A pharmaceutical product or formulation, which comprises azelastine or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof, preferably the product or formulation being in a form suitable for nasal or ocular administration.
OTHER PUBLICATIONS

Foreign communication from the priority application—International Preliminary Examination Report, PCT/GB03/02557, Aug. 26, 2004, 6 pages.

Foreign communication from a related counterpart application—AU2003244799, Examination Report, Nov. 20, 2007, 2 pages.

Foreign communication from a related counterpart application—Summons to Attend Oral Proceedings, EP Application 03738280.1, Feb. 8, 2011, 1 page.

Foreign communication from a related counterpart application—Examination Report, RU 2005100781, Apr. 23, 2007, 6 pages.

Foreign communication from a related counterpart application—Examination Report, RU 2005100781, May 23, 2008, 3 pages.

Prescribing Information for Rhinocort Aq™, Dec. 2010, 32 pages, AstraZeneca I.P. Wilmington, DE, US.

Office Action dated Jul. 11, 2011—20632 IL.

Study No. 03DMW062—“Pharmacokinetics of GW685698X and CC118781 (fluticasone propionate) when co-administered by the intratracheal or intravenous route to the anaesthetised pig,” 2004.

Study No. B30947—“The Pharmacokinetics of GW685698X and CC118781 following intratracheal co-administration to the anaesthetised white pig,” 2003.

“Soledenase produce is effective for perennial allergic rhinitis,” Annals of Allergy, 1994, vol. 73, pp. 240-246.

Office Action dated Mar. 29, 2011 (3 pages) from counterpart application AU2009243422.

Knobloch, K., et al., “Adding salmeterol is more effective than increasing the dose of fluticasone for patients with asthma who are symptomatic on low dose fluticasone,” European Respiratory Review, Copenhagen, DK, vol. 12, Suppl. 29, Dec. 1998 (1998-12), pp. 19S-20S.

Holgate, Stephen T., Difficult Asthma, 1999, cover page and publishing information.

Comparative data of azelastine with steroids, 2011.

* cited by examiner
COMBINATION OF AZELASTINE AND STEROIDS

This application is a §371 National Stage Application of International Application No. PCT/GB03/02557, filed on 13 Jun. 2003, claiming the priority of Great Britain Patent Application No. 0231379.6 filed on 14 Jun. 2002, the entire disclosures of which are herein incorporated by reference in their entirety.

The present invention relates to pharmaceutical products and formulations. More particularly the present invention relates to pharmaceutical products and formulations useful for preventing or minimising allergic reactions. More particularly, but not exclusively, the present invention relates to pharmaceutical products and formulations for nasal and ocular use.

Such allergic reactions commonly comprise the allergy-related and vasomotor-related symptoms and the rhinovirus-related symptoms.

It is known to use antihistamines in nasal sprays and eye drops to treat allergy-related conditions. Thus, for example, it is known to use the antihistamine azelastine (usually as the hydrochloride salt) as a nasal spray against seasonal or perennial allergic rhinitis, or as eye drops against seasonal and perennial allergic conjunctivitis.

It is also known to treat these conditions using a corticosteroid, which will suppress nasal and ocular inflammatory conditions. Among the corticosteroids known for nasal use are, for example, beclomethasone, mometasone, fluticasone, budesonide and cyclosporine. Corticosteroids known for ocular anti-inflammatory use include betamethasone sodium, dexamethasone sodium and prednisolone acetate, for example.

It would be highly desirable, however, to provide a treatment that combines the effects of anti-histamine treatments and steroid treatments, in a pharmaceutically acceptable formulation, which is tolerated in situ, without significantly disrupting the potency of the constituent pharmaceuticals.

We have now found that, very surprisingly, azelastine (4-[(4-Chlorophenyl)methyl]-2-(hexahydro-1-methyl-1H-azepin-4-yl)-I(2H)-phthalazinone), or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof, preferably in salt form and even more preferably in the form of the hydrochloride salt, can advantageously be combined with a steroid, or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof, to provide a stable, very effective combination product or formulation preferably for nasal or ocular treatment. The combination can provide, in a single administration or dosing regime, the antihistaminic properties of azelastine and the anti-inflammatory (and/or other) properties of the steroid, without any significant interference between the two, or adverse reaction in situ.

In one aspect the invention provides a pharmaceutical formulation comprising azelastine or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof and a steroid, preferably a corticosteroid, or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof the formulation preferably being in a form suitable for administration nasally or ocularly. In an embodiment, the formulation contains the steroid in an amount from about 10 micrograms/ml to about 5mg/ml of the formulation. In an embodiment, the formulation contains a suspension containing 0.0005% to 2% (weight/weight of the formulation) of said steroid. In an embodiment, the formulation contains a suspension containing from 0.001% to 1% (weight/weight of the formulation) azelastine, or salt thereof, and from 0.0357% (weight/weight of the formulation), alternatively from 0.5%, to 1.5% (weight/weight of the formulation) steroid.

The term “physiologically functional derivative” as used herein denotes a chemical derivative of any of the specific therapeutic agents described herein having the same or similar physiological function as the base therapeutic agent and, for example, being convertible in the body thereto. According to the present invention, examples of physiologically functional derivatives include esters.

The preferred forms of formulations of the invention are nasal drops, eye drops, nasal sprays, nasal inhalation solutions or aerosols or insufflation powders.

Preferred embodiments of the invention can comprise stable aqueous solutions of azelastine or one or more of its salts, in combination with steroids which may be beclomethasone, mometasone, fluticasone, budesonide or cyclosporine, which can be used in the form of inhalation solution, pressurized aerosol, eye drops or nasal drops, and in a particular preferred embodiment, in the form of a spray (preferably a nasal spray). The spray can, for example, be formed by the use of a conventional spray-squeeze bottle or a pump vaporizer. In addition, it is also possible to use compressed gas aerosols.

In a preferred embodiment, 0.05 to 0.15 mg of the steroid should be released per individual actuation.

The formulations preferably contain a preservative and/or stabilizer. These include, for example: ethylene diamine tetra-acetic acid (edetic acid) and its alkali salts (for example dialkali salts such as disodium salt, calcium salt, calcium-sodium salt), lower alkyl p-hydroxybenzoates, chlorhexidine (for example in the form of the acetate or gluconate) and phenyl mercuric borate. Other suitable preservatives are: pharmaceutically useful quaternary ammonium compounds, for example ceterylpyridinium chloride, tetradecltrimethyl ammonium bromide, generally known as “cetrimide”, benzylidimethylammonium chloride, generally known as “benzethonium chloride” and myristyl picolinium chloride. Each of these compounds may be used in a concentration of 0.002 to 0.05%, for example 0.02% (weight/volume in liquid formulations, otherwise weight/weight). Preferred preservatives among the quaternary ammonium compounds are, however, alkylbenzyl dimethyl ammonium chloride and mixtures thereof for example the compounds generally known as “benzalkonium chloride”.

The total amount of preservatives in the formulations (solutions, ointments, etc.) is preferably from 0.001 to 0.10 g, preferably 0.01 g per 100 ml of solution/suspension or 100 g of formulation.

In the case of preservatives, the following amounts of individual substances can, for example, be used: thimerosal 0.002-0.02% benzalkonium chloride 0.002 to 0.02% (in combination with thimerosal the amount of thimerosal is, for example=0.002 to 0.005%); chlorhexidine acetate or gluconate 0.01 to 0.02%; phenyl mercuric nitrate, borate, acetate 0.002-0.004%; p-hydroxybenzoic acid ester (for example, a mixture of the methyl ester and propyl ester in the ratio 7:3); preferably 0.05-0.15, more preferably 0.1%.

The preservative used is preferably a combination of edetic acid (for example, as the disodium salt) and benzalkonium chloride. In this combination, the edetic acid is preferably used in a concentration of 0.05 to 0.1%, benzalkonium chlo-
tions according to the present invention to prevent the solu-
tional buffers in order, for example, to adjust the formulations.

In the case of solutions/suspensions reference is always made to percent by weight/volume, in the case of solid or semi-solid formulations to percent by weight/weight of the formulation.

Further auxiliary substances which may, for example, be used for the formulations of the invention are: polyvinyl pyrrolidone, sorbitan fatty acid esters such as sorbitan trioleate, polyethyleneoxilated sorbitan fatty acid esters (for example polyethyleneoxilated sorbitan trioleate), sorbitanmacrogol oleate, synthetic amphotensides (tritons), ethylene oxide ethers of octylphenolphormaldehyde condensation products, phosphatides such as lecithin, polyethoxylated fats, polyethoxylated oleotriglycerides and polyethoxylated fatty alcohols. In this context, polyethoxylated means that the relevant substances contain polyoxyethylene chains, the degree of polymerisation of which is generally between 2 to 40, in particular between 10 to 20. These substances are preferably used to improve the solubility of the azelastine component.

It is optionally possible to use additional isotonization agents. Isotonization agents which may, for example, be used are: saccharose, glucose, glycerine, sorbitol, 1,2-propylene glycol and NaCl.

The isotonization agents adjust the osmotic pressure of the formulations to the same osmotic pressure as nasal secretion. For this purpose these substances are in each case to be used in such amount that, for example, in the case of a solution, a reduction in the freezing point of 0.50 to 0.56 degree C. is attained in comparison to pure water.

In Example 1, it is possible to use instead of NaCl per 100 ml of solution, for example: Glucose H2O 3.81 g; saccharose 6.35 g; glucose 2.2 g; 1,2-propylene glycol 1.617 g; sorbitol 3.84 g (in the case of mixtures of these substances correspondingly less may optionally be used).

Moreover, it is possible to add thickening agents to solutions according to the present invention to prevent the solution from flowing out of the nose too quickly and to give the solution a viscosity of about 1.5 to 3, preferably 2 mPa.s.

Such thickening agents may, for example be: cellulose derivatives (for example cellulose ether) in which the cellulose-hydroxy groups are partially etherified with lower unsaturated aliphatic alcohols and/or lower unsaturated aliphatic oxycalcohols (for example methyl cellulose, carboxymethyl cellulose, hydroxypropynethykyllcellulose), gelatin, polyvinylpyrrolidone, tragacanth, ethoxose (water soluble binding agents) and thickening agents on the basis of ethyl cellulose, alginic acid, polyvinyl alcohol, polyacrylic acid, pectin and equivalent agents. Should these substances contain acid groups, the corresponding physiologically acceptable salts may also be used.

In the event of the use of hydroxypropyl cellulose, 0.1% by weight of the formulation, for example, is used for this purpose.

In the event of the use of Avicel RC 591 or CL 611, microcrystalline cellulose and carboxymethyl cellulose sodium commercially available from FMC BioPolymer, 0.65-3.0% by weight of the formulation, for example, is used for the purpose.

It is also possible to add to the formulations buffer substances such as citric acid/sodium hydrogen sulphate borate buffer, phosphates (sodium hydrogenorthophosphate, disodium hydrogenphosphate), trinematol or equivalent conventional buffers in order, for example, to adjust the formulations to a pH value of 3 to 7, preferably 4.5 to 6.5.

The amount of citric acid is, for example, 0.01 to 0.14 g, preferably 0.04 to 0.05 g, the amount of disodium hydrogen-

phosphate 0.1 to 0.5 g, preferably 0.2 to 0.3 g per 100 ml of solution. The weights given relate in each case to the anhydrous substances.

In the case of solutions and suspensions, the maximum total concentration of active agent and buffer is preferably less than 5%, in particular less than 2% (weight/volume).

For the nasal application, a solution or suspension can preferably be used which is applied as an aerosol, i.e. in the form of a fine dispersion in air or in another conventional carrier gas, for example by means of a conventional pump vaporizer.

Application as a dosage aerosol is, however, also possible. Dosage aerosols are defined as being pressure packings which contain the azelastine or its salts in combination with steroid, in the form of a solution or suspension in a so-called propellant. The propellant may be a pressurized liquid chlorinated, fluorinated hydrocarbon or mixtures of various chlorinated, fluorinated hydrocarbons as well as propane, butane, isobutene or mixtures of these among themselves or with chlorinated, fluorinated hydrocarbons which are gaseous at atmospheric pressure and room temperature. Hydrofluoro-
carbons (HFCs), such as HFC 134a, and HFC 227a can also be used, and are preferred for environmental reasons. The pressure packings has a dosage or metering valve which, on actuation, releases a defined amount of the solution or suspensión of the medicament. The subsequent very sudden vaporization of the propellant tears the solution or suspension of azelastine into the finest droplets or minute particles which can be sprayed in the nose or which are available for inspira-
tion into the nose. Certain plastic applicators may be used to actuate the valve and to convey the sprayed suspension into the nose.

In the case of application as an aerosol, it is also possible to use a conventional adapter.

Particularly preferred embodiments of the present invention are hereinafter described and it will of course be appreciated that any of the previous description of suitable ingredients and formulation characteristics can also be applicable to the following products and formulations as provided by the present invention.

It will be appreciated, therefore, that the present invention further provides a pharmaceutical product comprising (i) azelastine, or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof, provided in an aerosol formulation preferably together with a propellant typically suitable for MDI delivery, and (ii) at least one steroid, or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof, provided in an aerosol formulation preferably together with a propellant typically suitable for MDI delivery, as a combined preparation for simultaneous, separate or sequential use in the treat-
ment of conditions for which administration of one or more anti-histamine and/or one or more steroid is indicated.

The present invention also provides an aerosol formulation preferably suitable for MDI delivery comprising (i) azelastine, or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof, and (ii) at least one steroid, or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof, together with a propellant.

It will also be appreciated from the above, that the respective therapeutic agents of the combined preparation can be administered simultaneously, either in the same or different pharmaceutical formulations, or separately or sequentially. If there is separate or sequential administration, it will also be appreciated that the subsequently administered therapeutic agents should be administered to a patient within a time scale
so as to achieve, or more particularly optimise, the above referred to advantageous synergistic therapeutic effect of a combined preparation as present in a pharmaceutical product according to the present invention.

Suitable propellants for use in pharmaceutical products of formulations as provided by the present invention include 1,1,1,2-tetrafluoroethane (HFA 134a) or 1,1,1,2,3,3,3-heptfluoropropane (HFA 227), or a combination of both, or mono-fluoro trichloromethane and dichloro difluoromethane, in particular 1,1,1,2-tetrafluoroethane (HFA 134a) or 1,1,1,2,3,3,3-heptfluoropropane (HFA 227), with HFA 134a being preferred.

A pharmaceutical aerosol formulation according to the present invention preferably further comprises a polar cosolvent such as C_{2}-C_{6} aliphatic alcohols and polyols, for example ethanol, isopropanol and propylene glycol, with ethanol often being preferred. Preferably, the concentration of the cosolvent is in the range of about 2 to 10% by weight, typically up to about 5%, of the total formulation.

A pharmaceutical aerosol formulation according to the present invention may further comprise one or more surfactants. Such surfactants can be included to stabilise the formulations and for lubrication of a valve system. Some of the most commonly used surfactants in aerosol formulations are oils derived from natural sources, such as corn oil, olive oil, cottonseed oil and sunflower seed oil, and also phospholipids. Suitable surfactants can include lecithin, oleic acid or sorbitan oleate. In an embodiment, the formulation contains from about 50 micrograms to about 1 milligram of surfactant per ml of the formulation.

A further preferred embodiment of the present invention can be where a formulation or product is provided in the form of insufflatable powder, where preferably the maximum particle size of the substance suitably does not exceed 10 µm. Azelastine or its salts and the steroid may be mixed with inert carrier substances or drawn up onto inert carrier substances. Carrier substances which may, for example, be used are: sugars such as glucose, sucrose, lactose and fructose. Also starches or starch derivatives, oligosaccharides such as dextrans, cyclodextrins and their derivatives, polyvinylpyrrolidone, alginic acid, tylose, silicic acid, cellulose, cellulose derivatives (for example cellulose ether), sugar alcohols such as mannitol or sorbitol, calcium carbonate, calcium phosphate, etc.

In an embodiment, the therapeutic agents employed have a particle size of less than about 10 µm, preferably less than 5 µm.

The use of insufflation powders can represent a preferred embodiment of the present invention and there is provided by the present invention a pharmaceutical product comprising (i) azelastine, or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof, provided as an insufflation powder, and (ii) at least one steroid, or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof, provided as an insufflation powder, as a combined preparation for simultaneous, separate or sequential use in the treatment of conditions for which administration of one or more anti-histamine and/or one or more steroid is indicated.

It will be appreciated from the above, that the respective therapeutic agents of the combined preparation can be administered simultaneously, either in the same or different insufflation powder formulations, or separately or sequentially. If there is separate or sequential administration as discussed above, it will also be appreciated that the subsequently administered therapeutic agents should be administered to a patient within a time scale so as to achieve, or more particularly optimise, the above referred to advantageous synergistic therapeutic effect of a combined preparation as present in a pharmaceutical product according to the present invention.

The present invention also provides an insufflation powder formulation comprising (i) azelastine, or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof, and (ii) at least one steroid, or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof, together with a pharmaceutically acceptable carrier or excipient therefor.

Dry insufflation powder formulations as provided by the present invention can be beneficial where it is required that therapeutic agents as employed according to the present invention are retained in the nasal cavity, and systemic side effects can be minimised or eliminated. Furthermore, insufflation powder formulations as employed in the present invention can be beneficial whereby retention of azelastine, or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof, at the nasal mucosa is improved, and the bitter aftertaste associated with liquid anti-histamine formulations significantly reduced, whilst also exhibiting the synergistic therapeutic effect associated with the azelastine/steroid combinations provided by the present invention. By providing a dry insufflation powder formulation of azelastine, together with a steroid, having an average particle size of less than about 10 µm, the therapeutic agents can be restricted primarily to the desired target organ, the nasal mucosa.

A dry powder insufflation formulation according to the present invention can be administered by the use of an insufflater, which can produce a finely divided cloud of the dry powder. The insufflater preferably is provided with means to ensure administration of a substantially pre-determined amount of a formulation or product as provided by the present invention. The powder may be used directly with an insufflater which is provided with a bottle or container for the powder, or the powder may be filled into a capsule or cartridge, such as a gelatin capsule, or other single dose device adapted for administration. The insufflater preferably has means to open the capsule or other dose device.

Preferred combinations of therapeutic agents employed in pharmaceutical products and formulations according to the present invention (in particular nasal sprays or drops, aerosol or insufflation products and formulations as described above) comprise any one of the following combinations.

The present invention further provides, therefore, a pharmaceutical product comprising (i) azelastine, or a pharmaceutically acceptable salt thereof, and (ii) at least one steroid selected from the group consisting of beclomethasone, fluticasone, mometasone and pharmaceutically acceptable esters thereof, as a combined preparation for simultaneous, separate or sequential use in the treatment of conditions for which administration of one or more anti-histamine and/or one or more steroid is indicated. Suitable the esters can be selected from beclomethasone dipropionate, fluticasone propionate, fluticasone valerate, mometasone furoate and mometasone furoate monohydrate.

The present invention also provides a pharmaceutical formulation comprising (i) azelastine, or a pharmaceutically acceptable salt thereof, and (ii) at least one steroid selected from the group consisting of beclomethasone, fluticasone, mometasone and pharmaceutically acceptable esters thereof together with a pharmaceutically acceptable carrier or excipient therefor. Suitable the esters can be selected from beclomethasone dipropionate, fluticasone propionate, fluticasone valerate, mometasone furoate and mometasone furoate monohydrate.
In the case of a nasal spray, a particularly preferred formulation as provided by the present invention is a nasal spray comprising azelastine, or a pharmaceutically acceptable salt thereof (preferably azelastine hydrochloride), together with mometasone either as the free base or in ester form, preferably as mometasone furoate.

Specific combinations of therapeutic agents employed in pharmaceutical products and formulations according to the present invention comprise any one of the following combinations:

- azelastine hydrochloride and beclomethasone dipropionate;
- azelastine hydrochloride and fluticasone propionate;
- azelastine hydrochloride and fluticasone valerate;
- azelastine hydrochloride and mometasone furoate; and
- azelastine hydrochloride and mometasone furoate monohydrate.

There is also provided by the present invention a method for the prophylaxis or treatment in a mammal, such as a human, of conditions for which administration of one or more anti-histamine and/or one or more steroid is indicated, which method comprises administration of a therapeutically effective amount of a pharmaceutical product substantially as hereinbefore described, as a combined preparation for simultaneous, separate or sequential use in the treatment of such conditions.

The present invention also provides a method for the prophylaxis or treatment in a mammal, such as a human, of conditions for which administration of one or more anti-histamine and/or one or more steroid is indicated, which method comprises administration of a therapeutically effective amount of a pharmaceutical formulation substantially as hereinbefore described, which process comprises providing as a combined preparation for simultaneous, separate or sequential use in the treatment of such conditions.

There is further provided by the present invention, therefore, a process of preparing a pharmaceutical product substantially as hereinbefore described, which process comprises providing as a combined preparation for simultaneous, separate or sequential use in the treatment of conditions for which administration of one or more anti-histamine and/or one or more steroid is indicated: (i) azelastine, or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof, and (ii) at least one steroid, or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof.

The present invention also provides a process of preparing a pharmaceutical formulation substantially as hereinbefore described, which process comprises admixing a pharmaceutically acceptable carrier or excipient with: (i) azelastine, or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof, and (ii) at least one steroid, or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof.

Preferably pharmaceutical formulations according to the present invention can comprise insufflation powder formulations, nasal sprays, nasal inhalation solutions or aerosols substantially as hereinbefore described.

The present invention is now illustrated by the following Examples, which do not limit the scope of the invention in any way. In Examples where only the ingredients of formulations according to the present invention are listed, these formulations are prepared by techniques well known in the art.

EXAMPLE 1

Nasal Spray or Nasal Drops with 0.1% Azelastine Hydrochloride as Active Ingredient and Steroid 0.1%

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Ingredients</th>
<th>Quantity (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Azelastine hydrochloride</td>
<td>0.1%</td>
</tr>
<tr>
<td>2.</td>
<td>Steroid</td>
<td>0.1%</td>
</tr>
<tr>
<td>3.</td>
<td>Diclofenac sodium</td>
<td>0.005%</td>
</tr>
<tr>
<td>4.</td>
<td>Sodium chloride</td>
<td>0.9%</td>
</tr>
<tr>
<td>5.</td>
<td>Benzalkonium chloride</td>
<td>0.001%</td>
</tr>
<tr>
<td>6.</td>
<td>Avicel RC 591</td>
<td>1.2%</td>
</tr>
<tr>
<td>7.</td>
<td>Citric acid monohydrate</td>
<td>0.2%</td>
</tr>
<tr>
<td>8.</td>
<td>Diclofenac sodium phosphate</td>
<td>0.1%</td>
</tr>
<tr>
<td>9.</td>
<td>Purified water</td>
<td>q.s.</td>
</tr>
</tbody>
</table>

EXAMPLE 2

Dosage aerosol giving off 0.5 mg of azelastine hydrochloride and 50 micrograms of beclomethasone dipropionate freon solvate per stroke.

About 8.0 kg of a mixture of 70 parts by weight of difluorodichloromethane and 30 parts by weight of 1,2-dichlorotetrafluoroethane are cooled to about −55 degrees C. in an appropriate cooling vessel. A mixture of 0.086 kg of pre-cooled sorbitantriol and 0.860 kg of pre-cooled trichlorofluoromethane are dissolved with stirring into the mixture at −55 degrees C., 0.0688 kg of micronized azelastine hydrochloride, 0.00688 kg of beclomethasone dipropionate freon solvate and 0.0688 kg of micronized lactose are then incorporated in portions into the solution thereby obtained with intensive stirring. The total weight of the suspension thereby obtained is made up to 9.547 kg through addition of more of the mixture of 70 parts by weight of difluorodichloromethane and 30 parts by weight of 1,2-dichlorotetrafluoroethane cooled to about −55 degrees C.

Following closure of the cooling vessel the suspension is again cooled to about −55 degrees C. under intensive stirring. It is then ready to be filled.

EXAMPLE 3

Nasal Spray or Nasal Drops with Azelastine and Steroid*

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Ingredients</th>
<th>Quantity (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Azelastine Hydrochloride</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>Fluticasone propionate</td>
<td>0.0357</td>
</tr>
<tr>
<td></td>
<td>Glycerin</td>
<td>2.60</td>
</tr>
<tr>
<td></td>
<td>Avicel RC 591</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>Polysorbate 80</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>Benzalkonium chloride</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Phenyl ethyl alcohol</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Purified water</td>
<td>q.s.</td>
</tr>
</tbody>
</table>

*Each spray delivers Azelastine Hydrochloride (140 mcg) and Fluticasone propionate (50 mcg)
EXAMPLE 4

Nasal Spray or Nasal Drops with Azelastine and Steroid*

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Ingredients</th>
<th>Quantity (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Azelastine Hydrochloride</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>Fluticasone propionate</td>
<td>0.0714</td>
</tr>
<tr>
<td></td>
<td>Glycerin</td>
<td>2.60</td>
</tr>
<tr>
<td></td>
<td>Avicel RC 581</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>Polysorbate 80</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>Benzalkonium chloride</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Phenyl ethyl alcohol</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Purified water</td>
<td>q.s.</td>
</tr>
</tbody>
</table>

*Each spray delivers Azelastine Hydrochloride (140 mcg) and Fluticasone propionate (50 mcg).

EXAMPLE 5

Nasal Spray or Nasal Drops with Azelastine and Steroid*

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Ingredients</th>
<th>Quantity (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Azelastine Hydrochloride</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>Mometasone Furoate monohydrate</td>
<td>0.05173</td>
</tr>
<tr>
<td></td>
<td>Glycerin</td>
<td>2.60</td>
</tr>
<tr>
<td></td>
<td>Avicel CL 611</td>
<td>2.285</td>
</tr>
<tr>
<td></td>
<td>Polysorbate 80</td>
<td>0.0125</td>
</tr>
<tr>
<td></td>
<td>Benzalkonium chloride</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Phenyl ethyl alcohol</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Purified water</td>
<td>q.s.</td>
</tr>
</tbody>
</table>

*Each spray delivers Azelastine Hydrochloride (140 mcg) and Mometasone furoate (50 mcg).

EXAMPLE 6

Nasal Spray or Nasal Drops with Azelastine and Steroid*

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Ingredients</th>
<th>Quantity (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Azelastine Hydrochloride</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>Mometasone Furoate monohydrate</td>
<td>0.05173</td>
</tr>
<tr>
<td></td>
<td>Glycerin</td>
<td>2.60</td>
</tr>
<tr>
<td></td>
<td>Avicel RC 581</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>Polysorbate 80</td>
<td>0.0125</td>
</tr>
<tr>
<td></td>
<td>Benzyalkonium chloride</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Phenyl ethyl alcohol</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Purified water</td>
<td>q.s.</td>
</tr>
</tbody>
</table>

EXAMPLE 7

Nasal Spray or Nasal Drops with Azelastine and Steroid*

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Ingredients</th>
<th>Quantity (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Azelastine Hydrochloride</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>Mometasone Furoate monohydrate</td>
<td>0.05173</td>
</tr>
<tr>
<td></td>
<td>Glycerin</td>
<td>2.60</td>
</tr>
<tr>
<td></td>
<td>Avicel CL 611</td>
<td>2.285</td>
</tr>
<tr>
<td></td>
<td>Polysorbate 80</td>
<td>0.0125</td>
</tr>
<tr>
<td></td>
<td>Benzalkonium chloride</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Phenyl ethyl alcohol</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Purified water</td>
<td>q.s.</td>
</tr>
</tbody>
</table>

EXAMPLE 8

Nasal MDI with Azelastine and Steroid*

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Ingredients</th>
<th>Quantity in mcg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Azelastine Hydrochloride</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Mometasone Furoate monohydrate</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>HFA 134a</td>
<td>q.s.</td>
</tr>
<tr>
<td></td>
<td>Lecithin</td>
<td>0.1%</td>
</tr>
<tr>
<td></td>
<td>Alcohol</td>
<td>(up to 5%)</td>
</tr>
</tbody>
</table>

EXAMPLE 9

Nasal MDI with Azelastine and Steroid*

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Ingredients</th>
<th>Quantity in mcg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Azelastine Hydrochloride</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Fluticasone propionate</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>HFA 134a</td>
<td>q.s.</td>
</tr>
<tr>
<td></td>
<td>Sorbitan trioleate</td>
<td>0.1%</td>
</tr>
<tr>
<td></td>
<td>Alcohol</td>
<td>(up to 5%)</td>
</tr>
</tbody>
</table>

EXAMPLE 10

Nasal MDI with Azelastine and Steroid*

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Ingredients</th>
<th>Quantity in mcg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Azelastine Hydrochloride</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Fluticasone propionate</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>HFA 134a</td>
<td>q.s.</td>
</tr>
<tr>
<td></td>
<td>Oleic acid</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Sr. = Suggested Rate; q.s. = Purified water q.s.
EXAMPLE 11

Nasal MDI with Azelastine and Steroid

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Ingredients</th>
<th>Quantity in mcg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Azelastine Hydrochloride</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Fluticasone Valerate</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>HEA 134a</td>
<td>q.s. up to 5%</td>
</tr>
<tr>
<td></td>
<td>Alcohol</td>
<td>q.s.</td>
</tr>
</tbody>
</table>

Insufflatable Powders Containing Azelastine and Steroid:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Ingredients</th>
<th>Quantity (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Azelastine Hydrochloride</td>
<td>140 mcg</td>
</tr>
<tr>
<td></td>
<td>Fluticasone propionate (Micronized)</td>
<td>35 mcg</td>
</tr>
<tr>
<td></td>
<td>Lactose</td>
<td>q.s. (up to 25 mcg)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Ingredients</th>
<th>Quantity (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Azelastine Hydrochloride</td>
<td>140 mcg</td>
</tr>
<tr>
<td></td>
<td>Fluticasone propionate (Micronized)</td>
<td>100 mcg</td>
</tr>
<tr>
<td></td>
<td>Mannitol</td>
<td>q.s. (up to 30 mcg)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Ingredients</th>
<th>Quantity (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Azelastine Hydrochloride</td>
<td>140 mcg</td>
</tr>
<tr>
<td></td>
<td>Fluticasone propionate (Micronized)</td>
<td>250 mcg</td>
</tr>
<tr>
<td></td>
<td>Lactose</td>
<td>q.s. (up to 30 mcg)</td>
</tr>
</tbody>
</table>

The invention claimed is:

1. A pharmaceutical formulation comprising: azelastine, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable ester of fluticasone, wherein said pharmaceutical formulation is in a dosage form suitable for nasal administration.

2. The pharmaceutical formulation of claim 1, wherein said pharmaceutically acceptable salt of azelastine is azelastine hydrochloride.

3. The pharmaceutical formulation of claim 1, wherein said pharmaceutically acceptable ester of fluticasone is fluticasone propionate or fluticasone valerate.

4. The pharmaceutical formulation of claim 1, wherein said formulation has a particle size of less than 10 μm.

5. The pharmaceutical formulation of claim 1, wherein said formulation is an aqueous suspension comprising from 0.0005% (weight/weight) to 2% (weight/weight) of said azelastine, or said pharmaceutically acceptable salt thereof, and from 0.0357% (weight/weight) to 1.5% (weight/weight) of said pharmaceutically acceptable ester of fluticasone.

6. The pharmaceutical formulation according to claim 5, comprising from 0.001% (weight/weight) to 1% (weight/weight) of said azelastine, or said pharmaceutically acceptable salt thereof, and from 0.0357% (weight/weight) to 1.5% (weight/weight) of said pharmaceutically acceptable ester of fluticasone.

7. The pharmaceutical formulation of claim 1, further comprising at least one additive selected from the group consisting of a buffer, a preservative, a suspending agent or a thickening agent, a surfactant, an isotonic agent and combinations thereof.

8. The pharmaceutical formulation of claim 7, wherein said surfactant comprises a polysorbate, poloxamer or combinations thereof.

9. The pharmaceutical formulation of claim 7, wherein said isotonic agent comprises sodium chloride, saccharose, glucose, glycerine, sorbitol, 1,2-propylene glycol or combinations thereof.

10. The pharmaceutical formulation of claim 7, wherein said preservative comprises edetic acid or its alkali salts, lower alkyl p-hydroxybenzoates, chlorhexidine, phenyl mercuric borate, or benzoic acid or a salt thereof, a quaternary ammonium compound, sorbic acid or a salt thereof, or combinations thereof.

11. The pharmaceutical formulation of claim 7, wherein said suspending agent or said thickening agent comprises cellulose derivatives, gelatin, polyvinylpyrrolidone, tragacanth, alginic acid, polyvinyl alcohol, polyacrylic acid, pectin, or combinations thereof.

12. The pharmaceutical formulation of claim 1, which is an aqueous suspension.

13. The pharmaceutical formulation of claim 1, wherein said dosage form suitable for nasal administration comprises nasal drops or a nasal spray.

14. The pharmaceutical formulation of claim 1, wherein said dosage form suitable for nasal administration comprises nasal drops.

15. The pharmaceutical formulation of claim 1, wherein said dosage form suitable for nasal administration comprises a nasal spray.

16. The pharmaceutical formulation of claim 1, wherein said formulation is used in the treatment of conditions for which administration of one or more anti-histamine and/or one or more steroid is indicated.

17. The pharmaceutical formulation of claim 1, wherein said pharmaceutically acceptable salt of azelastine is azelastine hydrochloride and said pharmaceutically acceptable ester of fluticasone is fluticasone propionate, and wherein said formulation is used in the treatment of conditions for which administration of one or more anti-histamine and/or one or more steroid is indicated.

18. The pharmaceutical formulation of claim 1, wherein said pharmaceutically acceptable salt of azelastine is azelastine hydrochloride and said pharmaceutically acceptable ester of fluticasone is fluticasone propionate, and wherein said formulation further comprises a pharmaceutically acceptable carrier or excipient therefor.

19. The pharmaceutical formulation of claim 1, wherein said pharmaceutically acceptable salt of azelastine is azelastine hydrochloride and said pharmaceutically acceptable ester of fluticasone is fluticasone valerate, and wherein said formulation is used in the treatment of conditions for which administration of one or more anti-histamine and/or one or more steroid is indicated.

20. The pharmaceutical formulation of claim 1, wherein said pharmaceutically acceptable salt of azelastine is azelastine hydrochloride and said pharmaceutically acceptable ester of fluticasone is fluticasone propionate and wherein said formulation further comprises a pharmaceutically acceptable carrier or excipient therefor.
ester of fluticasone is fluticasone valerate, and wherein said formulation further comprises a pharmaceutically acceptable carrier or excipient therefor.

21. A process of preparing a pharmaceutical formulation of claim 1, which process comprises admixing a pharmaceutically acceptable carrier or excipient with azelastine, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable ester of fluticasone.

22. The pharmaceutical formulation of claim 1, wherein said pharmaceutically acceptable ester of fluticasone is fluticasone valerate.

23. The pharmaceutical formulation of claim 1, wherein said pharmaceutically acceptable carrier or excipient is a pharmaceutically acceptable salt thereof.

24. A pharmaceutical formulation comprising azelastine hydrochloride; and, fluticasone propionate, wherein said formulation is in the dosage form of a nasal spray, and wherein said formulation is used in the treatment of conditions for which administration of one or more anti-histamine and/or one or more steroid is indicated.

25. A nasal spray formulation comprising (i) azelastine, or a pharmaceutically acceptable salt thereof, (ii) a pharmaceutically acceptable ester of fluticasone, and (iii) a pharmaceutically acceptable carrier or excipient therefor.

26. The pharmaceutical formulation of claim 6, comprising 0.1% (weight/weight) of azelastine hydrochloride, and from 0.0357% to 1.5% (weight/weight) of fluticasone propionate.

27. The pharmaceutical formulation of claim 6, comprising 0.1% (weight/weight) of azelastine hydrochloride, and from 0.0357% to 1.5% (weight/weight) of fluticasone valerate.

28. The pharmaceutical formulation of claim 6, wherein said dosage form suitable for nasal administration comprises a nasal spray.

29. The pharmaceutical formulation of claim 26, wherein said dosage form suitable for nasal administration comprises a nasal spray.

30. The pharmaceutical formulation of claim 27, wherein said dosage form suitable for nasal administration comprises a nasal spray.

31. The pharmaceutical formulation of claim 28, wherein said pharmaceutically acceptable salt of azelastine is azelastine hydrochloride and wherein said pharmaceutically acceptable ester of fluticasone is fluticasone valerate.

32. The pharmaceutical formulation of claim 28, wherein said pharmaceutically acceptable salt of azelastine is azelastine hydrochloride and wherein said pharmaceutically acceptable ester of fluticasone is fluticasone valerate.

33. The pharmaceutical formulation of claim 25, wherein said pharmaceutically acceptable salt of azelastine is azelastine hydrochloride and wherein said pharmaceutically acceptable carrier or excipient is azelastine hydrochloride.

34. The pharmaceutical formulation of claim 25, wherein said pharmaceutically acceptable salt of azelastine is azelastine hydrochloride and wherein said pharmaceutically acceptable carrier or excipient is azelastine hydrochloride.

35. The pharmaceutical formulation of claim 5, wherein said pharmaceutically acceptable salt of azelastine is azelastine hydrochloride.

36. The pharmaceutical formulation of claim 6, wherein said pharmaceutically acceptable salt of azelastine is azelastine hydrochloride.

37. The pharmaceutical formulation of claim 28, wherein said pharmaceutically acceptable salt of azelastine is azelastine hydrochloride.

38. The pharmaceutical formulation of claim 8, wherein said surfactant comprises a polysorbate.

39. The pharmaceutical formulation of claim 9, wherein said isotonic agent comprises glycerine.

40. The pharmaceutical formulation of claim 10, wherein said preservative comprises edetate disodium and benzalkonium chloride.

41. The pharmaceutical formulation of claim 11, wherein said suspending agent or said thickening agent comprises cellulose derivatives.

42. The pharmaceutical formulation of claim 1, further comprising edetate disodium, glycine, a thickening agent comprising microcrystalline cellulose and sodium carboxy methyl cellulose, polysorbate 80, benzalkonium chloride, phenyl ethyl alcohol, and purified water.

43. The pharmaceutical formulation of claim 24, further comprising edetate disodium, glycine, a thickening agent comprising microcrystalline cellulose and sodium carboxy methyl cellulose, polysorbate 80, benzalkonium chloride, phenyl ethyl alcohol, and purified water.

44. The pharmaceutical formulation of claim 25, further comprising edetate disodium, glycine, a thickening agent comprising microcrystalline cellulose and sodium carboxy methyl cellulose, polysorbate 80, benzalkonium chloride, phenyl ethyl alcohol, and purified water.

45. The pharmaceutical formulation of claim 1, wherein said formulation comprises a pH from 3 to 7.

46. The pharmaceutical formulation of claim 1, wherein said formulation comprises a pH from 4.5 to 6.5.

47. A pharmaceutical formulation comprising from 0.001% (weight/weight) to 1% (weight/weight) of azelastine hydrochloride, and from 0.0357% (weight/weight) to 1.5% (weight/weight) of fluticasone propionate, wherein said pharmaceutical formulation is an aqueous suspension suitable for nasal administration.

48. A pharmaceutical formulation comprising 1% (weight/weight) of azelastine hydrochloride, and from 0.0357% (weight/weight) to 1.5% (weight/weight) of fluticasone propionate, wherein said pharmaceutical formulation is an aqueous suspension suitable for nasal administration.

* * * * *
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the claims:

Column 12, Claim 7, Line 7; Replace: “a suspending agent a thickening agent” with --a suspending agent, a thickening agent--
Column 12, Claim 10, Lines 20-21; Replace: “phenyl mercury borate, or benzoic acid” with --phenyl mercury borate, benzoic acid--
Column 13, Claim 24, Lines 19-20; Replace: “dosage form of as a nasal spray” with --dosage form of a nasal spray--

Signed and Sealed this
Eighteenth Day of November, 2014

Michelle K. Lee
Deputy Director of the United States Patent and Trademark Office