded by a

break

; code. The character is already translated and appropriate CTL, ALT, and

112

5,551,701
195

SHF codes will be applied.

tx_break

movfw current_char

call tx_key _ wb

unshift_em

; get current scan code

196

bsf wcs_flags l,key _released

goto se_2

; flag released for unshift

shift_ em

se_2

bcf wcs_flags 1 ,key _released

btfsc wcs_flags2,shf_down

call send_shift

; flag pressed for shift

; if the shift flag is set

; send the shift

btfsc wcs_flags2,alt_down; if the alt flag is set

call send_alt ; send the alt

btfss wcs_flags2,ctl_down; if the ctl flag is set

return

send_ctl

movlw ctl_key

goto send_code

send_alt

movlw alt_key

goto send_code

send_shift

movlw shf_key

send_code

; send the ctl

; get the ctl code and

; get it

; send the alt

; send the shift

btfss wcs_flagsl,key_released ; if release, go do break

go to tx_key ; else send make, do delay, return

tx_key_wb

movwftemp_4 ; save the character code

113

197

bk_temp_4

movlwbreak

bsf op_code,no_delay

call tx_key

bcf op_code,no_delay

movlw .50

tx_w_dly

call tx_delay

movfw temp_4

goto tx_key

5,551,701

; get a break character

; flag for no char delay

; send it

; clear it right away

; delay

198

; recall the char, fall thru to send

; DO_RPTG_CHAR sends another occurrence of a repeating char if one is

active.

do_rptg_char

btfss wcs_flags l,is_repeating ; exit if char not repeating

return

goto resend_inake ; already translated, send it again

114

5,551,701
199 200

; CHECK_SUM is called from machine reset to determine if the program is

valid. It simply adds the 4th thru !27th bytes ofEEProm and compares

that to the checksum byte sent when the program was downloaded.

Returns

; zero if they match, non-zero if not.

check_sum

cs_lp

clrf check_sum_temp

movlw .124

movlw .252

movwftemp_1

movlw 003h

movwf inst__ptr

call read_next

addwf check_sum_temp,f

decfsz temp_!

goto cs_lp

comp_cs

clrf inst_ptr

call read_current

xorwf check_sum_temp,w

return

; clear the checksum accumulator

; set byte count (first version)

; set byte count

; point to program - 1

; get next program byte

; add to running sum

; loop thru whole program

; get program checksum

; compare to current, should be 0

115

5,551,701
201 202

; DOWNLOAD handles program downloading and throttle calibration for

theWCS.

download

dl_2

bsf wcs_flags2,dl_mode

bcf k_con_port,k_con

call send_enter

call get_buttons

; flag for others

; set 4066s to off

; send an enter key to start dl

; check if still in calibrate mode

btfss wcs_flagsl,calibrate_mode ;

goto exit_dl ; else stop download, restart WCS

get_dl_cmd

call rx_byte

xorlw cal_cmd

skpnz

goto calibrate

xorlw dl_cmd

skpz

goto dl_2

; get next byte, returns 0 iffailed

; is it calibrate

; go do calibrate loop

; is it a download

; done ifnot

; DO_DNLD is the actual downloading logic

do_dnld

movlw .124

movlw .252

movwf dl_bytes

clrf inst_ptr

call read_next

movwf cal_ temp

call rx_byte

; number of bytes to get (old version)

; number of bytes to get

; save count

; point to calibration values

; get idle detent value, will rewrite

; save it

; get checksum value

116

5,551,701
203 204

skpnc

goto dl_2 ; bad read, exit

call write_first ; save it

movfw cal_temp ; recall id value

call write_next ; put it back

incfinst_ptr ; skip rest of cal data

dl_lp

call rx_byte ; get next, chk bttns, cy set if err

skpnc

goto dl_2 ; bad read, exit

call write_next ; put it in the eeprom

dl_x

decfsz dl_bytes,f ; count out bytes

goto dl_lp ; loop for next byte

goto dl_2 ; done, back to top

; EXIT_DL sets things back to normal and does a software reset

exit_dl

bcfwcs_flags2,dl_mode ; clear the download mode

call send_enter ; send an enter

goto init_2 ; restart program after push point

; CALIBRATE is the routine which calibrates the throttle handle on the

; WCS. Order is Min, ID, ABD, Max.

calibrate

movlw 04h

movwf cal_lp_ctr

clrf inst_ptr

; set loop count

; save in counter

; point to cal data

117

205

call read_current

call write_first

call wait_n_enter

goto cl_2

cal_lp

cl_2

call read_throttle

movfw adc_result

call write_next

call wait_n_enter

decfsz cal_lp_ctr,f

goto cal_lp

goto dl_2

5,551,701
206

; get the checksum

; setup checksum for rewrite

; throttle back wait

; adc read the throttle input

; get throttle value

; put in eeprom

; wait til user presses button 1

; decrement loop counter

; back for more

; back to download loop

; RX_BYTE gets four bytes from the keyport and combines them to form

; a single byte.

rx_byte

rb_lp

movlw 04h

movwf cal_lp_ctr

clrf rx_temp

call rx_key

skpnc

return

call send_ack

call rx_key

andlw 3

rlfrx_temp,f

rlfrx_temp,f

; set loop count (cal and dnld use it)

; save in counter

; clear the temporary register

; get ed command

; if no carry, finish command

; else quit with error

; send the fa byte

; get data bits

; kill all but lo 2 bits

; push bits left 2

118

207

iorwf rx_temp,f

call send_ack

decfsz cal_lp_ctr

goto rb_lp

movfw rx_temp

bcf status,carry

return

5,551,701

; add in next 2

; send the fa byte

; loop 4 times

; loop for next

; recall byte

; make sure carry is clear

208

; SEND_ACK transmits an ackowledge byte FAh to the keyport

send_ack

bsf op_code,no_delay

movlw ack_code

movwftemp_4

call tx_w_dly

bcf op_code,no_delay

return

; check for no delay

; get the fa code

; save for delayed xmit

; delay 750 us then send the byte

; set up delay again

; WAIT_N_ENTER waits for button 1, then sends an enter

wait_n_enter

call wait_button_l ; wait for button press

; SEND_ENTER sends an 'enter' key to the system.

send_enter

movlw enter_key

movwftemp_4

call tx_key

goto bk_temp_4

; get enter key

; set up for transmit

; send it, char delay active

; send temp_4 with break

119

5,551,701
209 210

; READ _NEXT increments the IP and reads that byte in the eeprom. The

inst_ptr can be preset to any byte address, 0 .. 128. It is designed

to provide sequential reading of the eeprom during the fetch of

the user program.

read_next

incf inst_ptr ,f

read_ current

rrf inst_ptr, w

andlw 07fh

clrfee_cmd

bsf ee_cmd,6

call ee_rw

movfw ee_low _b

btfsc inst_ptr,O

movfw ee_high_b

return

; increment instruction pointer

; divide by 2

; ensure valid eprom address

; clear the ee command reg

; set the read command bit

; read the byte at ip, byte in opcode

; presume low byte

; if address was odd, get lo if not

; otherwise, get high byte

; and quit

; WRITE_NEXT writes the byte in w to the next ee location. It buffers

the first byte that comes along. The second byte triggers the

actual write. Then it increments the pointer for next time. Falls

into ee_write. The inst_ptr is treated as a word pointer, different

from read_next which counts bytes. It is designed to write sequentially

to the eeprom during download and calibration.

write_first

bcfwcs_flags2,ee_byte_2 ; ensure odd first write to eeprom

clrf inst_ptr ; point to first byte

write_next

btfsc wcs_flags2,ee_byte_2 ; is it second byte?

120

5,551,701
211 212

goto send_2nd ; yes

send_ 1st

bsfwcs_flags2,ee_byte_2 ; set second byte flag

movwf ee_temp

return

send_2nd

movwf eo_high_b

movfw ee_temp

; put byte in low half

; and quit

; put in ee high byte

; recall first byte

movwf ee_low _b ; set it up for storage

bcf wcs_flags2,ee_byte_2 ; clear second byte flag

movlw ee_wr_en_cmd

clrfee_cmd

call ee_rw

movfw inst_ptr

incfinst_ptr,f

andlw 07fh

wr_word

bsf ee_cmd,5

call ee_rw

ready_chk

clrf ee_cnthi

clrfee_cnt

call ee_dsel

call ee_sel

not_ready

btfsc ee_port,ee_dout

goto ee_wr_disable

decfsz ee_cnt,f

goto not_ready

; do eeprom write enable

; clear the command to 0

; send the write enable command

; get address

; update the pointer

; ensure valid address

; set the write bit

; write the two bytes

; check ready before write disable

; de-select the 93c46.

; re-select the 93c46.

; if do is a '0', 93c46 still busy

; otherwise its ready

; decrement ready timer

; try again.

121

213

decfsz ee_cnthi,f

goto not_ready

ee_ wr_disable

clrfee_cmd

movlw ee_wr_dis_cmd

5,551,701

; lsb done - decrement msb

; try again.

214

; clear the ee command again

; do eeprom write disable

; EE_RW accesses the EEProm for command, read and write operations. On

entry,

the w register contains the address in the lower six bits and the command

in the upper 2 bits. The data must be in ee_low_b and ee_high_b for a

write. A read will return the data in those same locations.

ee_rw

movwf ee_addr

movlw ee_cmd

movwffsr

call ee_sel

bsfee_cmd,7

call dout_3

call dout_8

btfsc ee_cmd,l

goto ee_rd

btfsc ee_cmd,O

call ee_wr

goto ee_dsel

; save the address

; load w with loc of cmd reg

; fsr > ee_cmd

; select the 93c46.

; set up the start bit

; send command

; inc fsr, send addr

; set if read, rotated during command

; bit was set, do read

; set if write, rotated during command

; so write it

; must be enable/disable, just desel

; EE_RD reads a word from the eeprom and puts it in ee_low _b and

ee_high_b

Don't combine two din_8s into a din_l6. The stack will crash.

122

215

ee_rd

call din_8

call din_8

5,551,701
216

; input the first 8 bits

; input the second 8 bits

; EE_DSEL deselects the 93cx6 device.

ee_dsel

bcf ee_cs_port,ee_cs

movlw b'00000111'

tris ee_port

return

; chip select (cs) = '0' to de-select

; set standard port b configuration

; EE_SEL selects the 93cx6 device.

ee_sel

movlw b'00000111'

movwf ee_port

movlw b'00100111'

tris ee_port

bsf ee_cs_port,ee_cs

return

; force bits high

; enable eeprom data in as input

; chip select (cs) = '1' to select

; CLOK_IT clocks an ee_port data bit into or out of the device

clok_it

bsf ee_port,ee_clk

nop

bcf ee_port,ee_clk

return

; clock (elk)= '1'.

; ee_clk pulse width delay

; clock (elk)= '0'.

123

5,551,701
217 218

; EE_ WR will output 16 bits of data to the 93c46. before calling this routine,

; the fsr must point to the word being transmitted.

dout_3

124

5,551,701
219 220

; INIT is the entry after machine reset to skip case tables in page 0

irrit

movlw b'00001011'

tris port_a

movlw b'00000111'

tris port_b .

bsf k_con_port,k_con

movlw b'00000111'

tris port_b

clrwdt

movlw b'00000101'

option

bsf status,rpO

movlw b'00000010'

movwfadcon

bcf status,rpO

bcf ee_cs__port,ee_cs

call init_ vars

call wait_button_1

init_2

bsf k_ da ta_port,k_ data

bsf k_clk_port,k_clk

bsf k_con_port,k_con

call init_ vars

check_sum_lp

call get_buttons

; initialize port a

; initialize port b was 011

; set 4066's to on

; initialize port b

; kill the wdt, set prescaler to rtcc

; rtcc internal, lo->hi, prescale::::64

; switch to page 1

; set adc control register

; switch to page 0

; disable eeprom

; zero the ram

; wait til user presses button 1

; setu keyboard data and clock line

; set 4066's to on

; clear the ram again

; read the buttons

btfsc wcs_flagsl,calibrate_mode; check if download requested

goto download ; do the download routine

call check_sum ; get program checksum

125

5,551,701
221 222

skpnz ; if zero

goto main_lp ; goto main

goto check_suro_lp ; else loop 'til it is

; INIT_ V ARS clears all chip ram from location OOch thru 02fh to 0

init_vars.

iv_lp

movlw OOdh

movwffsr

movlw 023h

movwf wcs_flags 1

clrfindirect

incffsr,f

decfsz wcs_flagsl,f

goto iv_lp

return

; point to first non-pic location

; set the file select pointer

; number to clear

; use adc result reg for count

; clear the byte

; update the pointer

; decrement loop counter

; repeat 'til 0

; WAIT_BUTTON_l is used at startup and during calibrate.

wait_button_l

return

call get_buttons

btfss inbyte_l,wcs_l

goto wait_button_l

wait_ open

call get_buttons

btfsc inbyte_l,wcs_l

goto wait_open

return

;DEBUG ONLY

; read the buttons

; is the button closed?

; wait 'til it is

; read the buttons

; is the button open?

; wait 'til it is

126

223

movlw 03h

goto dout_cmmn

ee_wr

call dout_8

dout_8

incffsr,f

dout_Sa

movlw08h

dout_cmmn

movwftemp_4

d_o_S

bcf ee_port,ee_din

rlf indirect,f

skpnc

bsf ee_port,ee_din

call clok_it

decfsz temp_ 4,f

goto d_o_S

rlf indirect,f

return

5,551,701

; start and command bits

; send the 3 bits

; move first 8 bits

; update the pointer

; initialize loop counter.

; assume bit is 0

224

; rotate the actual bit into carry

; if it's 0, you're right

; otherwise, say 1

; clock the 93c46

; repeat until cnt = 0

; cnt still > 0

; restore reg to original condition.

; exit with good status.

; DIN_8 will input 8 bits of data from the 93c46. before calling this routine,

; the fsr must point to the register being used to hold the incomming data.

din_8

d_i_8

incffsr,f

movlw 008h

movwf temp_ 4

; initialize loop counter.

127

225

call clok_it

rlf indirect,f

bcf indirect, a
btfsc ee_port,ee_dout

bsf indirect,O

decfsz temp_4,f

goto d_i_8

return

5,551,701

; clock a bit out of the 93c46.

; make room for incoming bit

; assume it's a '0'

; if you're wrong

; set it to a '1'

; repeat until cnt = 0.

; cnt still > 0

;exit

226

128

5,551,701
227 228

; INIT is the entry after machine reset to skip case tables in page 0

init

movlw b'00001011'

tris port_a

movlw b'00000111'

tris port_b

bsf k_con_port,k_con

movlw b'OOOOOlll'

tris port_b

clrwdt

movlw b'00000101'

option

bsf status,rpO

movlw b'00000010'

movwfadcon

bcf status,rpO

bcf ee_cs_port,ee_cs

call init_ vars

call wait_button_1

init_2

bsfk_data_port,k_data

bsfk_clk_port,k_clk

bsf k_con__port,k_con

call init_ vars

check_sum_lp

call get_buttons

; initialize port a

; initialize port b was 011

; set 4066's to on

; initialize port b

; kill the wdt, set prescaler to rtcc

; rtcc internal, lo->hi, prescale=64

; switch to page 1

; set adc control register

; switch to page 0

; disable eeprom

; zero the ram

; wait til user presses button 1

; setu keyboard data and clock line

; set 4066's to on

; clear the ram again

; read the buttons

btfsc wcs_flags1,calibrate_mode; check if download requested

goto download ; do the download routine

call check_sum ; get program checksum

129

5,551,701
229 230

skpnz ; if zero

goto main_lp ; goto main

goto check_sum_lp ; else loop 'til it is

; INIT_ V ARS clears all chip ram from location OOch thru 02fh to 0

init_vars

iv_lp

movlw OOdh

movwffsr

movlw 023h

movwf wcs_flags 1

clrf indirect

incffsr,f

decfsz wcs_flagsl,f

goto iv_lp

return

; point to first non-pic location

; set the file select pointer

; number to clear

; use adc result reg for count

; clear the byte

; update the pointer

; decrement loop counter

; repeat 'til 0

; WAIT_BUTTON_l is used at startup and during calibrate.

wait_button_l

return

call get_buttons

btfss inbyte_l,wcs_l

goto wait_button_l

wait_ open

call get_buttons

btfsc inbyte_l,wcs_l

goto wait_open

return

;DEBUG ONLY

; read the buttons

; is the button closed?

; wait 'til it is

; read the buttons

; is the button open?

; wait 'til it is

130

5,551,701
231 232

; RX_KEY is the keyboard receiver entry point. It waits for a key from

; the PC, reads it, and returns the key in w.

rx_key

call get_buttons

movfw inbyte_l

andwf delta_l,w

andlw 070h

skpnz

goto rx_key2

bsf status,carry

retlw 0

rx_key2

btfss k_clk_port,k_clk

goto rx_key

; check to see if still in cal mode

; get first byte

; and with changes

; mask bl, b2, b3

; see if any pressed

; return carry to abort

; return a zero

; wait 'til clock bit is hi

btfsc k_data_port,k_data ; wait for start bit low

goto rx_key

movlw .50 ; delay

call tx_delay

rx_get_byte

bsfk_clk_port,k_clk ; preset to 1 before enabling output

bsf k_data_port,k_data

movlw b'OOOOOllO' ; enable k_clk for output

tris port_b

movlw .9

movwf tx_rx_ctr

call wait40

rx_bit_loop

clrc

call clock

; get 8 bits + parity

; carry will be loaded with data bit

; clock the data

131

5,551,701
233 234

btfsc k_data_port,k_data ; read data from system

bsf status,carry ; set carry if cpu bit high

rrf rx_data,f ; and shift it in

decfsz tx_rx_ctr,f

goto rx_bit_loop

rx_ack

rlf rx_data,f

call clock

movlw b'OOOOOlOO'

tris port_b

bcf k_data_port,k_data

call clock

bsf k_data_port,k_data

rx_end

movlw b'OOOOOlll'

tris port_b

movfw rx_data

bcf status,carry

return

; received all bits?

; align data word, parity now in carry

; clock in the stop bit

; enable k_clk and k_data for output

; set data to acknowledge

; clock in the acknowledge bit

; set data high

; set data port to input

; get recieved character

; clear carry for no error

; CLOCK generates a receive clock signal. Signal is wait 20, drop clock line,

; wait 40, raise clock line, wait 20.

clock

call wait20

bcf k_clk_port,k_clk

call wait40

bsfk_clk_port,k_clk

goto wait20

wait40

; delay 20 us

; set the clock low

; delay 40 us

; set the clock high

132

235

call wait20

wait20

movlw delay20us

goto tx_delay

5,551,701

236

; delay 20 us

; delay 20 us

; return in timer code

133

5,551,701
237 238

; THROTTLE is the common set-up code for both throttle types. It sets

; up the tcb, new step, and new zone variables.

throttle

bsfwcs_flagsl,scan_done ; end of scan, throttle is last

btfsc wcs_flagsl,analog_mode ; skip throttle if in analog mode

goto end_throttle

call gen_tcb

call read_throttle

range_ throttle

movfw thr_max

subwf adc_result,w

skpc

goto set_throttle_dir

force_max

movfw thr_max

movwf adc_result

set_throttle_dir

movfw old_throttle_val

subwf adc_result, w

skpnc

goto chk_move

sublw 0

chk_move

andlw Ofch

skpnz

goto end_throttle

movfw adc_result

movwf old_throttle_val

call get_throttle_zone

; set up the throttle limit vals

; read the throttle adc value

; get max throttle value

; sub from new read

; carry if new > max

; recall max throttle

; force new read to max

; recall previous

; sub current from previous

; if negative, turn it around

; positive, it's ok

; make it positive

; did it move by 4?

; yes, keep going

; done if not

; get new throttle value

; save for next time

; set new throttle zone, delta_z, flag

134

5,551,701
239 240

call get_throttle_step ; set new step

; At this point, the new_throttle_zone, new_throttle_step, and delta_zone

variable have been set, as well as the max, min, window limit, n_throttle,

and n_ab steps. The IP points to the mt release string, the opcode still

has the throttle type in it.

set_type_flag

bcfwcs_flagsl,is_type_2 ; pre_clear, assume type 1

btfsc char_code,O ; is 4 or 5, bit 0 = type 2

bsf wcs_flags l,is_type_2

btfss wcs_flags2,mt_released ; chk if need to send press code

goto do_t

do_mt_rel

callloc_pr

call do_mt_release

do_t

call sel_throttle

do_mt_pr

; set pointer to pr string

; skip the press string

; do correct throttle type

btfss wcs_flags2,mt_pressed

goto update_zone

; check if need press

callloc_pr

call do_mt_press

update_zone

movfw new_throttle_zone

movwf old_throttle_zone

end_ throttle

goto end_scan

; update old throttle zone

; back into scan loop

135

5,551,701
241 242

; SEL_THROTTLE selects the correct throttle handler and jumps to it. Used

; so throttle can do a return

sel_throttle

btfss wcs_flags 1,is_type_2

goto t_type_1

goto t_type_2

; is 4 or 5, bit 0 =type 2

; GEN_TCB generates the Throttle Control Block for use by the throttle

routines. The Throttle Control Block contains stored and derived data

in the following format:

0 - n_throttle

1- n_ab

2 - minimum throttle value

3 - lower idle detent window value, top of zone 4

4 - upper idle detent window value, top of zone 3

5 - lower ab detent window value, top of zone 2

6 - upper ab detent window value, top of zone 1

7 -maximum throttle value, top of zone 0

gen_tcb

call read_next

movwf n_throttle

call read_next

movwfn_ab

call push_ip

clrf inst_ptr

call read_next

addlw 08h

; get n_throttle

; save it

; getn_ab

; save it

; save pointer to first throttle byte

; point to cal bytes - 1

; get idle detent

; figure max

136

243

movwfidw_max

movwfidw_min

movlw lOh

subwf idw _min,f

call read_next

addlw 08h

movwf abw _max

movwf abw _min

movlw lOh

subwf abw _min,f

call read_ next

movwf thr_max

goto pop_ip

5,551,701

; and set it

; and set it

; drop min by 8

; get ab detent value

; figure max

; and set it

; and set it

; drop min by 8

; get max throttle value

; restore pointer and go back

244

; GET_THROTTLE_ZONE sets up the new_throttle_zone variable in chip

ram.

; It sets the value between 0 and 5 as follows:

0 - above ab detent window

1 -in ab detent window

2 - between ab detent window and idle detent window

3 - in idle detent window

4 - below idle detent window

get_throttle_zone

movlw idw_min

movwffsr

movlw 4

movwf new _throttle_zone

gtz_lp

; >lower idle detent window value

; put in file select register

; set zone counter

137

5,551,701
245 246

gtz_l

movfw indirect

addlw 1

subwf adc_result,w

bnc end__gtz

; get next check value

; inrement to put set as max for zone

; subtract from adc result

; done if negative

incffsr,f ; increment for next value

decfsz new_throttle_zone,f ; decrement zone counter

goto gtz_lp ; loop back if not zone 0

end_gtz

movfw new_throttle_zone

sublw 04h

movwf new _throttle_zone

chk_mt

; change 4 .. 0 to 0 . .4

; sub from4

; put it back

bcfwcs_flags2,mt_pressed ; clear the mt pressed and release

bcf wcs_flags2,mt_released ; flags

skpnz ; is current zone 0?

return

movfw old_throttle_zone

; new zone is 0, can't be released

; new zone not 0, is old zone 0?

skpnz ; if not, it can't be a release

bsf wcs_flags2,mt_released ; it is, flag for release code

return

; GET_ THROTILE_STEP sets the new _throttle_step variable to a value in

the

range l..nsteps corresponding to the relative position of the throttle

within the current zone.

; The ADC result register contains the current analog value read from the

throttle. Variables adc_result, temp_l, temp_2, and temp_3 are modified

by this subroutine.

138

5,551,701
247 248

get_throttle_step

clrfnew_throttle_step ; zero it for zones 0 and 1

movfw new _throttle_zone ; recall zone for step determination

goto get_new_step ; do zone vector, back at z?_step

139

5,551,701
249 250

; TIYPE1 holds the logic for type 1 throttles.

; Type 1 zone handlers. There is one for each possible from/to zone

; combination. Vectored from the throttle type 1 tables in page 0.

tl_OO

tl_ll

t1_33

tl_01

return

t1_02

goto t1_2

tl_03

t1_13

tl_23

goto tl_max_throttle

tl_04

call tl_03

goto tl_ab_on

tl_32

t1_12

t1_22

movfw n_throttle

movwf old_throttle_step

goto tl_2

tl_l4

tl_24

call t1_max_throttle

tl_34

goto tl_ab_on

; nothing

; goto zone 2 setup

; go do maximum throttle

; send release, max the throttle

; send the ab on char

140

5,551,701
251 252

t1_40

call tl_ab_off

t1_30

t1_20

call tl_min_throttle

tl_lO

bsf wcs_flags2,mt_pressed

return

t1_41

call tl_ab_off

t1_21

t1_31

goto tl_min_throttle

t1_42

call tl_ab_off

goto t1_2

t1_43

goto tl_ab_off

t1_44

goto t1_4

; Utility routines

; Tl_MIN_THRO'ITLE sends throttle down characters to move the throttle

to 0.

; Must be in zone 3 or zone 2 first.

tl_min_throttle

movlw 1

call tl_locate

; point to throttle down char

; set the IP

141

5,551,701
253

movfw old_throttle_step

clrf old_throttle_step

goto move_throttle

; get current step

; set old steps to 0

; finish in move

254

; Tl_MAX_THROTI'LE sends enough throttle up commands to max the

throttle.

; Must be in zone 1 or zone 2 first.

tl_max_ throttle

call pop_ip

movfw old_throttle_step

subwf n_throttle,w

call move_throttle

movfw n_throttle

movwf old_throttle_step

return

; set the IP to point to t_up char

; get previous throttle step

; subtract from max number

; move the throttle

; set old throttle to max

; Tl_AB_ON sends the ab on character, then jumps into the zone 4 handler.

Moves

; from zone 3 to zone 4.

tl_ab_on

clrf old_throttle_step

movlw 2

call tl_locate

call read_next

call send_char

goto t1_4

; set old step to 0

; get offset to ab on character

; position the IP

; get the character

; send the ab on character

; Tl_AB_OFF moves the ab to step 0, then sends the ab off character. Moves

142

255

from zone 4 to zone 3.

tl_ab_off

movlw 05h

call tl_locate

5,551,701

; point to ab down char

movfw old_throttle_step ; get last throttle step

call move_throttle ; move throttle

movfw n_throttle ; get max throttle

256

movwf old_throttle_step ; set max steps for last throttle

movlw 03h ; get ab off character

call tl_locate ; position the IP

call read_next ; get the character

goto send_char ; and send it

; MOVE_ THROITLE takes care of throttle translation for type 1 throttles.

On entry, w holds the number of characters to send, the IP points

to the byte immediately before the character code

move_throttle

td_l

td_2

movwf move_steps

movfw move_steps

skpnz

return

call read_next

call char_trans

goto td_2

call resend_make

decfsz move_steps,f

; save count

; set the zero flag

; if zero, nothing to send

; get character

; send first char

; send another make code

; loop til current step is 0

143

5,551,701
257 258

goto td_l

goto tx_break

; Tl_LOC_PR sets the IP to point to the press/release strings for the

; mt handlers

tl_loc_pr

movlw 06h ; set pointer to release string

; Tl_LOCATE sets the IP to point to particular byte in the type 1 throttle

data. On entry, w holds the offset to the byte, with 0 being taken

as the first byte following n_ab.

tl_locate

movwf move_steps

call pop_ip

movfw move_steps

addwfinst_ptr,f

return

; save offset

; recall base address

; recall offset

; point to desired byte

; Tl_2 moves the throttle around in zone 2.

t1_2

call pop_ip ; restore pointer

goto t1_24_cmmn

; T!_4 moves the throttle around in zone 4.

t1_4

movlw 04h ; point to ab up char

144

259

call tl_locate

t1_24_cmmn

5,551,701
260

; move the IP

call get_delta_step ; sets delta_step, ts_decreased

btfsc wcs_flagsl,ts_decreased ; check for step change

incf inst_ptr ,f

goto move_throttle ; go move the throttle in zone

145

5,551,701
261 262

; 'ITYPE2 holds the logic for type 2 throttles.

; Type 2 zone handlers. There is one for each possible from/to zone

; combination. Vectored from the throttle type 2 tables in page 0.

t2_00

t2_11

t2_33

return

t2_03

t2_13

t2_23

t2_43

goto t2_max_throttle

t2_02

t2_12

t2_22

t2_32

t2_42

goto t2_2

t2_04

t2_14

t2_24

t2_34

t2_44

goto t2_4

; nothing

; go do maximum throttle

146

263

t2_40

t2_30

t2_20

t2_10

5,551,701

bsf wcs_flags2,mt_pressed

t2_01

t2_21

t2_31

t2_41

goto t2_min_throttle

; Utility routines

264

; T2_MIN_THROTTLE sends the first of the throttle characters.

t2_min_throttle

call pop_ip

incf inst_ptr,f

goto read_and_send

; point to first throttle char

; adjust for read and send

; T2_MAX_THROTTLE sends the last of the throttle chars.

t2_max_throttle

call pop_ip

movfw n_throttle

addwf inst_ptr ,f

goto read_and_send

; restore the ip

; get max steps

; point to max throttle char

; read next and send it

; T2_2 sends the character when in zone 2.

147

5,551,701
265

t2_2

call pop_ip ; restore pointer

goto t2_24_cmmn

; T2_ 4 sends the character when in zone 4.

t2_4

call pop_ip

movfw n_throttle

addwfinst_ptr,f

t2_24_cmmn

; restore pointer

; skip throttle characters

; update pointer

movfw new_throttle_step ; get new step

addwfinst_ptr,f ; skip to correct character

read_and_send

266

call read_current

chk_dups

; points to char, don't increment

xorwf old_throttle_step,w; check against last t char

skpnz

return

; if the same

; then don't send it

xorwf old_throttle_step,w; restore new char code

movwf old_throttle_step ; save for next time

goto send_char

; T2_LOC_PR sets the IP to point to the press/release strings for the

; mt handlers

t2_loc_pr

call pop_ip

movfw n_throttle

addwfn_ab,w

; restore pointer

; get number of throttle chars

; add the number of ab chars

148

5,551,701
267

addwfinst_ptr,f

return

z2_step

movlw idw_max

movwffsr

movfw n_throttle

goto gts_crnmn

z3_step

movfw n_throttle

movwf new _throttle_step

goto end_gts

z4_step

movlw abw_max

movwffsr

movfwn_ab

268

; put offset in pointer

; point to bottom of zone 2

; set pointer

; get number of steps

; get max throttle

; put it away

; and quit

; point to bottom of zone 4

; set pointer

; get number of steps

; At this point, the FSR points into the throttle control block at the upper

idle detent window value for throttle steps and the upper ab detent

window

; value for ab steps. Temp_1 holds the number of steps.

gts_cmmn

movwf temp_1

clrf new _throttle_step

incf new _throttle_step,f

movfw indirect

subwf adc_result,f

incffsr,f

subwfindirect,w

; put n_steps in temp 1

; initialize new step counter to 1

but save w contents

; get low value for current zone

; correct adc result so zone is at 0

; point to hi value for current zone

; generate delta for current zone

149

269

incffsr,f

movwf temp_2

movwf temp_3

gts_lp

movfw temp_l

subwf temp_3,f

be no_step_chg

step_chg

5,551,701
270

; point to number of steps for zone

; save delta value

; initialize running accumulator

; get n_steps

; subtract from running accumulator

; if positive, same step

incfnew_throttle_step,f ; increment new step register

movfw temp_2 ; recall delta value

addwf temp_3,f ; add to running accumulator

no_step_chg

decfsz adc_result,f

goto gts_lp

end_gts

return

; count the current read to 0

; loop again if not

; Utilities used by throttle handlers

; PUSH_IP and POP _IP save and restore the instruction pointer.

push_ip

movfw inst_ptr

movwfip_hold

return

pop_ip

movfw ip_hold

movwf inst_ptr

return

; get instruction pointer

; save i

; get stored pointer

; put it back

150

5,551,701
271 272

; GET _DELTA_STEP calculates the difference in step value between the old

step and the new step and returns the absolute value of the difference

in delta_step. It sets the ts_decreased flag appropriately.

get_delta_step

bcfwcs_flagsl,ts_decreased ; assume step increase

movfw old_throttle_step ; get new step

subwfnew_throttle_step,w ; subtract old step

skpnc ; positive, skip negate

goto ds_pos

ds_neg

bsfwcs_flagsl,ts_decreased

sublw 0

; say zone decreased

; make it positive

ds_pos

movwftemp_l

movfw new_throttle_step

movwf old_throttle_step

movfw temp_l

return

; save it for a second

; get new step

; set old step

; recall delta

; DO_MT_pRESS and DO_MT_RELEASE take care of the min throttle

press

; and release logic when entering or exiting throttle zone 0.

do_mt_release

call fetch_next

call skip_string

do_mt_press

call fetch_next

; dump op, get string

; skip the press string

; dump op, get string

151

5,551,701
273 274

goto send_tstring ; send the string

; LOC_PR locates the MT p/r codes for the two throttle types

loc_pr

btfss wcs_flags l,is_type_2

goto tl_loc_pr

goto t2_loc_pr

; locate pr for type 1

; locate pr for type 2

152

5,551,701
275 276

; TX_KEY send the character in w to the PC.

tx_key

movwftx_data

return

bcf intcon,gie

movlw b'OOOOOlll'

tris port_b

txquiet

clrfrtcc

txquietl

btfss port_b,O

goto txquiet

btfss port_b,l

goto txquiet

; put char in xmit data reg

;DEBUG ONLY

; disable all interrupts

; set standard port b configuration

; clear the real time clock register

; test keyboard clock line

; start timer again, clock active

; keyboard data line quiet?

btfsc wcs_flags2,dl_mode ; if download, go fast

goto gofast

go slow

movlw Ofeh

goto speedisset

go fast

movlw30h

movlw 08h

bcf k_con_port,k_ con

speedisset

subwfrtcc,w

skpc

goto txquietl

; character rate in run mode

; character rate in download mode

; character rate in download mode

; set 4066's to off

; check rtcc, see if quiet long enough

; no, wait some more

bsfwcs_flags2,tx_parity ; set parity flag, gens odd parity

153

5,551,701
277

movlw .8

movwf tx_rx_ctr

movlw b'OOOlOOOO'

tx_keyparity

rrf tx_data,f

skpnc

xorwf wcs_flags2 ,f

decfsz tx_rx_ctr,f

goto tx_keyparity

rrf tx_data,f

; initialize bit counter

; used to xor tx_parity on 'l's

; rotate transmit register

; no carry, bit is '0'

; flip parity bit, bit is 1

; decrement the bit counter

; rotate to realign data

278

clrc ; assume no parity bit

btfsc wcs_flags2,tx_parity; it's 0, you're right

bsf status,carry ; otherwise, set the parity

movlw .9

movwftx_rx_ctr

bsf k_clk_port,k_clk

bsfk_data_port,k_data

bcf k_con_port,k_con

movlw b'OOOOOlOO'

tris port_b

tx_keyl

bcf k_data_port,k_data

call tx_clr_clk

tx_key2

call tx_set_clk

rrf tx_data,f

skpnc

bsf k_data_port,k_data

skpc

bcf k_data_port,k_ data

; set bit counter to 8 bits+parity

; preset to 1 before enabling output

; set 4066's to off, disable kbd

; enable k_clk and k_data for output

; send start bit

; drop the clock and delay

; raise the clock and dely

; shift next data bit to carry

; if carry, set data to 1

; if not carry, set data to 0

154

5,551,701
279

call tx_clr_clk

decfsz tx_rx_ctr,f

goto tx_key2

call tx_set_clk

bsfk_data_port,k_data

call tx_clr_clk

tx_keyend

call tx_set_clk

bsf k_data_port,k_data

movlw b'OOOOOlll'

tris port_b

movlw b'00001011'

tris port_a

; drop clock and delya

; all bits sent?

; no, loop for next

280

; clean up, raise clock line

; send stop bit

; clear and delay

; set and delay

; set k_data before releasing

; port b back to standard

; port a back to standard

btfss wcs_flags2, dl_mode; no kbd until out of download

btfsc wcs_flags2, dl_mode

return

bsf k_ con_port,k_ con

txquietatend

clrfrtcc

txquietatendl

btfss port_b,O

goto txquietatend

btfss port_b,l

goto txquietatend

movlw .3

subwfrtcc,w

; set 4066's to on, enable kbd

; restart the real time clock

; test clock line

; start timer again, clock active

; test data

; start timer again, data active

skpc ; do character delay

goto txquietatendl

btfsc op_code,no_delay ; check for no delay

return

155

5,551,701
281 282

; CHAR_DELA Y inserts a delay period after a character is sent which is

determined by the char _pace variable initialized by the user rate

instruction.

char_delay

incf char_pace,w

ack_delay

movwf tx_rx_ctr

cd_lp

movlw k_cdly

call tx_delay

decfsz tx_rx_ctr,f

goto cd_lp

return

tx_clr_clk

movlw delay10us

movwf tx_timer

tcc_lp

decfsz tx_timer,f

goto tcc_lp

bcf k_clk_port,k_clk

movlw delay10us

goto tx_delay

tx_set_clk

movlw delay15us

movwf tx_timer

tsc_lp

; get char dly + 1

; save in outer loop counter

; get inner char delay constant

; run it through the utility timer

; decrement the outer loop

; go again if not 0

; delay 10 us, clear clock

; delay 10 us and return

; delay 15 us

156

283

decfsz tx_timer,f

goto tsc_lp

bsf k_clk_port,k_clk

movlw delaylOus

tx_delay

movwf tx_timer

txd_lp

decfsz tx_timer,f

goto txd_lp

return

5,551,701
284

; set the clock line

; delay 10 us and return

157

5,551,70-1
285 286

; WCS.ASM Source Code for WCS Mark II

; Rev 1.00 - 10/20/93 - Initial Release

; Rev 1.01- 10/24/93- Modified BTN_HM routine in CHAR.WSC to enable

multi-character HM codes

Change window around detents to +1- 8

; Rev 1.02- 11102193- Change TTYPEl.ASM to send throttle chars without

break codes

Change CHAR.WCS to add delay after first repeat char

; Rev 1.()3 - 11/02/93 - Change DOWNLOAD.WCS to move throttle back

after cal

; Rev 2.00- 11122/93- Change DOWNLOAD.WCS to use keyboard light

method

Change TXKEY.WCS to fix timing for new download method

Change EEPROM.WCS to simplify

org OOOh

include "wcs.equ" ; equates and memocy map, etc.

; RESET is the entcy from power-on reset

reset

goto ini.t_ wcs

include "cases.wcs"

init_wcs

include "init.wcs"

include "main.wcs"

; major support functions

; case statements

; do initialization code

; main program loop

158

5,551,701
287

include "buttons.wcs"

include "throttle.wcs"

include "ttypel.wcs"

include "ttype2.wcs"

include "download.wcs"

include "char.wcs"

include "chksum.wcs"

; hardware support routines

include "eeprom.wcs"

include "adc.wcs"

include "txkey.wcs"

include "rxkey.wcs"

end

288

; button read routines

; throttle processor routines

; throttle type 1 routines

; throttle type 2 routines

; download and calibrate routines

; character/string routines

; program check sum routines

; eeprom support routines

; adc support routines

; key transmit routines

; key recieve routines

159

5,551,701
289 290

; WCS.EQU: Equates and Register Assignments for WCS

; Constants

enter_key equ 05ah

enter_key equ 066h

ack_code equ Ofah

break equ OfDh

shf_key equ 012h

alt_key equ Ollh

ctl_key equ 014h

k_cdly equ Ofah

ee_cal_data equ 0

ch_O equ OOh

ch_1 equ 08h

delay15us equ .6

delay10us equ .4

delay20us equ .3

first_cmd equ OcOh

; scan code for enter key

; use backspace for 2k part

; keyboard command acknowledge code

; scan code for break character

; scan code for shf key

; scan code for alt key

; scan code for ctl key

; inner loop timer for

; pointer to eeprom calibration data

; adc channel 0 select

; adc channel 1 select

; approx count for 15us delay @ 4MHz

; approx count for 10us delay @ 4MHz

; approx count for 20us delay @ 4MHz

; first download/calibrate command

cal_cmd equ Oc2h ; select calibrate command

dl_cmd equ (Oc1h" cal_cmd) ; select download command

go equ 02h

hat_adc_id equ ch_1

; ad con register bit

; adc channel 1 for hat

throttle_adc_id equ ch_O ; adc channel 0 for throttle

no_err equ 0

error equ 1

tries equ 20 ; delay in cycles * 256 after ee ops

160

5,551,701
291 292

ee_read_cmd equ b'lOOOOOOO' ; read command op code

ee_write_cmd equ b'OlOOOOOO' ; write command op code

ee_ wr_en_cmd equ b'llOOOOOO' ; write enable command op code

ee_ wr_dis_cmd eqn b'OOOOOOOO' ; erase disable command op code

; Port Assignments

port_a equ 05h

port_b equ 06h

k_con_port equ port_a

k_clk_port equ port_b

k_data_port equ port_b

ee_port equ port_b

ee_cs_port equ port_a

; PIC special locations

indirect equ OOh

rtcc equ Olh

pel equ 02h

status equ 03h

fsrequ 04h

adcon equ 08h

adcon_O equ 08h

adcon_l equ088h

adc_result equ 09h

intcon equ Obh

option_reg equ Olh

; static variables

; port a address

; port b address

; keyboard control port

; keyboard clock port

; keyboard data port

; port used for 93cx6 control.

; port used for 93cx6 chip select

; indirect addressing register

; rtcc working register

; pel register id

; PIC status register

; file select register id

; adc control, bank 0

; adc control, bank 0

; adc control, bank 1

; adc result register

; interrupt control register

; old option register

161

293

wcs_flagsl equ Och

wcs_flags2 equ Odh

inbyte_l equ Oeh

inbyte_2 equ Ofh

delta_l equ lOh

delta_2 equ llh

tt_flags_l equ 12h

tt_flags_2 equ 13h

5,551,701

; gp flag bytes

; first button byte

; second button byte

; first delta bit save

; second delta bit save

char_pace equ 14h ; base of user program

inst_ptr equ 15h ; instruction pointer

op_code equ 16h ; opcode storage

char_code equ 17h ; character code storage

old_throttle_zone equ 018h

old_throttle_step equ 019h

294

old_throttle_val equ Olah

current_ char equ 0 lbh

ip_hold equ Olch

; repeating character storage

; tx/rx variables

rx_data equ Oldh

tx_data equ Oleh

tx_rx_ctr equ Olfh

tx_timer equ 020h

; eeprom vars, share with tx/rx

ee_cmd equ Oldh

ee_addr equ Oleh

; this register contains the 4 bit

; address for eeprom ops

162

295

ee_low_b equ Olfh

ee_high_b equ 020h

; Temporary storage regs

temp_l equ 021h

temp_2 equ 022h

temp_3 equ 023h

temp_ 4 equ 02ah

; Dynamic Variables

5,551,701
296

; low byte for eeprom ops

; high byte for eeprom ops

; temporary working register

; only in char, eeprom

; temporary variables used during download routines

dl_bytes equ 025h

ee_cnt equ 026h

ee_cnthi equ 027h

cal_lp_ctr equ 02bh

rx_temp equ 02ch

ee_temp equ 02dh

cal_ temp equ 02eh

; number ofbytes to download

; used for ready check

; used for ready check

; used only in calibrate

; temp storage during download

; temp storage for ee write

; temp storage for calibration value

check_sum_temp equ 02eh

routine

; temp storage during checksum

; temporary variables used during throttle routines

new_throttle_step equ 024h

new_throttle_zone equ 025h

move_steps equ 026h

163

297

temp_char equ 027h

n_throttle equ 028h

n_ab equ 029h

idw _min equ 02bh

idw _max equ 02ch

abw_min equ 02dh

abw _max equ 02eh

thr_max equ 02fh

; Bit IDs

; definitions for wcs_flagsi

is_type_2 equ 0

no_change equ 1

scan_done equ 2

is_repeating equ 3

ts_decreased equ 4

analog_mode equ 5

calibrate_mode equ 6

key_released equ 7

; definitiions for wcs_flags2

shf_down equ 0

ctl_down equ 1

alt_down equ 2

ee_byte_2 equ 3

tx_parity equ 4

dl_mode equ 5

5,551,701

298

; temporary character storage

; number of throttle steps

; number of ab steps

; idle detent window min

; idle detent window max

; ab window min

; ab window max

; maximum throttle value

; set for type 2 throttle

; set when no button changes

; scan complete flag

; true if character is repeating

; true if throttle step decreased

; set if analog mode selected

; set if calibrate mode selected

; set during release of key

; shift state flags

; O=none, l=shf, 2=ctl, 3=alt

; not currently used

; flag when ee_high is needed

; bit for tx parity determination

; flag when in download mode

164

5,551,701
299

We claim:
300

wherein the controller transmits the rcconfiguration key code
when the corresponding input device is actuated.

10. A method of rcconfiguring a video game/simulator
system according to claim 1 wherein the step of rcconfig-

1. A method of reconfiguring a video game/simulator
system comprising a personal computer having a micropro­
cessor operable under control of a system rcconfiguration
program during a rcconfiguration mode and under a video
game program during a functional mode, the computer
having a keyboard interface port, a display coupled to the
personal computer for displaying images produced by the
programs, a computer keyboard, and a video game/simulator
controller coupled to the keyboard through a keyboard input
port and coupled to the computer keyboard interface port
through a controller keyboard input/output port, the control­
ler having a plurality of input devices, the method compris­
ing:

5 uring the controller input devices responsive to downloading
the rcconfiguration key codes includes storing the rcconfigu­
ration keycodes in a non-volatile memory within the con­
troller.

11. A reconfigurable video game/simulator system com-
10 prising:

displaying a representation of the controller on the display 15

including the controller input devices;
inputting reconfiguration keycodes into the computer,

each reconfiguration keycodc corresponding to one of
the controller input devices;

downloading the reconfiguration key codes from the com- 20

puter to the controller; and
reconfiguring the controller input devices responsive to

downloading the reconfiguration kcycodes.
2. A method of rcconfiguring a video game/simulator 25

system according to claim 1 wherein the step of displaying

a personal computer having a microprocessor;
a display coupled to the personal computer for displaying

images;
a controller having one or more input devices and being

coupled to the personal computer;
means within the computer for displaying an image

representing the controller on the display;
means within the computer for receiving reconfiguration

keycodes for the input devices;
means within the computer for transmitting the received

reconfiguration keycodes from the computer to the
controller;

means within the controller for receiving the rcconfigu­
ration keycodcs transmitted from the computer; and

means within the controller for reconfiguring the control­
ler responsive to receiving the reconfiguration key­
codes.

a representation of the controller on the display includes
displaying an entry field for one of the input devices.

3. A method of reconfiguring a video game/simulator
system according to claim 2 wherein the step of inputting
reconfiguration keycodes into the computer includes input­
ting one or more rcconfiguration keycodcs into the entry
field.

12. A reconfigurablc video game/simulator system
according to claim 11 wherein the means within the com-

3D puter for displaying an image of the controller on the display
includes means within the computer for displaying an entry
field for each input device.

4. A method of reconfiguring a video game/simulator
system according to claim 1 wherein the step of inputting

35
reconfiguration keycodes into the computer includes:

designating one of the input devices; and

13. A reconfigurable video game/simulator system
according to claim 12 wherein the means within the com­
puter for receiving reconfiguration kcycodes for the input
devices includes means for receiving a reconfiguration key­
code within each entry field.

inputting one or more reconfiguration keycodcs for the
designated input device.

5. A method of reconfiguring a video game/simulator
system according to claim 4 wherein the step of inputting
reconfiguration keycodcs into the computer includes repeat­
ing the steps of designating one of the input devices and
inputting one or more reconfiguration keycodcs for the
designated input device for each of the input devices.

14. A reconfigurable video game/simulator system
according to claim 11 wherein the means within the com-

40 puter for receiving reconfiguration keycodcs for the input
devices includes:

6. A method of rcconfiguring a video game/simulator
system according to claim 5 wherein the step of inputting
reconfiguration kcycodes into the computer includes assem­
bling a data packet of the inputted reconfiguration keycodes,

45

the data packet being downloaded to the controller in the 50

downloading step.
7. A method of reconfiguring a video game/simulator

system according to claim 1 wherein the step of inputting
reconfiguration kcycodes into the computer includes speci­
fying a reconfiguration file containing the reconfiguration 55

kcycodcs.
8. A method of reconfiguring a video game/simulator

system according to claim 7 wherein the step of download­
ing the reconfiguration keycodes from the computer to the
controller includes downloading the reconfiguration key- 60

codes in the reconfiguration file from the computer to the
controller.

9. A method of reconfiguring a video game/simulator
system according to claim 1 wherein the step of reconfig­
uring the controller input devices responsive to downloading 65

the reconfiguration kcycodes includes assigning each recon­
figuration kcycode to the corresponding input device,

means within the computer for receiving reconfiguration
keycodes stored in a rcconfiguration file; and

means within the computer for associating each recon­
figuration keycode with a corresponding input device.

15. A reconfigurable video game/simulator system
according to claim 11 wherein the controller includes:

a switch having a first state and a second state; and
means for selecting between two sets of reconfiguaration

keycodes for the controller input devices responsive to
the state of the switch.

16. A reconfigurable video game/simulator system
according to claim 15 wherein the means within the com­
puter for receiving reconfiguration keycodes for the input
devices includes means for receiving two sets of reconfigu­
ration keycodes for an input device.

17. A reconfigurable video game/simulator system
according to claim 11 wherein the controller includes a
multi-position input device and wherein the means within
the computer for receiving reconfiguration keycodes for the
input devices includes means for receiving reconfiguration
keycodes for each position of the multi-position input
device.

18. A reconfigurable video game/simulator system
according to claim 11 wherein the controller is a joystick
controller.

165

5,551,701
301

19. A reconfigurable video game/simulator system
according to claim 11 wherein the controller is a throttle
controller.

20. A method of reconfiguring a video game/simulator
system comprising a personal computer having a micropro- 5
cessor operable under control of a system reconfiguration
program during a reconfiguration mode and under a video
game program during a functional mode, the computer
having a serial interface port for receiving input codes, a
display coupled to the personal computer for displaying 10
images produced by the programs, and a video game/
simulator controller coupled to the interface port through a
controller code input/output port, the controller having a
plurality of input devices, the method comprising:

displaying a representation of the controller on the display 15

including the controller input devices;
inputting reconfiguration codes into the computer, each

reconfiguration code corresponding to one of the con­
troller input devices;

downloading the reconfiguration codes from the computer 20

to the controller; and
reconfiguring the controller input devices responsive to

downloading the reconfiguration codes.

302
29. A method of reconfiguring a video game/simulator

system according to claim 20 wherein the step of reconfig­
uring the controller input devices responsive to downloading
the reconfiguration codes includes storing the reconfigura­
tion codes in a non-volatile memory within the controller.

30. A reconfigurable video game/simulator system com-
prising:

a personal computer having a microprocessor;
a display coupled to the personal computer for displaying

images;
a controller having one or more input devices and being

coupled to the personal computer;
means within the computer for displaying an image

representing the controller on the display;
means within the computer for receiving reconfiguration

codes for the input devices;
means within the computer for transmitting the received

reconfiguration codes from the computer to the con­
troller;

means within the controller for receiving the reconfigu­
ration codes transmitted from the computer; and

21. A method of reconfiguring a video game/simulator
system according to claim 20 wherein the step of displaying
a representation of the controller on the display includes
displaying an entry field for one of the input devices.

22. A method of reconfiguring a video game/simulator
system according to claim 21 wherein the step of inputting
reconfiguration codes into the computer includes inputting
one or more reconfiguration codes into the entry field,

means within the controller for reconfiguring the control­
ler responsive to receiving the reconfiguration codes.

31. A reconfigurable video game/simulator system
25 according to claim 30 wherein the means within the com­

puter for displaying an image of the controller on the display
includes means within the computer for displaying an entry
field for each input device.

32. A reconfigurable video game/simulator system

23. A method of reconfiguring a video game/simulator
system according to claim 20 wherein the step of inputting
reconfiguration codes into the computer includes:

30 according to claim 31 wherein the means within the com­
puter for receiving reconfiguration codes for the input
devices includes means for receiving a reconfiguration code
within each entry field.

designating one of the input devices; and_
inputting one or more reconfiguration codes for the des­

ignated input device.

33. A reconfigurable video game/simulator system
35 according to claim 30 wherein the means within the com­

puter for receiving reconfiguration codes for the input
devices includes:

24. A method of reconfiguring a video game/simulator
system according to claim 23 wherein the step of inputting 40

reconfiguration codes into the computer includes repeating
the steps of designating one of the input devices and
inputting one or more reconfiguration codes for the desig­
nated input device for each of the input devices.

25. A method of reconfiguring a video game/simulator 45

system according to claim 24 wherein the step of inputting
reconfiguration codes into the computer includes assembling

means within the computer for receiving reconfiguration
codes stored in a reconfiguration file; and

means within the computer for associating each recon­
figuration code with a corresponding input device.

34. A reconfigurable video game/simulator system
according to claim 30 wherein the controller includes:

a switch having a first state and a second state; and
means for selecting between two sets of reconfiguration

codes for the controller input devices responsive to the
state of the switch.

35. A reconfigurable video game/simulator system
a data packet of the inputted reconfiguration codes, the data
packet being downloaded to the controller in the download­
ing step.

26. A method of reconfiguring a video game/simulator
system according to claim 20 wherein the step of inputting
reconfiguration codes into the computer includes specifying

50 according to claim 34 wherein the means within the com­
puter for receiving reconfiguration codes for the input
devices includes means for receiving two sets of reconfigu­
ration codes for an input device.

a reconfiguration file containing the reconfiguration codes.
27. A method of reconfiguring a video game/simulator 55

system according to claim 26 wherein the step of down­
loading the reconfiguration codes from the computer to the
controller includes downloading the reconfiguration codes
in the reconfiguration file from the computer to the control­
ler. 60

28. A method of reconfiguring a video game/simulator
system according to claim 20 wherein the step of reconfig­
uring the controller input devices responsive to downloading
the reconfiguration codes includes assigning each reconfigu­
ration code to the corresponding input device, wherein the 65

controller transmits the reconfiguration code when the cor­
responding input device is actuated.

36. A reconfigurable video game/simulator system
according to claim 30 wherein the controller includes a
multi-position input device and wherein the means within
the computer for receiving reconfiguration codes for the
input devices includes means for receiving reconfiguration
codes for each position of the multi-position input device.

37. A reconfigurable video game/simulator system
according to claim 30 wherein the controller is a joystick
controller.

38. A reconfigurable video game/simulator system
according to claim 30 wherein the controller is a throttle
controller.

* * * * *

166

