MAKE (1) MAKE (1)

In the above example, the environment variable MAKEINC will
be expanded and used as the directory where the file Makepre.h
and Makepost.h exist.

FILES
[Mm]akefile and s.[Mm]akefile
SEE ALSO
sh(1).
Make-A Program for Maintaining Computer Programs by S. L
Feldman.
An Augmented Version of Make by E. G. Bradford.
BUGS

Some commands return non-zero status inappropriately; use —i to
overcome the difficulty. Commands that are directly executed by
the shell, notably cd(1), are ineffectual across new-lines in make.
The syntax (lib(filel.o file2.0 file3.0) is illegal. You cannot
build lib(file.o) from file.o. The macro $(a:.0=.c”) doesn’t
work.

DELL INC., EMC CORP.,HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 270 of 798

MAKEKEY (1) (Domestic Version Only) MAKEKEY (1)

NAME

makekey — generate encryption key
SYNOPSIS

/usr/lib/ makekey
DESCRIPTION

This feature is available only in the domestic (U.S.) version of the
UNIX PC software. Makekey improves the usefulness of encryp-
tion schemes depending on a key by increasing the amount of time
required to search the key space. It reads 10 bytes from its stan-
dard input, and writes 13 bytes on its standard output. The out-
put depends on the input in a way intended to be difficult to com-
pute (i.e., to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCI
characters. The last two (the salt) are best chosen from the set of
digits, ., /, and upper- and lower-case letters. The salt characters
are repeated as the first two characters of the output. The
remaining 11 output characters are chosen from the same set as
the salt and constitute the output key.

The transformation performed is essentially the following: the salt
is used to select one of 4,096 cryptographic machines all based on
the National Bureau of Standards DES algorithm, but broken in
4,096 different ways. Using the input key as key, a constant string
is fed into the machine and recirculated a number of times. The
64 bits that come out are distributed into the 66 output key bits
in the result.

Makekey is intended for programs that perform encryption (e.g.,
ed(1) and crypt(1)). Usually, its input and output will be pipes.

SEE ALSO
crypt(1), ed(1), passwd(4).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 271 of 798

MESG (1) MESG (1)

NAME

mesg — permit or deny messages
SYNOPSIS

mesg [n] [y]
DESCRIPTION

Mesg with argument n forbids messages via write(1) by revoking
non-user write permission on the user's terminal. Mesg with argu-
ment y reinstates permission. All by itself, mesg reports the
current state without changing it.

FILES
/dev /tty*

SEE ALSO
write(1).

DIAGNOSTICS
Exit status is O if messages are receivable, 1 if not, 2 on error.

DELL INC., EMC CORP:;, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 272 of 798

MESSAGE(1) (AT&T UNIX PC only) MESSAGE (1)

NAME

message — display error and help messages
SYNOPSIS

message [-u] [-¢] [-1] text
DESCRIPTION

Message allows the shell programmer access to the message(3T)
subroutine. Tezt is a text string with the standard special charac-
ter conventions: \n for newline, etc.

The possible options are:

-u Use the current window for the messages—resizes it to fit.

-c Create a confirmation message (see MT_CONFIRM in
message (3T)).

-1 Create a pop-up message—press any key to return to the

caller (see MT_POPUP in message(3T)).

If no options are set, message(1) will generate an error message
(see MT_ERROR in message(3T)).

EXAMPLES
The following example prints a confirmation message using the
current window:

message -uc "Do you wish to continue”
if [”$?n l—= "Q"]
then
exit
fi
SEE ALSO
message(3T), shform(1), tam(3T).

DELL INC., EMC CORP.,-HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 273 of 798

MKDIR (1) MKDIR (1)

NAME
mkdir — make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION
Mkdir creates specified directories in mode 777 (possibly altered
by umask(1)). Standard entries, ., for the directory itself, and ..,
for its parent, are made automatically.

Mkdir requires write permission in the parent directory.

SEE ALSO
sh(1), rm(1), umask(1).

DIAGNOSTICS
Mkdir returns exit code O if all directories were successfully made;
otherwise, it prints a diagnostic and returns non-zero.

DELL INC., EMC CORP.;HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 274 of 798

MM(1) MM(1)

NAME
mm, osdd, checkmm - print/check documents formatted with the
MM macros

SYNOPSIS
mm | options | [files]

osdd [options | [files]
checkmm | files]

DESCRIPTION
Mm can be used to type out documents using nroff and the MM
text-formatting macro package. It has options to specify prepro-
cessing by ¢bl(1) and/or negn (see egn(1)) and postprocessing by
various terminal-oriented output filters. The proper pipelines and
the required arguments and flags for nroff and MM are generated,
depending on the options selected.

Osdd is equivalent to the command mm —mosd.

Options for mm are given below. Any other arguments or flags
(e.g., —rC3) are passed to nroff or to MM, as appropriate. Such
options can occur in any order, but they must appear before the
files arguments. If no arguments are given, mm prints a list of its
options.

—Tterm Specifies the type of output terminal; for a list of recog-
nized values for term, type help term2. If this option
is not used, mm will use the value of the shell variable
$TERM from the environment (see profile(4) and
environ(5)) as the value of term, if $TERM is set; oth-
erwise, mm will use 450 as the value of ferm. If
several terminal types are specified, the last one takes
precedence.

-12 Indicates that the document is to be produced in 12-
pitch. May be used when $TERM is set to one of 300,
300s, 450, and 1620. (The pitch switch on the DASI
300 and 300s terminals must be manually set to 12 if
this option is used.)

-c Causes mm to invoke col(1); note that col(1) is invoked
automatically by mm unless term is one of 300, 300s,
450, 37, 4000a, 382, 4014, tek, 1620, and X.

—-e Causes mm to invoke negn; also causes negn to read
the /usr/pub/eqnchar file (see egnchar(5)).

-t Causes mm to invoke ¢bl(1).

-E Invokes the —e option of nroff.

-y Causes mm to use the non-compacted version of the

macros (see mm(5)).

As an example {assuming that the shell variable $TERM is set in
the environment to 450), the two command lines below are
equivalent:

mm -t -rC3 -12 ghh*
tbl ghh* | nroff —em -T450-12 -h -rC3

DELL INC., EMC CORP.,-HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 275 of 798

MM (1)

MM (1)

Mm reads the standard input when — is specified instead of any
file names. (Mentioning other files together with — leads to disas-
ter.) This option allows mm to be used as a filter; e.g.:

cat dws | mm -

Checkmm is a program for checking the contents of the named
files for errors in the use of the Memorandum Macros, missing or
unbalanced negn delimiters, and .EQ/.EN pairs. Note: The user
need not use the checkeq program (see eqn(1)). Appropriate mes-
sages are produced. The program skips all directories, and if no
file name is given, standard input is read.

HINTS

SEE ALSO

Mm invokes nroff with the ~h flag. With this flag, nroff
assumes that the terminal has tabs set every 8 character
positions.

Use the —olist option of nroff to specify ranges of pages
to be output. Note, however, that mm, if invoked with
one or more of the —e, —t, and — options, fogether with
the —olist option of nroff may cause a harmless “broken
pipe” diagnostic if the last page of the document is not
specified in list.

If you use the —s option of nroff (to stop between pages of
output), use line-feed (rather than return or new-line) to
restart the output. The —s option of nroff does not work
with the —c¢ option of mm, or if mm automatically
invokes col(1) (see —c option above).

If you lie to mm about the kind of terminal its output will
be printed on, you'll get (often subtle) garbage; however,
if you are redirecting output into a file, use the —T37
option, and then use the appropriate terminal filter when
you actually print that file.

col(1), cw(1), env(l), eqn(l), greek(1), nrofi(1), tbl(1), profile(4),
mm(5), term(5).
UNIX System Document Processing Guide.

DIAGNOSTICS

mm

“mm: no input file” if none of the arguments is a
readable file and mm is not used as a filter.

checkmm “Cannot open filename” if file(s) is unreadable. The

remaining output of the program is diagnostic of the
source file.

DELL INC., EMC CORP., HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 276 of 798

MMT (1) MMT (1)

NAME

mmt, mvt — typeset documents, view graphs, and slides

SYNOPSIS

mmt | options | [files |
mvt [options | [files |

DESCRIPTION

These two commands are very similar to mm(1), except that they
both typeset their input via froff (not included on the UNIX PC),
as opposed to formatting it via nroff; mmt uses the MM macro
package, while mvt uses the Macro Package for View Graphs and
Slides. These two commands have options to specify preprocess-
ing by tbl(1) and/or egn(1). The proper pipelines and the
required arguments and flags for ¢roff and for the macro packages
are generated, depending on the options selected.

Options are given below. Any other arguments or flags (e.g,
—rC3) are passed to troff or to the macro package, as appropriate.
Such options can occur in any order, but they must appear before
the files arguments. If no arguments are given, these commands
print a list of their options.

—e Causes these commands to invoke egn(1); also causes
eqn to read the /usr/pub/eqnchar file (see
egnchar(5)).

-t Causes these commands to invoke ¢b!(1).

~Tst Directs the output to the MH STARE facility.

-Tvp Directs the output to a Versatec printer; this option is
not available at all UNIX sites.

—~T4014 Directs the output to a Tektronix 4014 terminal via
the tc(1) filter.

-Ttek Same as —T4014.

—a Invokes the —a option of troff.

-y Causes mmt to use the non-compacted version of the
macros (see mm(5)). No effect for mut.

These commands read the standard input when - is specified
instead of any file names.

Muvt is just a link to mmt.

HINT
Use the —olist option of troff to specify ranges of pages to be out-
put. Note, however, that these commands, if invoked with one or
more of the —e, --t, and — options, together with the —olist
option of troff may cause a harmless “broken pipe” diagnostic if
the last page of the document is not specified in list.

SEE ALSO
env(1), eqn(1), mm(1), tbl(1), te(1), profile(4), environ(5), mm(5).
UNIX System Document Processing Guide.

DIAGNOSTICS

“m[mv]t: no input file” if none of the arguments is a readable file
and the command is not used as a filter.

DELL INC., EMC CORP.,HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 277 of 798

MORE (1) MORE (1)
NAME
more, page — file perusal filter for crt viewing
SYNOPSIS
more | —cdflsu | [—n | [+linenumber | | +/pattern | |
name ...

page more options

DESCRIPTION

More is a filter which allows examination of a continuous text one
screen full (or window full) at a time on a soft-copy terminal. It
normally pauses after each screen full, printing --More-- at the
bottom of the screen. If the user then types a carriage return, one
more line is displayed. If the user hits a space, another screen full
is displayed. Other possibilities are enumerated later.

The command line options are:

-n

An integer which is the size (in lines) of the window which
more will use instead of the default.

More will draw each page by beginning at the top of the
screen and erasing each line just before it draws on it.
This avoids scrolling the screen, making it easier to read
while more is writing. This option will be ignored if the
terminal does not have the ability to clear to the end of a
line.

More will prompt the user with the message Hit space to
continue, Rubout to abort at the end of each screen full.
This is useful if more is being used as a filter in some set-
ting, such as a class, where many users may be unsophisti-
cated.

This causes more to count logical lines, rather than screen
lines. That is, long lines are not folded. This option is
recommended if nroff output is being piped through ul,
since the latter may generate escape sequences. These
escape sequences contain characters which would ordi-
narily occupy screen positions, but which do not print
when they are sent to the terminal as part of an escape
sequence. Thus more may think that lines are longer
than they actually are, and fold lines erroneously.

Do not treat ‘L (form feed) specially. If this option is not
given, more will pause after any line that contains a "L, as
if the end of a screen full had been reached. Also, if a file
begins with a form feed, the screen will be cleared before
the file is printed.

Squeeze multiple blank lines from the output, producing
only one blank line. Especially helpful when viewing
nroff output, this option maximizes the useful information
present on the screen.

Normally, more will handle underlining such as produced
by nroff in a manner appropriate to the particular termi-
nal: if the terminal can perform underlining or has a

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 278 of 798

MORE (1) MORE (1)

stand-out mode, more will output appropriate escape
sequences to enable underlining or stand-out mode for
underlined information in the source file. The -u option
suppresses this processing.

+linenumber
Start up at linenumber.

+/pattern
Start up two lines before the line containing the regular
expression pattern.

If the program is invoked as page, then the screen is cleared
before each screen full is printed (but only if a full screen is being
printed), and k£ — 1 rather than k¥ — 2 lines are printed in each
screen full, where k is the number of lines the terminal can
display.

More looks in the TERMCAP environment variable or the file
/etc/termcap to determine terminal characteristics, and to
determine the default window size. On a terminal capable of
displaying 24 lines, the default window size is 22 lines.

More looks in the environment variable MORE to pre-set any
flags desired. For example, if you prefer to view files using the —¢
mode of operation, the csh command setenv MORE -c¢ or the sh
command sequence MORE="-¢’ ; export MORE would cause all
invocations of more, including invocations by programs such as
man and msgs, to use this mode. Normally, the user will place
the command sequence which sets up the MORE environment
variable in the .cshre or .profile file.

If more is reading from a file, rather than a pipe, then a percen-
tage is displayed along with the --More-- prompt. This gives the
fraction of the file (in characters, not lines) that has been read so
far.

Other sequences which may be typed when more pauses, and their
effects, are as follows ({ is an optional integer argument, defaulting

to 1):

t <space>
display ¢ more lines, (or another screen full if no argument
is given)

‘D display 11 more lines (a “scroll’”). If ¢ is given, then the
scroll size is set to 1.

d same as ‘D (control-D)

1z same as typing a space except that ¢, if present, becomes
the new window size.

is skip ¢ lines and print a screen full of lines

tf skip ¢ screen fulls and print a screen full of lines

qor Q Exit from more.

= Display the current line number.

DELL INC., EMC CORRP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 279 of 798

MORE((1) MORE (1)

v Start up the editor v¢ at the current line.
h Help command; give a description of all the more com-
mands.

i/expr search for the ith occurrence of the regular expression
expr. If there are less than ¢ occurrences of expr, and the
input is a file (rather than a pipe), then the position in the
file remains unchanged. Otherwise, a screen full is
displayed, starting two lines before the place where the
expression was found. The user’s erase and kill characters
may be used to edit the regular expression. Erasing back
past the first column cancels the search command.

in search for the fth occurrence of the last regular expression
entered.

(single quote) Go to the point from which the last search
started. If no search has been performed in the current
file, this command goes back to the beginning of the file.

lcommand
invoke a shell with command. The characters % and ! in
command are replaced with the current file name and the
previous shell command respectively. If there is no
current file name, % is not expanded. The sequences \%
and \! are replaced by % and ! respectively.

£:n skip to the ith next file given in the command line (skips
to last file if n doesn’t make sense).

{p skip to the tth previous file given in the command line. If
this command is given in the middle of printing out a file,
then more goes back to the beginning of the file. If ¢
doesn’t make sense, more skips back to the first file. If
more is not reading from a file, the bell is rung and noth-
ing else happens.

f display the current file name and line number.

;qor :Q
exit from more (same as q or Q).

(dot) repeat the previous command.

The commands take effect immediately, i.e., it is not necessary to
type a carriage return. Up to the time when the command char-
acter itself is given, the user may hit the line kill character to can-
cel the numerical argument being formed. In addition, the user
may hit the erase character to redisplay the --More--(xx%) mes-
sage.

At any time when output is being sent to the terminal, the user
can hit the quit key (normally control-\). More will stop sending
output, and will display the usual --More-- prompt. The user
may then enter one of the above commands in the normal manner.
Unfortunately, some output is lost when this is done, due to the
fact that any characters waiting in the terminal’s output queue
are flushed when the quit signal occurs.

DELL INC., EMC CORP., HIPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 280 of 798

MORE (1) MORE (1)

The terminal is set to noecho mode by this program so that the
output can be continuous. What you type will thus not show on
your terminal, except for the / and ! commands.

If the standard output is not a teletype, then more acts just like
cat, except that a header is printed before each\ﬁle (if there is
more than one). »

A sample usage of more in previewing nroff output would be
nroff ~ms +2 doc.n | more -s

FILES
/etc/termcap Terminal data base
/usr/lib/more.help Help file

SEE ALSO

sh(1), environ(5).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 281 of 798

NEWFORM (1) NEWFORM (1)

NAME
newform — change the format of a text file

SYNOPSIS
newform [-s| [—itabspec] [-otabspec] [-bn] [—-en| [-pn]
[~an] [-f] [-echar] [-1n] [files]

DESCRIPTION

Newform reads lines from the named files, or the standard input
if no input file is named, and reproduces the lines on the standard
output. Lines are reformatted in accordance with command line
options in effect.

Except for —s, command line options may appear in any order,
may be repeated, and may be intermingled with the optional files.
Command line options are processed in the order specified. This
means that option sequences like “‘—el5 —160” will yield results
different from ‘“—~160 —e15’’. Options are applied to all files on the
command line.

—itabspec Input tab specification: expands tabs to spaces, accord-
ing to the tab specifications given. Tabspec recognizes
all tab specification forms described in tebs(1). In
addition, tabspec may be ——, in which newform
assumes that the tab specification is to be found in the
first line read from the standard input (see fspec(4)).
If no tabspec is given, fabspec defaults to —8. A
tabspec of —0 expects no tabs; if any are found, they
are treated as —1.

—otabspec Output tab specification: replaces spaces by tabs,
according to the tab specifications given. The tab
specifications are the same as for —itabspec. If no
tabspec is given, tabspec defaults to —8. A tabspec of
—0 means that no spaces will be converted to tabs on
output.

~In Set the effective line length to n characters. If n is not
entered, —1 defaults to 72. The default line length
without the —1 option is 80 characters. Note that tabs
and backspaces are considered to be one character (use
—i to expand tabs to spaces).

—bn Truncate n characters from the beginning of the line
when the line length is greater than the effective line
length (see —1n). Default is to truncate the number of
characters necessary to obtain the effective line length.
The default value is used when —b with no n is used.
This option can be used to delete the sequence
numbers from a COBOL program as follows:

newform -11 -b7 file-name

The —11 must be used to set the effective line length
shorter than any existing line in the file so that the —b
option is activated.

—en Same as —bn except that characters are truncated
from the end of the line.

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 282 of 798

NEWFORM (1)
—ck

—-pn

—an

—8

DIAGNOSTICS

NEWFORM (1)

Change the prefix/append character to k. Default
character for & is a space.

Prefix n characters (see —ck) to the beginning of a line
when the line length is less than the effective line
length. Default is to prefix the number of characters
necessary to obtain the effective line length.

Same as —pn except characters are appended to the
end of a line.

Write the tab specification format line on the standard
output before any other lines are output. The tab
specification format line which 1is printed will
correspond to the format specified in the last —o
option. If no —o option is specified, the line which is
printed will contain the default specification of —8.

Shears off leading characters on each line up to the
first tab and places up to 8 of the sheared characters at
the end of the line. If more than 8 characters (not
counting the first tab) are sheared, the eighth character
is replaced by a * and any characters to the right of it
are discarded. The first tab is always discarded.

An error message and program exit will occur if this
option is used on a file without a tab on each line.
The characters sheared off are saved internally until all
other options specified are applied to that line. The
characters are then added at the end of the processed
line.

For example, to convert a file with leading digits, one
or more tabs, and text on each line, to a file beginning
with the text, all tabs after the first expanded to
spaces, padded with spaces out to column 72 (or trun-
cated to column 72), and the leading digits placed
starting at column 73, the command would be:
newform -s -1 -1 —a —e file-name

All diagnostics are fatal.

usage: ... Newform was called with a bad option.

not —s format There was no tab on one line.

can’t open file Self-explanatory.

internal line too long A line exceeds 512 characters after
being expanded in the internal work
buffer.

tabspec in error A tab specification is incorrectly for-

matted, or specified tab stops are not
ascending.

tabspec indirection illegal A tabspec read from a file (or standard

input) may not contain a tabspec
referencing another file (or standard
input).

DELL INC., EMC CORR., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 283 of 798

NEWFORM (1) NEWFORM (1)

EXIT CODES
0 — normal execution
1 — for any error

SEE ALSO
esplit(1), tabs(1), fspec(4).

BUGS
Newform normally only keeps track of physical characters;, how-
ever, for the —i and —o options, newform will keep track of back-
spaces in order to line up tabs in the appropriate logical columns.

Newform will not prompt the user if a tabspec is to be read from
the standard input (by use of —i—— or —o—-).

If the —f option is used, and the last —o option specified was
—o0——, and was preceded by either a —o—— or a —i——, the tab
specification format line will be incorrect.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 284 of 798

NEWGRP (1) NEWGRP (1)

NAME

newgrp — log in to a new group

SYNOPSIS

newgrp [—] [group |

DESCRIPTION

FILES

Newgrp changes the group identification of its caller, analogously
to login(1M). The same person remains logged in, and the current
directory is unchanged, but calculations of access permissions to
files are performed with respect to the new group ID.

Newgrp without an argument changes the group identification to
the group in the password file; in effect it changes the group
identification back to the caller’s original group.

An initial — flag causes the environment to be changed to the one
that would be expected if the user actually logged in again.

A password is demanded if the group has a password and the user
himself does not, or if the group has a password and the user is
not listed in /ete/group as being a member of that group.

When most users log in, they are members of the group named
other.

/etc/group
/ete/passwd

SEE ALSO

BUGS

login(1M), group(4).

There is no convenient way to enter a password into /etc/group.
Use of group passwords is not encouraged, because, by their very
nature, they encourage poor security practices. Group passwords
may disappear in the future.

DELL INC., EMC CORP., HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 285 of 798

NICE (1) NICE (1)

NAME
nice — run a command at low priority

SYNOPSIS
nice [—increment | command | arguments |

DESCRIPTION
Nice executes command with a lower CPU scheduling priority. If
the increment argument (in the range 1-19) is given, it is used; if
not, an increment of 10 is assumed.
The super-user may run commands with priority higher than nor-
mal by using a negative increment, e.g., ——10.

SEE ALSO
nohup(1), nice(2).

DIAGNOSTICS
Nice returns the exit status of the subject command.

BUGS

An increment larger than 19 is equivalent to 19.

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 286 of 798

NL(1) NL (1)

NAME
nl — line numbering filter

SYNOPSIS
nl [~htype|] [-btype] [-ftype] [—vstart#] [-iincr| [-p] [~Inum]
[-ssep] [~wwidth] [-nformat] [-ddelim| file

DESCRIPTION
NI reads lines from the named file or the standard input if no file
is named and reproduces the lines on the standard output. Lines
are numbered on the left in accordance with the command options
in effect.

NI views the text it reads in terms of logical pages. Line number-
ing is reset at the start of each logical page. A logical page con-
sists of a header, a body, and a footer section. Empty sections are
valid. Different line numbering options are independently avail-
able for header, body, and footer (e.g. no numbering of header and
footer lines while numbering blank lines only in the body).

The start of logical page sections are signaled by input lines con-
taining nothing but the following delimiter character(s):

Line contents Start of
U\ header

\:\: body
\: footer

Unless optioned otherwise, nl assumes the text being read is in a
single logical page body.

Command options may appear in any order and may be intermin-
gled with an optional file name. Only one file may be named.
The options are:

—btype Specifies which logical page body lines are to be num-
bered. Recognized types and their meaning are: a,
number all lines; t, number lines with printable text
only; n, no line numbering; pstring, number only
lines that contain the regular expression specified in
string. Default type for logical page body is t (text
lines numbered).

—htype Same as —btype except for header. Default type for
logical page header is n (no lines numbered).

—ftype Same as —btype except for footer. Default for logical
page footer is n (no lines numbered).

-p Do not restart numbering at logical page delimiters.

—vstart# Start# is the initial value used to number logical
page lines. Default is 1.

—itner Incr is the increment value used to number logical
page lines. Default is 1.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 287 of 798

NL (1)

—ssep

—wwidth

-nformat

—lnum

—dzz

EXAMPLE

NL (1)

Sep is the character(s) used in separating the line
number and the corresponding text line. Default sep
is a tab.

Width is the number of characters to be used for the
line number. Default width is 8.

Format is the line numbering format. Recognized
values are: In, left justified, leading zeroes suppressed;
rn, right justified, leading zeroes suppressed; rz, right
justified, leading zeroes kept. Default format is rn
(right justified).

Num is the number of blank lines to be considered as
one. For example, —12 results in only the second
adjacent blank being numbered (if the appropriate
~ha, —ba, and/or —fa option is set). Default is 1.

The delimiter characters specifying the start of a logi-
cal page section may be changed from the default
characters (\:) to two user specified characters. If
only one character is entered, the second character
remains the default character (:). No space should
appear between the —d and the delimiter characters.
To enter a backslash, use two backslashes.

The command:
nl -v10 —-110 —d!+ filel file2

will number files 1 and 2 starting at line number 10 with an incre-
ment of ten. The logical page delimiters are 4.

SEE ALSO
pr(1).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 288 of 798

NM(1)

NAME

NM (1)

nm - print name list of common object file

SYNOPSIS

nm [-o] [-x] [-h| [-v] [-n] [-e] [-f] [-u] [-V]
[-T)] file-names

DESCRIPTION

The nm command displays the symbol table of each common
object file file-name. File-name may be a relocatable or absolute
common object file; or it may be an archive of relocatable or abso-
lute common object files. For each symbol, the following informa-
tion will be printed:

Name
Value

Class
Type

Size

Line

Section

The name of the symbol.

Its value expressed as an offset or an address depending
on its storage class.

Its storage class.

Its type and derived type. If the symbol is an instance
of a structure or of a union then the structure or union
tag will be given following the type (e.g. struct-tag). If
the symbol is an array, then the array dimensions will
be given following the type (eg., char[n][m]). Note that
the object file must have been compiled with the —g
option of the cc(1) command for this information to
appear.

Its size in bytes, if available. Note that the object file
must have been compiled with the —g option of the
¢c(1) command for this information to appear.

The source line number at which it is defined, if avail-
able. Note that the object file must have been compiled
with the —g option of the cc¢(1) command for this infor-
mation to appear.

For storage classes static and external, the object file
section containing the symbol (e.g., text, data or bss).

The output of nm may be controlled using the following options:

-0

—X

DELL INC.

Print the value and size of a symbol in octal instead of
decimal.

Print the value and size of a symbol in hexadecimal
instead of decimal.

Do not display the output header data.
Sort external symbols by value before they are printed.
Sort external symbols by name before they are printed.
Print only external and static symbols.

Produce full output. Print redundant symbols (.text,
.data and .bss), normally suppressed.

Print undefined symbols only.

, EMC CORP; HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 289 of 798

NM(1)

FILES

NM (1)

Print the version of the nm command executing on the
standard error output.

By default, nm prints the entire name of the symbols
listed. Since object files can have symbol names with an
arbitrary number of characters, a name that is longer
than the width of the column set aside for names will
overflow its column, forcing every column after the
name to be misaligned. The —T option causes nm to
truncate every name which would otherwise overflow its
column and place an asterisk as the last character in the
displayed name to mark it as truncated.

Options may be used in any order, either singly or in combination,
and may appear anywhere in the command line. Therefore, both
nm name —€ —v and nm —ve name print the static and exter-
nal symbols sorted by value.

CAVEATS
When all the symbols are printed, they must be printed in the
order they appear in the symbol table in order to preserve scoping
information. Therefore, the —v and —n options should be used
only in conjunction with the —e option.

SEE ALSO
as(1), cc(1), 1d(1), a.out(4), ar(4).

DIAGNOSTICS

“nm: name: cannot open’

if name cannot be read.

“nm: name: bad magic”’

if name is not an appropriate common object file.

“nm: name: no symbols”

if the symbols have been stripped from name.

DELL INC., EMC CORP:, HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 290 of 798

NOHUP (1) NOHUP (1)

NAME
nohup - run a command immune to hangups and quits
SYNOPSIS
nohup command [arguments |
DESCRIPTION
Nohup executes command with hangups and quits ignored. If
output is not re-directed by the user, it will be sent to

nohup.out. If nohup.out is not writable in the current direc-
tory, output is redirected to $HIOME /nohup.out.

SEE ALSO
nice(1), signal(2).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 291 of 798

NROFF (1)

NAME

NROFF (1)

nroff — format text

SYNOPSIS

nroff | options | [files |

DESCRIPTION

Nroff formats text contained in files (standard input by default)
for printing on typewriter-like devices and line printers. Its capa-
bilities are described in the NROFF/ TROFF User’s Manual cited

below.

An argument consisting of a minus (-) is taken to be a file name
corresponding to the standard input. The options, which may
appear in any order, but must appear before the files, are:

—olist

—-nN

—mname

—cname

—kname

~Tname

DELL INC.,

Print only pages whose page numbers appear in the list
of numbers and ranges, separated by commas. A range
N-M means pages N through M; an initial —N means
from the beginning to page N; and a final N— means
from N to the end. (See BUGS below.)

Number first generated page N.

Stop every N pages. Nroff will halt after every N
pages (default N=1) to allow paper loading or chang-
ing, and will resume upon receipt of a line-feed or new-
line (new-lines do not work in pipelines, e.g., with
mm(1)). This option does not work if the output of
nroff is piped through col(1). When nroff halts
between pages, an ASCII BEL is sent to the terminal.

Set register ¢ (which must have a one-character name)
to N.

Read standard input after files are exhausted.

Invoke the simultaneous input-output mode of the .rd
request.

Print only messages generated by .tm (terminal mes-
sage) requests.

Prepend to the input files the non-compacted (ASCII
text) macro file /usr/lib/tmac/tmac.name.

Prepend to the input files the compacted macro files
/usr/lib/macros/cmp.[nt].[dt].name and
/usr/lib/macros/ucmp.[nt|.name.

Compact the macros used in this invocation of nroff,
placing the output in files [dt].name in the current
directory (see the May 1979 Addendum to the
NROFF [TROFF User’s Manual for details of compact-
ing macro files).

Prepare output for specified terminal. Known names
are 37 for the (default) TELETYPE Model 37 terminal,
tn300 for the GE TermiNet 300 (or any terminal
without half-line capability), 300s for the DASI 300s,
300 for the DASI 300, 450 for the DASI 450, Ip for a

EMC CORP., HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 292 of 798

NROFF (1)

NROFF (1)

(generic) ASCII line printer, 382 for the DTC-382,
4000A for the Trendata 4000A, 832 for the Anderson
Jacobson 832, X for a (generic) EBCDIC printer, and
2631 for the Hewlett Packard 2631 line printer.

—e Produce equally-spaced words in adjusted lines, using
the full resolution of the particular terminal.
~h Use output tabs during horizontal spacing to speed out-
put and reduce output character count. Tab settings
are assumed to be every 8 nominal character widths.
—un Set the emboldening factor (number of character over-
strikes) for the third font position (bold) to n, or to
zero if » is missing.
FILES
/Jusr/lib/suftab suffix hyphenation tables
Jtmp/ta$+# temporary file
Jusr/lib/tmac/tmac.* standard macro files and pointers
Jusr/lib/macros/* standard macro files
Jusr/lib/term/+ terminal driving tables for aroff
SEE ALSO

NROFF | TROFF User’s Manual
A TROFF Tutorial
col(1), eqn(1), greek(1), mm(1), tbl(1), mm(5).

BUGS

Nroff believes in Eastern Standard Time; as a result, depending on
the time of the year and on your local time zone, the date that
nroff generates may be off by one day from your idea of what the

date is.

When nroff is used with the —olist option inside a pipeline (e.g.,
with one or more of egn(1) and tbl(1)), it may cause a harmless
“broken pipe’” diagnostic if the last page of the document is not
specified in list.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 293 of 798

oD (1)

NAME

OD (1)

od - octal dump

SYNOPSIS

od | —bedosx | [file | [[+ Joffset[.][b |]

DESCRIPTION
0Od dumps file in one or more formats as selected by the first
argument. If the first argument is missing, —o is default. The
meanings of the format options are:

-b

—C

—X

Interpret bytes in octal.

Interpret bytes in ASCII. Certain non-graphic characters
appear as C escapes: null==\0, backspace=\b, form-
feed=\f, new-line=\n, return=\r, tab=\t; others appear
as 3-digit octal numbers.

Interpret words in unsigned decimal.
Interpret words in octal.

Interpret 16-bit words in signed decimal.
Interpret words in hex.

The file argument specifies which file is to be dumped. If no file
argument is specified, the standard input is used.

The offset argument specifies the offset in the file where dumping
is to commence. This argument is normally interpreted as octal
bytes. If . is appended, the offset is interpreted in decimal. If b is
appended, the offset is interpreted in blocks of 512 bytes. If the
file argument is omitted, the offset argument must be preceded by

+.

Dumping continues until end-of-file.

SEE ALSO

dump(1).

DELL INC., EMC CORP:;, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 294 of 798

PACK(1) PACK (1)

NAME

pack, pcat, unpack — compress and expand files
SYNOPSIS

pack [— | name ...

pcat name . ..
unpack name ...

DESCRIPTION
Pack attempts to store the specified files in a compressed form.
Wherever possible (and useful), each input file name is replaced
by a packed file name.z with the same access modes, access and
modified dates, and owner as those of name. If pack is successful,
name will be removed. Packed files can be restored to their origi-
nal form using unpack or pcat.

Pack uses Huffman (minimum redundancy) codes on a byte-by-
byte basis. If the — argument is used, an internal flag is set that
causes the number of times each byte is used, its relative fre-
quency, and the code for the byte to be printed on the standard
output. Additional occurrences of — in place of name will cause
the internal flag to be set and reset.

The amount of compression obtained depends on the size of the
input file and the character frequency distribution. Because a
decoding tree forms the first part of each .z file, it is usually not
worthwhile to pack files smaller than three blocks, unless the char-
acter frequency distribution is very skewed, which may occur with
printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size.
Load modules, which use a larger character set and have a more
uniform distribution of characters, show little compression, the
packed versions being about 90% of the original size.

Pack returns a value that is the number of files that it failed to
compress.

No packing will occur if:

the file appears to be already packed;

the file name has more than 12 characters;

the file has links;

the file is a directory;

the file cannot be opened,

no disk storage blocks will be saved by packing;
a file called name.z already exists;

the .z file cannot be created;

an I/O error occurred during processing.

The last segment of the file name must contain no more than 12
characters to allow space for the appended .z extension. Direc-
tories cannot be compressed.

Pcat does for packed files what cat(1) does for ordinary files. The
specified files are unpacked and written to the standard output.
Thus to view a packed file named name.z use:

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 295 of 798

PACK (1) PACK(1)

pcat name.z
or just:
pcat name

To make an unpacked copy, say nnn, of a packed file named
neme .z (without destroying name .z) use the command:

pcat name >nnn

Pcat returns the number of files it was unable to unpack. Failure
may occur if:

the file name (exclusive of the .z) has more than 12 char-
acters;

the file cannot be opened;

the file does not appear to be the output of pack.

Unpack expands files created by pack. For each file name
specified in the command, a search is made for a file called
name .z (or just mame, if name ends in .z). If this file appears to
be a packed file, it is replaced by its expanded version. The new
file has the .z suffix stripped from its name, and has the same
access modes, access and modification dates, and owner as those of
the packed file. :

Unpack returns a value that is the number of files it was unable
to unpack. Failure may occur for the same reasons that it may in
peat, as well as for the following:

a file with the “unpacked’” name already exists;
if the unpacked file cannot be created.

-92.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 296 of 798

PASSWD (1) PASSWD (1)

NAME

passwd — change login password

SYNOPSIS

passwd name

DESCRIPTION

FILES

This command changes (or installs) a password associated with the
login name.

The program prompts for the old password (if any) and then for
the new one (twice). The caller must supply these. New pass-
words should be at least four characters long if they use a
sufficiently rich alphabet and at least six characters long if mono-
case. Only the first eight characters of the password are
significant.

Only the owner of the name or the super-user may change a pass-
word; the owner must prove he knows the old password. Only the
super-user can create a null password.

The password file is not changed if the new password is the same
as the old password, or if the password has not ‘‘aged”
sufficiently; see passwd(4).

/etc/passwd

SEE ALSO

login(1M), crypt(3C), passwd(4).

DELL INC., EMC CORP.; HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 297 of 798

PASTE (1) PASTE (1)

NAME

paste — merge same lines of several files or subsequent lines of one
file

SYNOPSIS
paste filel file2 . ..
paste —d list filel file2 . ..
paste —s [~d list] filel file2 ...

DESCRIPTION

In the first two forms, paste concatenates corresponding lines of
the given input files file1, file2, etc. It treats each file as a
column or columns of a table and pastes them together horizon-
tally (parallel merging). If you will, it is the counterpart of cat(1)
which concatenates vertically, i.e., one file after the other. In the
last form above, paste subsumes the function of an older com-
mand with the same name by combining subsequent lines of the
input file (serial merging). In all cases, lines are glued together
with the tab character, or with characters from an optionally
specified ltst. Output is to the standard output, so it can be used
as the start of a pipe, or as a filter, if — is used in place of a file
name.

The meanings of the options are:

-d Without this option, the new-line characters of each but
the last file (or last line in case of the —s option) are
replaced by a tab character. This option allows replacing
the ¢{ab character by one or more alternate characters (see
below).

list One or more characters immediately following —d replace
the default tab as the line concatenation character. The
list is used circularly, i. e. when exhausted, it is reused. In
parallel merging (i. e. no —s option), the lines from the
last file are always terminated with a new-line character,
not from the list. The list may contain the special escape
sequences: \n (new-line), \t (tab), \\ (backslash), and \0
(empty string, not a null character). Quoting may be
necessary, if characters have special meaning to the shell
(e.g. to get one backslash, use —d "\\\\”).

-8 Merge subsequent lines rather than one from each input
file. Use tab for concatenation, unless a list is specified
with —d option. Regardless of the list, the very last char-
acter of the file is forced to be a new-line.

- May be used in place of any file name, to read a line from
the standard input. (There is no prompting).

EXAMPLES
Is | paste -d” " - list directory in one column
Is | paste - - - — list directory in four columns
paste —s —d”\ t\ n” file combine pairs of lines into lines
SEE ALSO

grep(1), cut(1),

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 298 of 798

PASTE (1) PASTE (1)

pr(l): pr —t —m... works similarly, but creates extra blanks,
tabs and new-lines for a nice page layout.
DIAGNOSTICS
line too long Output lines are restricted to 511 charac-
ters.
too many files Except for —s option, no more than 12

input files may be specified.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 299 of 798

PATH(1) PATH(1)

NAME
path — locate executable file for command
SYNOPSIS
path command
DESCRIPTION
Path is a quick way to discover what executable file is behind a

shell command. It searches each directory mentioned in your

PATH environment variable until it finds an executable file called
command.

DELL INC., EMC CORP.,-HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 300 of 798

PR(1) PR(1)

NAME

pr — print files
SYNOPSIS

pr [options | [files |
DESCRIPTION

Pr prints the named files on the standard output. If file is —, or
if no files are specified, the standard input is assumed. By default,
the listing is separated into pages, each headed by the page
number, a date and time, and the name of the file.

By default, columns are of equal width, separated by at least one
space; lines which do not fit are truncated. If the —s option is
used, lines are not truncated and columns are separated by the
separation character.

If the standard output is associated with a terminal, error mes-
sages are withheld until pr has completed printing.

The below options may appear singly or be combined in any order:
+k Begin printing with page k (default is 1).

~k Produce k-column output (default is 1). The options —e
and —i are assumed for multi-column output.

—a Print multi-column output across the page.

-m Merge and print all files simultaneously, one per column
(overrides the —k, and —a options).

-d Double-space the output.

—eck Expand fnput tabs to character positions k+1, 2%k+1,
3%k+1, etc. If k is O or is omitted, default tab settings at
every eighth position are assumed. Tab characters in the
input are expanded into the appropriate number of spaces.
If ¢ (any non-digit character) is given, it is treated as the
input tab character (default for ¢ is the tab character).

—ick In output, replace white space wherever possible by insert-
ing tabs to character positions k+1, 2«k+1, 3*xk+1, etc.
If k is O or is omitted, default tab settings at every eighth
position are assumed. If ¢ (any non-digit character) is
given, it is treated as the output tab character (default for
¢ is the tab character).

—nck Provide k-digit line numbering (default for k is 5). The
number occupies the first k+1 character positions of each
column of normal output or each line of —m output. If ¢
(any non-digit character) is given, it is appended to the
line number to separate it from whatever follows (default
for ¢ is a tab).

—wk Set the width of a line to k character positions (default is
72 for equal-width multi-column output, no limit other-
wise).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 301 of 798

PR(1)

—-ok

—~S8C

EXAMPLES

PR(1)

Offset each line by k character positions (default is 0).
The number of character positions per line is the sum of
the width and offset.

Set the length of a page to & lines (default is 66).

Use the next argument as the header to be printed instead
of the file name.

Pause before beginning each page if the output is directed
to a terminal (pr will ring the bell at the terminal and
wait for a carriage return). -

Use form-feed character for new pages (default is to use a
sequence of line-feeds). Pause before beginning the first
page if the standard output is associated with a terminal.

Print no diagnostic reports on failure to open files.

Print neither the five-line identifying header nor the five-
line trailer normally supplied for each page. Quit printing
after the last line of each file without spacing to the end
of the page.

Separate columns by the single character ¢ instead of by
the appropriate number of spaces (default for ¢ is a tab).

Print filel and file2 as a double-spaced, three-column listing
headed by “file list’’:

pr -3dh "file list” filel file2

Write ﬁlel on file2, expanding tabs to columns 10, 19, 28, 37, . ..

FILES

pr —e9 —t <filel >file2

/dev/tty* to suspend messages

SEE ALSO

cat(1).

DELL INC., EMC CORR., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 302 of 798

PROF (1) PROF (1)

NAME

prof — display profile data

SYNOPSIS

prof [~tcan] [-ox]| [-g] [~2z] [-h] [-s] [-m mdata] [prog]

DESCRIPTION

FILES

Prof interprets the profile file produced by the monitor(3C) func-
tion. The symbol table in the object file prog (a.out by default)
is read and correlated with the profile file (mon.out by default).
For each external text symbol the percentage of time spent execut-
ing between the address of that symbol and the address of the
next is printed, together with the number of times that function
was called and the average number of milliseconds per call.

The mutually exclusive options t, ¢, a, and n determine the type
of sorting of the output lines:

—t Sort by decreasing percentage of total time (default).
—c Sort by decreasing number of calls.

—-a Sort by increasing symbol address.

-n Sort lexically by symbol name.

The mutually exclusive options o and x specify the printing of
the address of each symbol monitored:

-0 Print each symbol address (in octal) along with the sym-
bol name.
-x Print each symbol address (in hexadecimal) along with the

symbol name.
The following options may be used in any combination:
-g Include non-global symbols (static functions).

-z Include all symbols in the profile range (see monitor(3C)),
even if associated with zero number of calls and zero time.

-h Suppress the heading normally printed on the report.
(This is useful if the report is to be processed further.)

-8 Print a summary of several of the monitoring parameters
and statistics on the standard error output.

—m mdata
Use file mdata instead of mon.out for profiling data.

For the number of calls to a function to be tallied, the —p option
of cc(1) must have been given when the file containing the func-
tion was compiled. This option to the ¢c¢ command also arranges
for the object file to include a special profiling start-up function
that calls monitor(3C) at the beginning and end of execution. It
is the call to monitor at the end of execution that causes the
mon.out file to be written. Thus, only programs that call ezit(2)
or return from matn will cause the mon.out file to be produced.

mon.out, for profile
a.out for namelist

DELL INC., EMC CORP., HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 303 of 798

PROF (1) PROF (1)

SEE ALSO
cc(1), nm(1), exit(2), profil(2), monitor(3C).

BUGS
There is a limit of 300 functions that may have call counters esta-
blished during program execution. If this limit is exceeded, other
data will be overwritten and the mon.out file will be corrupted.
The number of call counters used will be reported automatically
by the prof command whenever the number exceeds 250.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 304 of 798

PRS(1) PRS (1)

NAME

prs — print an SCCS file
SYNOPSIS

prs [—d[dataspec]] [-r[SID]] [~€] [-]] [-a] files
DESCRIPTION

Prs prints, on the standard output, parts or all of an SCCS file
(see scesfile(4)) in a user supplied format. If a directory is named,
prs behaves as though each file in the directory were specified as a
named file, except that non-SCCS files (last component of the path
name does not begin with s.), and unreadable files are silently
ignored. If a name of — is given, the standard input is read; each
line of the standard input is taken to be the name of an SCCS file
or directory to be processed; non-SCCS files and unreadable files
are silently ignored.

Arguments to prs, which may appear in any order, consist of
keyletter arguments, and file names.

All the described keyletter arguments apply independently to each
named file:

—d[dataspec] Used to specify the output data
specification. The dataspec is a string con-
sisting of SCCS file date keywords (see
DATA KEYWORDS) interspersed with
optional user supplied text.

—r[SID] Used to specify the SCCS IDentification
(SID) string of a delta for which information
is desired. If no SID is specified, the SID of
the most recently created delta is assumed.

—e Requests information for all deltas created
earlier than and including the delta desig-
nated via the —r keyletter.

-1 Requests information for all deltas created
later than and including the delta desig-
nated via the —r keyletter.

—a Requests printing of information for both
removed, i.e., delta type = R, (see
rmdel(1)) and existing, ie., delta type =
D, deltas. If the —a keyletter is not
specified, information for existing deltas
only is provided.

DATA KEYWORDS
Data keywords specify which parts of an SCCS file are to be
retrieved and output. All parts of an SCCS file (see sccsfile(4))
have an associated data keyword. There is no limit on the
number of times a data keyword may appear in a dataspec.

The information printed by prs consists of: (1) the user supplied
text; and (2) appropriate values (extracted from the SCCS file) sub-
stituted for the recognized data keywords in the order of appear-
ance in the dataspec. The format of a data keyword value is

DELL INC., EMC CORP.;HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 305 of 798

PRS(1)

PRS (1)

either Simple (S), in which keyword substitution is direct, or
Multi-line (M), in which keyword substitution is followed by a
carriage return.

User supplied text is any text other than recognized data key-
words. A tab is specified by \t and carriage return/new-line is
specified by \n.

Keyword
:Dt:
:DL:

TABLE 1. SCCS Files Data Keywords

Data Item

Delta information

Delta line statistics

Lines inserted by Delta
Lines deleted by Delta
Lines unchanged by Delta
Delta type

SCCS ID string (SID)
Release number

Level number

Branch number

Sequence number

Date Delta created

Year Delta created
Month Delta created

Day Delta created

Time Delta created

Hour Delta created
Minutes Delta created
Seconds Delta created
Programmer who created Delta
Delta sequence number
Predecessor Delta seq-no.
Seq-no. of deltas incl., excl., ignored
Deltas included (seq #)
Deltas excluded (seq #)
Deltas ignored (seq #)
MR numbers for delta
Comments for delta

User names

Flag list

Module type flag

MR validation flag

MR validation pgm name
Keyword error/warning flag
Branch flag

Joint edit flag

Locked releases

User defined keyword
Module name

Floor boundary

Ceiling boundary

Default SID

Null delta flag

File descriptive text

* :Dt: = :DT: :L :D: :T: :P: :DS: :DP:

File Section
Delta Table

”
n
n

User Names
Flags
4

Comments

Value

See below*

:Liz/:Ld:/:Lu:

nnnnn
nnnnn
nnnnn
DorR

:RiL:iBe:S:

nannn
nnnn
nnnn
nnnn

:Dy:/:Dm:/:Dd:

nn
nn
nn

¢The::Tm:::Ts:

nn
nn
nn
logname
nnnn
nonn

:Dn:/:Dx:/:D

:DS: :DS: .

g

:DS: :DS: ...
:DS: :DS: ...

text
text
text
text
text
yes or no
text
yes or no
yee or no
yes or no
R:...
text
text
:R:
:R:
:I:
yes OT no
text

Format

Zunvnunnrnunnornnungrnnnonnrnrnnrnnruntnnnrnnnnn

DELL INC., EMC CORP:, HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 306 of 798

PRS(1) ' PRS (1)

TABLE 1 (Continued)

Keyword Data Item File Section Value Format
:BD: Body Body text M
:GB: Gotten body " text M
W A form of what(1) string N/A :ZeMa\:I: S
. A form of what(1) string N/A :ZaY::M::I:Z: S

:Z: what(1) string delirniter N/A @(#) S
Fe SCCS file name N/A text S
:PN: SCCS file path name N/A text S

* :Dt: = DT :It :D: :T: :P: :DS: :DP:

EXAMPLES
prs —d”Users and/or user IDs for :F: are:\n:UN:” s.file

may produce on the standard output:
Users and/or user IDs for s.file are:
Xyz
131
abc

prs —d”"Newest delta for pgm :M:: :I: Created :D: By :P:”
—r s.file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas
As a special case:

prs s.file
may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:

bl78-12345

bl79-54321

COMMENTS:

this 1s the comment line for s.file initial delta

for each deita table entry of the “D” type. The only keyletter
argument allowed to be used with the special case is the —a
keyletter.

FILES

SEE ALSO
admin(1), delta(1), get(1), help(1), scesfile(4).
Source Code Control System User’s Guide in the UNIX System
User’s Guide.

DIAGNOSTICS
Use help(1) for explanations.

DELL INC., EMC CORP.,-HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 307 of 798

PS(1)

NAME

PS(1)

ps — report process status

SYNOPSIS

ps | options |

DESCRIPTION

Ps prints certain information about active processes. Without
options, information is printed about processes associated with the
current terminal. Otherwise, the information that is displayed is
controlled by the following options:

—e

-d

-1
—c corefile

—s swapdev

—n namelist

—t tlist

—p plist

—u ulist

Print information about all processes.

Print information about all processes, except process
group leaders.

Print information about all processes, except process
group leaders and processes not associated with a
terminal.

Generate a full listing. (Normally, a short listing
containing only process ID, terminal (‘‘tty”)
identifier, cumulative execution time, and the com-
mand name is printed.) See below for meaning of
columns in a full listing.

Generate a long listing. See below.
Use the file corefile in place of /dev/mem.

Use the file swapdev in place of /dev/swap. This
is useful when examining a corefile; a swepdev of
/dev/null will cause the user block to be zeroed
out.

The argument will be taken as the name of an alter-
nate namelist (/unix is the default).

Restrict listing to data about the processes associ-
ated with the terminals given in tlist, where tlist can
be in one of two forms: a list of terminal identifiers
separated from one another by a comma, or a list of
terminal identifiers enclosed in double quotes and
separated from one another by a comma and/or one
Or more Spaces.

Restrict listing to data about processes whose pro-
cess ID numbers are given in plist, where plist is in
the same format as tlist.

Restrict listing to data about processes whose user ID
numbers or login names are given in ulist, where
ulist is in the same format as tlist. In the listing,
the numerical user ID will be printed unless the —f
option is used, in which case the login name will be
printed.

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 308 of 798

PS(1)

—g glist

F

UID
PID

PPID

STIME
PRI

NI
ADDR

SZ

PS(1)

Restrict listing to data about processes whose pro-
cess groups are given in glist, where glist is a list of
process group leaders and is in the same format as
tlist.

The column héadings and the meaning of the columns in a ps list-
ing are given below; the letters f and 1 indicate the option (full or
long) that causes the corresponding heading to appear; all means
that the heading always appears. Note that these two options
only determine what information is provided for a process; they do
not determine which processes will be listed.

U]

U

(LD
(all)

(£.)
(£.)
(0
U]

M
0]

U

Flags (octal and additive) associated with the
process:

01 in coré;
02 system proéess;
04 locked in core (e.g., for physical I/0);
10 being swapped;
20 being traced by another process;
40 another tracing flag.

The state of the process:

non-existent;

sleeping;

waiting;

running;

intermediate;

terminated;

stopped;

NHN"‘:Ugwo

growing.

The user ID number of the process owner; the
login name is printed under the ~f option.

The process ID of the process; it is possible to
kill a process if you know this datum.

The process ID of the parent process.
Processor utilization for scheduling.
Starting time of the process.

The priority of the process; higher numbers
mean lower priority.

Nice value; used in priority computation.

The memory address of the process (a pointer to
the segment table array on the 3B20S), if
resident; otherwise, the disk address.

The size in blocks of the core image of the pro-
cess.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 309 of 798

PS(1) PS(1)

WCHAN () The event for which the process is waiting or
sleeping; if blank, the process is running.

TTY (all) The controlling terminal for the process.

TIME (all) The cumulative execution time for the process.

CMD (all) The command name; the full command name
and its arguments are printed under the —f
option.

A process that has exited and has a parent, but has not yet been
waited for by the parent, is marked <defunct>.

Under the —f option, ps tries to determine the command name
and arguments given when the process was created by examining
memory or the swap area. Failing this, the command name, as it
would appear without the —f option, is printed in square brackets.
FILES
Junix system namelist.
/dev/mem memory.
/dev/swap the default swap device.
/etc/passwd supplies UID information.
/ete/ps_data internal data structure.
/dev searched to find terminal (“‘tty”’) names.
SEE ALSO
kill(1), nice(1).
BUGS
Things can change while ps is running; the picture it gives is only

a close approximation to reality. Some data printed for defunct
processes are irrelevant.

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 310 of 798

PTX(1) PTX(1)

NAME

ptx — permuted index
SYNOPSIS

ptx [options | | input [output] |
DESCRIPTION

FILES

Ptz generates the file output that can be processed with a text for-
matter to produce a permuted index of file input (standard input
and output default). It has three phases: the first does the permu-
tation, generating one line for each keyword in an input line. The
keyword is rotated to the front. The permuted file is then sorted.
Finally, the sorted lines are rotated so the keyword comes at the
middle of each line. Pfz output is in the form:

xx "tail” "before keyword” "keyword amd after” "head”

where .xx is assumed to be an nroff or troff macro provided by
the user, or provided by the mptz(5) macro package. The before
keyword and keyword and after fields incorporate as much of the
line as will it around the keyword when it is printed. Tail and
head, at least one of which is always the empty string, are
wrapped-around pieces small enough to fit in the unused space at
the opposite end of the line.

The following options can be applied:

—f Fold upper and lower case letters for sorting.
-t Prepare the output for the phototypesetter.
-wn Use the next argument, n, as the length of the output

line. The default line length is 72 characters for aroff
and 100 for troff.

-gn Use the next argument, n, as the number of charac-
ters that ptz will reserve in its calculations for each
gap among the four parts of the line as finally
printed. The default gap is 3.

—o only Use as keywords only the words given in the only file.

—i ignore Do not use as keywords any words given in the tgnore
file. If the —i and —o options are missing, use
/usr/lib/eign as the ignore file.

—b break Use the characters in the break file to separate words.
Tab, new-line, and space characters are always used
as break characters.

-r Take any leading non-blank characters of each input
line to be a reference identifier (as to a page or
chapter), separate from the text of the line. Attach
that identifier as a 5th field on each output line.

The index for this manual was generated using ptz.

/bin/sort
Jusr/lib/eign
/usr/lib/tmac/tmac.ptx

DELL INC., EMC CORP;, HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 311 of 798

PTX (1) PTX (1)

SEE ALSO
nroff(1), mm(5), mptx(5).

BUGS
Line length counts do not account for overstriking or proportional
spacing.
Lines that contain tildes (7) are botched, because ptz uses that
character internally.

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 312 of 798

PWD (1) PWD(1)

NAME
pwd — working directory name
SYNOPSIS
pwd
DESCRIPTION
Pwd prints the path name of the working (current) directory.
SEE ALSO
cd(1).
DIAGNOSTICS
“Cannot open ..” and “Read error in ..” indicate possible file sys-

tem trouble and should be referred to a UNIX programming coun-
selor.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 313 of 798

REGCMP (1) REGCMP (1)

NAME

regcmp — regular expression compile
SYNOPSIS

regemp | — | files
DESCRIPTION

Regemp, in most cases, precludes the need for calling regemp(3X)
from C programs. This saves on both execution time and program
size. The command regemp compiles the regular expressions in
file and places the output in file.i. If the — option is used, the
output will be placed in file.c. The format of entries in file is a
name (C variable) followed by one or more blanks followed by a
regular expression enclosed in double quotes. The output of
regemp is C source code. Compiled regular expressions are
represented as extern char vectors. File.i files may thus be
included into C programs, or file.c files may be compiled and
later loaded. In the C program which uses the regemp output,
regez(abce line) will apply the regular expression named abc to
line. Diagnostics are self-explanatory.

EXAMPLES
name "([A-Za-z|[A-Za-z0-9_|*)$0”

telno "\({0,1}([2-9][01)[1-9])$0\){0,1} *"
”([2—9]E0~9]{2})$1[-Ko,1}”
"({o-9]{4})$2"

In the C program that uses the regemp output,
regex(telno, line, area, exch, rest)
will apply the regular expression named telno to line.

SEE ALSO
regemp(3X).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 314 of 798

RM(1) RM(1)

NAME

rm, rmdir — remove files or directories
SYNOPSIS

rm [—fri] file ...

rmdir dir ...
DESCRIPTION

Rm removes the entries for one or more files from a directory. If
an entry was the last link to the file, the file is destroyed. Remo-
val of a file requires write permission in its directory, but neither
read nor write permission on the file itself.

If a file has no write permission and the standard input is a termi-
nal, its permissions are printed and a line is read from the stan-
dard input. If that line begins with y the file is deleted, otherwise
the file remains. No questions are asked when the —f option is
given or if the standard input is not a terminal.

If a designated file is a directory, an error comment is printed
unless the optional argument —r has been used. In that case, rm
recursively deletes the entire contents of the specified directory,
and the directory itself.

If the —i (interactive) option is in effect, rm asks whether to delete
each file, and, under —r, whether to examine each directory.

Rmdir removes entries for the named directories, which must be
empty.
SEE ALSO
unlink(2).
DIAGNOSTICS
Generally self-explanatory. It is forbidden to remove the file ..

merely to avoid the antisocial consequences of inadvertently doing
something like:

rm —r .¥

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 315 of 798

RMDEL (1) RMDEL (1)

NAME

rmde] — remove a delta from an SCCS file

SYNOPSIS

rmdel —rSID files

DESCRIPTION

Rmdel removes the delta specified by the SID from each named
sccs file. The delta to be removed must be the newest (most
recent) delta in its branch in the delta chain of each named SCCS
file. In addition, the delta specified must not be that of a version
being edited for the purpose of making a delta (i. e., if a p-file (see
get(1)) exists for the named SCCS file, the delta specified must not
appear in any entry of the p-file).

If a directory is named, rmdel behaves as though each file in the
directory were specified as a named file, except that non-SCCS files
(last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of — is given, the
standard input is read; each line of the standard input is taken to
be the name of an SCCS file to be processed; non-SCCS files and
unreadable files are silently ignored.

The exact permissions necessary to remove a delta are documented
in the Source Code Control System User’s Guide. Simply stated,
they are either (1) if you make a delta you can remove it; or (2) if
you own the file and directory you can remove a delta.

FILES
x-file (see delta(1))
z-file (see delta(l))
SEE ALSO
delta(1), get(1), help(1), prs(1), sccsfile(4).
Source Code Control System User’s Guide in the UNIX System
User’s Guide.
DIAGNOSTICS

Use help(1) for explanations.

DELL INC., EMC CORP;, HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 316 of 798

SACT (1) SACT (1)

NAME
sact — print current SCCS file editing activity

SYNOPSIS
sact files

DESCRIPTION
Sact informs the user of any impending deltas to a named SCCS
file. This situation occurs when get(1) with the —e option has
been previously executed without a subsequent execution of
delta(1). If a directory is named on the command line, sact
behaves as though each file in the directory were specified as a
named file, except that non-SCCS files and unreadable files are
silently ignored. If a name of — is given, the standard input is
read with each line being taken as the name of an SCCS file to be

processed.
The output for each named file consists of five fields separated by
spaces.

Field 1 specifies the SID of a delta that currently exists
in the SCCS file to which changes will be made
to make the new delta.

Field 2 specifies the SID for the new delta to be

' created.

Field 3 contains the logname of the user who will
make the delta (i.e. executed a get for editing).

Field 4 contains the date that get —e was executed.

Field 5 contains the time that get —e was executed.

SEE ALSO
delta(1), get(1), unget(1).
DIAGNOSTICS

Use help(1) for explanations.

DELL INC., EMC CORP, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 317 of 798

SCCSDIFF (1) SCCSDIFF (1)

NAME

scesdiff — compare two versions of an SCCS file
SYNOPSIS

scesdiff —rSID1 —rSID2 [~p] [-sn] files
DESCRIPTION

Scesdiff compares two versions of an SCCS file and generates the
differences between the two versions. Any number of SCCS files
may be specified; but arguments apply to all files.

—rSID? SID1 and SID2 specify the deltas of an SCCS
file that are to be compared. Versions are
passed to bdiff(1) in the order given.

-p pipe output for each file through pr(1).

—8sn n is the file segment size that bdiff will pass to
diff(1). This is useful when diff fails due to a
high system load.

FILES

SEE ALSO
bdiff(1), get(1), help(1), pr(1).
Source Code Control System User’s Guide
UNIX System User’s Guide.

DIAGNOSTICS
“file: No differences’ If the two versions are the same.
Use help(1) for explanations.

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 318 of 798

SCRSET (1) (AT&T UNIX PC only) SCRSET (1)

NAME

scrset, — set screen save time
SYNOPSIS

scrset [n |
DESCRIPTION

Scrset enables and disables the screen save feature. When
enabled, this feature causes the screen to go blank after a given
interval of time has elapsed with no keyboard or mouse input; the
next keystroke or mouse motion restores the screen display. This
is a new feature of the UNIX PC 3.0 release.

The parameter n, if greater than 0, is the number of seconds to
delay before turning off the screen. N equal to 0 turns off the
screen save feature (this is the default condition). If n is less than
0, the screen is immediately turned off.

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 319 of 798

SDB(1) SDB(1)

NAME

sdb — symbolic debugger
SYNOPSIS

sdb [-w] [~W] [objfil [corfil | directory-list |] |
DESCRIPTION

Sdb is a symbolic debugger that can be used with C programs. It
may be used to examine their object files and core files and to pro-
vide a controlled environment for their execution.

Objfil is normally an executable program file which has been com-
piled with the —g (debug) option; if it has not been compiled with
the —g option, or if it is not an executable file, the symbolic capa-
bilities of sdb will be limited, but the file can still be examined
and the program debugged. The default for objfil is a.out.
Corfil is assumed to be a core image file produced after executing
objfil; the default for corfil is core. The core file need not be
present. A — in place of corfil will force sdb to ignore any core
image file. The colon separated list of directories (directories-list)
is used to locate the source files used to build objfil.

It is useful to know that at any time there is a current line and
current file. If corfil exists then they are initially set to the line
and file containing the source statement at which the process ter-
minated. Otherwise, they are set to the first line in main(). The
current line and file may be changed with the source file examina-
tion commands.

Initially sdb has a greater-than character (>>) prompt, which indi-
cates that sdb is ready for the user to enter the first command.
After sdb has begun, the prompt is <z >, where z is the name of
the last command given.

By default, warnings are provided if the source files used in pro-
ducing o0bjfil cannot be found, or are newer than objfil. This
checking feature and the accompanying warnings may be disabled
by the use of the —W flag.

Names of variables are written just as they are in C. Note that
names in C are now of arbitrary length, sdb will no longer trun-
cate names. Variables local to a procedure may be accessed using
the form procedure:variable. If no procedure name is given, the
procedure containing the current line is used by default.

It is also possible to refer to structure members as
variable .member, pointers to structure members as
varigble - >member and array elements as wvaeriable [number].
Pointers may be dereferenced by using the form pointer[0]. Com-
binations of these forms may also be used. A number may be
used in place of a structure variable name, in which case the
number is viewed as the address of the structure, and the tem-
plate used for the structure is that of the last structure referenced
by sdb. An unqualified structure variable may also be used with
various commands. Generally, sdb will interpret a structure as a
set of variables. Thus, sdb will display the values of all the ele-
ments of a structure when it is requested to display a structure.

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 320 of 798

SDB(1) SDB(1)

An exception to this interpretation occurs when displaying vari-
able addresses. An entire structure does have an address, and it is
this value sdb displays, not the addresses of individual elements.

Elements of a multidimensional array may be referenced as
variable [number] [number] ...,

or as
variable [number ,number, ... |.

In place of number, the form number;number may be used to
indicate a range of values, * may be used to indicate all legitimate
values for that subscript, or subscripts may be omitted entirely if
they are the last subscripts and the full range of values is desired.
As with structures, sdb displays all the values of an array or sec-
tion of an array if trailing subscripts are omitted. It displays only
the address of the array itself or section specified by the user if
subscripts are omitted.

A particular instance of a variable on the stack may be referenced
by using the form procedure:variable ,number. All the variations
mentioned in naming variables may be used. Number is the
occurrence of the specified procedure on the stack, counting the
top, or most current, as the first. If no procedure is specified, the
procedure currently executing is used by default.

It is also possible to specify a variable by its address. All forms of
integer constants which are valid in C may be used, so that
addresses may be input in decimal, octal or hexadecimal.

Line numbers in the source program are referred to as file-
name snumber or procedure:number. In either case the number is
relative to the beginning of the file. If no procedure or file name is
given, the current file is used by default. If no number is given,
the first line of the named procedure or file is used.

While a process is running under sdb, all addresses refer to the
executing program; otherwise they refer to objfil or corfil. An ini-
tial argument of —w permits overwriting locations in objfil.
Addresses.

The address in a file associated with a written address is deter-
mined by a mapping associated with that file. Each mapping is
represented by two triples (b1, ef, f1) and (b2, €2, f2) and the file
address corresponding to a written address is calculated as fol-

lows:

b1< address<el

file address—address+f1-b1
otherwise

b2< address<<e?

file address=address+f2-62

otherwise, the requested address is not legal. In some cases (e.g.
for programs with separated I and D space) the two segments for a

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 321 of 798

SDB (1)

file may overlap.
The initial setting of

SDB (1)

both mappings is suitable for normal a.out

and core files. If either file is not of the kind expected, then for
that file, b1 is set to 0, el is set to the maximum file size, and f1
is set to O; in this way the whole file can be examined with no

address translation.

In order for sdb to be used on large files all appropriate values are
kept as signed 32-bit integers.

Commands.

The commands for examining data in the program are:

t Print a stack trace of the terminated or halted program.
T Print the top line of the stack trace.

variable [clm

Print the value of warfable according to length /! and format

m. A numeric

count ¢ indicates that a region of memory,

beginning at the address implied by wvariable, is to be
displayed. The length specifiers are: '
b ‘

h
1

Legal values for

oy KO0

one byte
two bytes (half word)
four bytes (long word)

m are:
character

decimal

decimal, unsigned

octal

hexadecimal

32-bit single precision floating point

64-bit double precision floating point
Assume wvartable is a string pointer and
print characters starting at the address
pointed to by the variable.

Print characters starting at the variable’s
address. This format may not be used with
register variables.

pointer to procedure

disassemble machine language instruction
with addresses printed symbolically.
disassemble machine language instruction
with addresses just printed numerically.

The length specifiers are only effective with the formats| e,

d, u, o and x.
omitted. If all

Any of the specifiers ¢, [, and m may be
are omitted, sdb chooses a length and a for-

mat suitable for the variable’s type as declared in the pro-
gram. If m is specified, then this format is used for display-
ing the variable. A length specifier determines the output
length of the value to be displayed, sometimes resulting in
truncation. A count specifier ¢ tells sdb to display that many
units of memory, beginning at the address of variable. The
number of bytes in one such unit of memory is determined

DELL INC., EMC CORP., HPE CO., HPES, LLC

IPR2017-00176-

Ex. 1028, p. 322 of 798

SDB(1)

SDB (1)

by the length specified /, or if no length is given, by the size
associated with the variable. If a count specifier is used for
the 8 or a command, then that many characters are printed.
Otherwise successive characters are printed until either a
null byte is reached or 128 characters are printed. The last
variable may be redisplayed with the command ./.

The sh(1) metacharacters * and ? may be used within pro-
cedure and variable names, providing a limited form of pat-
tern matching. If no procedure name is given, both variables
local to the current procedure and global variables are
matched; if a procedure name is specified then only variables
local to that procedure are matched. To match only global
variables, the form :pattern is used.

linenumber?im

variable?im
Print the value at the address from a.out or I space given
by linenumber or wariable (procedure name), according to
the format /m. The default format is ‘i’

varigble =Im

linenumber=Im

number=Im
Print the address of variable or linenumber, or the value of
number, in the format specified by Im. If no format is
given, then Ix is used. The last variant of this command
provides a convenient way to convert between decimal, octal
and hexadecimal.

vartabletvalue

Set wariable to the given walue. The value may be a
number, character constant or a variable. The value must
be well defined; expressions which produce more than one
value, such as structures, are not allowed. Character con-
stants are denoted ’character. Numbers are viewed as
integers unless a decimal point or exponent is used. In this
case, they are treated as having the type double. Registers
are viewed as integers. The variable may be an expression
which indicates more than one variable, such as an array or
structure name. If the address of a variable is given, it is
regarded as the address of a variable of type inf. C conven-
tions are used in performing any type conversions necessary
to perform the indicated assignment.

f Print the 68881 floating-point registers.

X Print the machine registers and the current machine-
language instruction.

X Print the current machine-language instruction.
The commands for examining source files are:

e procedure
e file-name
e directory/

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 323 of 798

SDB(1) SDB (1)

e directory file-name

The first two forms set the current file to the file containing
procedure or to file-name. The current line is set to the
first line in the named procedure or file. Source files are
assumed to be in directory. The default is the current
working directory. The latter two forms change the value of
directory. If no procedure, file name, or directory is given,
the current procedure and file names are reported.

[regular expression /
Search forward from the current line for a line containing a
string matching regular ezpression as in ed(1). The trailing
/ may be omitted.

?regular expression?
Search backward from the current line for a line containing
a string matching reguler expression as in ed(1). The trail-
ing ? may be deleted.

P Print the current line.

Z Print the current line followed by the next 9 lines. Set the
current line to the last line printed.

w Window. Print the 10 lines around the current line.

number
Set, the current line to the given line number. Print the new
current line.

count—+
Advance the current line by count lines. Print the new
current line.

count —

Retreat the current line by count lines. Print the new
current line.

The commands for controlling the execution of the source program
are:

count r args

count R
Run the program with the given arguments. The r com-
mand with no arguments reuses the previous arguments to
the program while the R command runs the program with
no arguments. An argument beginning with < or > causes
redirection for the standard input or output, respectively. If
count is given, it specifies the number of breakpoints to be
ignored.

linenumber ¢ count

linenumber C count
Continue after a breakpoint or interrupt. If count is given,
it specifies the number of breakpoints to be ignored. C con-
tinues with the signal which caused the program to stop and
c ignores it. If a linenumber is specified then a temporary
breakpoint is placed at the line and execution is continued.
This temporary breakpoint is deleted when the command

DELL INC., EMC CORP.; HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 324 of 798

SDB(1)

SDB(1)

finishes.

linenumber g count

Continue after a breakpoint with execution resumed at the
given line. If count is given, it specifies the number of
breakpoints to be ignored.

8 count
S count

Single step the program through count lines. If no count is
given then the program is run for one line. S is equivalent
to s except it steps through procedure calls.

Single step by one machine language instruction. I steps
with the signal which caused the program to stop reac-
tivated and i ignores it. '

variable$m count
address:m count

Single step (as with s) until the specified location is modified
with a new value. If count is omitted, it is effectively
infinity. Variable must be accessible from the current pro-
cedure. Since this command is done by software, it can be
very slow.

level v

k

Toggle verbose mode, for use when single stepping with S, s
or m. If level is omitted, then just the current source file
and/or subroutine name is printed when either changes. If
level is 1 or greater, each C source line is printed before it is
executed; if level is 2 or greater, each assembler statement is
also printed. A v turns verbose mode off if it is on for any
level.

Kill the program being debugged.

procedure(argl,arg2,...)
procedure(argl,arg2,...)/ m

Execute the named procedure with the given arguments.
Arguments can be integer, character or string constants or
names of variables accessible from the current procedure.
The second form causes the value returned by the procedure
to be printed according to format m. If no format is given,
it defaults to d.

linenumber b commands

Set a breakpoint at the given line. If a procedure name
without a line number is given (e.g. “proc:”), a breakpoint is
placed at the first line in the procedure even if it was not
compiled with the —g option. If no linenumber is given, a
breakpoint is placed at the current line. If no commands are
given then execution stops just before the breakpoint and
control is returned to sdb. Otherwise the commands are
executed when the breakpoint is encountered and execution
continues. Multiple commands are specified by separating
them with semicolons. If k is used as a command to execute
at a breakpoint, control returns to sdb, instead of continuing

DELL INC., EMC CORP., HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 325 of 798

SDB(1) SDB(1)

execution.
B Print a list of the currently active breakpoints.

linenumber d
Delete a breakpoint at the given line. If no linenumber is
given then the breakpoints are deleted interactively: each
breakpoint location is printed and a line is read from the
standard input. If the line begins with a y or d then the
breakpoint is deleted.

D Delete all breakpoints.
1 Print the last executed line.

linenumber a
Announce. If linenumber is of the form proc:number, the
command effectively does a linenumber b 1. If linenumber is
of the form proc:, the command effectively does a proc: b
T.

Miscellaneous commands:

tcommand
The command is interpreted by sh(1).

new-line
Perform the previous command again.

control-D
Scroll. Print the next 10 lines of instructions, source or data
depending on which was printed last.

< filename
Read commands from filename until the end of file is
reached, and then continue to accept commands from stan-
dard input. When sdb is told to display a variable by a
command in such a file, the variable name is displayed along
with the value. This command may not be nested; < may
not appear as a command in a file.

M Print the address maps.

M[P/][*] b e f
Record new values for the address map. The arguments ?
and / specify the text and data maps respectively. The first
segment, (b1,el,f1), is changed unless * is specified, in
which case the second segment (62,¢2, f2) of the mapping is
changed. If fewer than three values are given, the remaining
map parameters are left unchanged.

" string
Print the given string. The C escape sequences of the form

\character are recognized, where character is a nonnumeric
character.

q Exit the debugger.

The following commands also exist and are intended only for
debugging the debugger:

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 326 of 798

SDB(1) SDB (1)

FILES

V' Print the version number.
Q Print a list of procedures and files being debugged.
Y Toggle debug output.

Sdb may be instructed to monitor a given memory location and
stop the program when the value at that location changes in a
given way. For example:

> ifx < =123

The above example instructs sdb to monitor the value at location
z. When the user gives the command to continue (c), sdb checks
the value of x at every source line executed and stops the program
if the given condition becomes true. Note that use of this con-
straint slows the real-time execution of a program.

The syntax of the if command is as follows:

if Shows a list of the current data breakpoints; assigns a
number to each.

if var Monitors the value of ver and stops the program if the
value changes. A variable name may be used for var, as
well as a constant address. Comparisons are done as
either 4-byte signed or 4-byte unsigned, depending on the
data type. To perform a 1-byte or 2-byte comparison, an
optional length value may accompany var. An example of
a 2-byte comparison is

if x,2 = Oxff
if var rel value
Compares the value of var to the constant given and stops
the program if the condition is true. The values of rel
may be =, ==, <, <=, >, >=, or I=.
off n Disables or turns off a data breakpoint without removing
it from the list.

on n Enables a breakpoint that was turned off.
out n Removes a breakpoint from the list.

Conditional breakpoints are used in a manner similar to data
breakpoints, except that the user specifies a place in the program
at which sdb should stop to check the data values. For example,

mysub:99 b if xyz = 123

The above example instructs sdb to check the value of xyz every
time the program arrives at line 99 of subroutine mysub. If the
condition is true, then execution stops there, as with a normal
breakpoint. This type of breakpoint does not monitor the value
xyz at every line of code, as the data breakpoint does.

a.out
core

SEE ALSO

cc(1), sh(1), a.out(4), core(4).

DELL INC., EMC CORR., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 327 of 798

SDB(1) SDB (1)

WARNINGS

BUGS

When sdb prints the value of an external variable for which there
is no debugging information, a warning is printed before the value.
The value is assumed to be int (integer).

Data which are stored in text sections are indistinguishable from
functions.

Line number information in optimized functions is unreliable, and
some information may be missing.

If a procedure is called when the program is not stopped at a
breakpoint (such as when a core image is being debugged), all
variables are initialized before the procedure is started. This
makes it impossible to use a procedure which formats data from a
core image.

When setting a breakpoint at a procedure, sdb will inconsistently
produce the incorrect line number. This seems to occur when the
object file is newer than the source file. Recompiling the source
program will correct this problem.

DELL INC., EMC CORP., HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 328 of 798

SDIFF (1)

NAME

SDIFF (1)

sdiff — side-by-side difference program

SYNOPSIS

sdiff | options ...] filel file2

DESCRIPTION

Sdiff uses the output of diff(1) to produce a side-by-side listing of
two files indicating those lines that are different. Each line of the
two files is printed with a blank gutter between them if the lines
are identical, a < in the gutter if the line only exists in filel, a >
in the gutter if the line only exists in file2, and a | for lines that
are different.

For example:

po oo X
AN

The following options exist:

-w n
-1
—8
—o output

Use the next argument, n, as the width of the output
line. The default line length is 130 characters.

Only print the left side of any lines that are identical.
Do not print identical lines.

Use the next argument, output, as the name of a third
file that is created as a user controlled merging of
file1 and file2. Identical lines of filel and fileZ are
copied to output. Sets of differences, as produced by
diff(1), are printed; where a set of differences share a
common gutter character. After printing each set of
differences, sdiff prompts the user with a % and
waits for one of the following user-typed commands:

1 append the left column to the out-
put file

r append the right column to the out-
put file

s turn on silent mode; do not print

identical lines

turn off silent mode

call the editor with the left column
r call the editor with the right column

o 0o O <
—

call the editor with the concatena-
tion of left and right

call the editor with a zero length file
q exit from the program

DELL INC., EMC CORP.,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 329 of 798

SDIFF (1) SDIFF (1)

On exit from the editor, the resulting file is con-
catenated on the end of the output file.

SEE ALSO
difi(1), ed(1).

DELL INC., EMC CORR., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 330 of 798

SED (1) SED (1)

NAME

sed — stream editor
SYNOPSIS

sed [—n | | —e script | | —f sfile | [files]
DESCRIPTION

Sed copies the named files (standard input default) to the stan-
dard output, edited according to a script of commands. The —f
option causes the script to be taken from file sfile; these options
accumulate. If there is just one —e option and no —f options, the
flag —e may be omitted. The —n option suppresses the default
output. A script consists of editing commands, one per line, of the
following form:

[address | , address | | function | arguments |

In normal operation, sed cyclically copies a line of input into a
pattern space (unless there is something left after a D command),
applies in sequence all commands whose addresses select that pat-
tern space, and at the end of the script copies the pattern space to
the standard output (except under —n) and deletes the pattern
space.

Some of the commands use a hold space to save all or part of the
pattern space for subsequent retrieval.

An address is either a decimal number that counts input lines
cumulatively across files, a $ that addresses the last line of input,
or a context address, i.e., a /regular expression/ in the style of
ed(1) modified thus:

In a context address, the construction \?regular exzpres-
ston?, where ? is any character, is identical to
/regular expression/. Note that in the context
address \xabc\xdefx, the second x stands for
itself, so that the regular expression is abexdef.

The escape sequence \n matches a new-line embedded in
the pattern space.

A period . matches any character except the terminal
new-line of the pattern space.

A command line with no addresses selects every pattern
space.

A command line with one address selects each pattern
space that matches the address.

A command line with two addresses selects the inclusive
range from the first pattern space that matches
the first address through the next pattern space
that matches the second. (If the second address is
a number less than or equal to the line number
first selected, only one line is selected.)
Thereafter the process is repeated, looking again
for the first address.

Editing commands can be applied only to non-selected pattern
spaces by use of the negation function ! (below).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 331 of 798

SED (1) SED (1)

In the following list of functions the maximum number of permis-
sible addresses for each function is indicated in parentheses.

The text argument consists of one or more lines, all but the last of

which end with \ to hide the new-line. Backslashes in text are

treated like backslashes in the replacement string of an s com-

mand, and may be used to protect initial blanks and tabs against

the stripping that is done on every script line. The rfile or wfile

argument must terminate the command line and must be preceded

by exactly one blank. Each wfile is created before processing

begins. There can be at most 10 distinct wfile arguments.

(1) a\

text Append. Place tezt on the output before reading the
next input line.

(2) b label Branch to the : command bearing the label. If label is
empty, branch to the end of the script.

(2) 0\

text Change. Delete the pattern space. With 0 or 1
address or at the end of a 2-address range, place text
on the output. Start the next cycle.

(2)d Delete the pattern space. Start the next cycle.

(2)D Delete the initial segment of the pattern space through
the first new-line. Start the next cycle.

(2) g Replace the contents of the pattern space by the con-

tents of the hold space.
(2) G Append the contents of the hold space to the pattern

space. ,)

(2) h Replace the contents of the hold space by the contents
of the pattern space.

(2)H Append the contents of the pattern space to the hold
space.

(1)1

text Insert. Place tezt on the standard output.

(2)1 List the pattern space on the standard output in an
unambiguous form. Non-printing characters are
spelled in two-digit ASCII and long lines are folded.

(2)n Copy the pattern space to the standard output.
Replace the pattern space with the next line of input.

(2)N Append the next line of input to the pattern space
with an embedded new-line. (The current line number
changes.)

(2)p Print. Copy the pattern space to the standard output.

(2)P Copy the initial segment of the pattern space through
the first new-line to the standard output.

()q Quit. Branch to the end of the script. Do not start a
new cycle.

(2) r 7file Read the contents of rfile. Place them on the output
before reading the next input line.

(2) s/ regular expression /replacement /flags
Substitute the replacement string for instances of the
regular expression in the pattern space. Any charac-
ter may be used instead of /. For a fuller description
see ed(1). Flags is zero or more of:

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 332 of 798

SED (1)

SED (1)

g Global. Substitute for all nonoverlap-
ping instances of the regular erpres-
ston rather than just the first one.

P Print the pattern space if a replace-
ment was made.

w wfile
Write. Append the pattern space to
wfile if a replacement was made.

(2) t label Test. Branch to the : command bearing the label if
any substitutions have been made since the most
recent reading of an input line or execution of a t. If
label is empty, branch to the end of the script.

(2) w wfile ,

Write. Append the pattern space to wfile.

(2)x Exchange the contents of the pattern and hold spaces.

(2) y/stringl [string2/

Transform. Replace all occurrences of characters in
stringl with the corresponding character in string2.
The lengths of stringl and string2 must be equal.

(2)! function
Don't. Apply the function (or group, if function is {)
only to lines not selected by the address(es).

(0) : label This command does nothing; it bears a label for b and
t commands to branch to.

(1)= Place the current line number on the standard output
as a line.
2){ Execute the following commands through a matching }
only when the pattern space is selected.
(0) An empty command is ignored.
SEE ALSO

awk(1), ed(1), grep(1).

DELL INC., EMC CORP.; HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 333 of 798

SETPRINT (1) SETPRINT (1)

NAME

setprint — send a different page length/width to an LP line printer
SYNOPSIS

setprint lines cols
DESCRIPTION

Lp uses a default page length (66 lines) and page width (132
columns) for printing. If the file to be printed has more than 132
columns, all characters beyond 132 would either be truncated or
the printer would continue to print them all on the last character

position.

Setprint allows you to change the line and column size parameters
to whatever your printer can handle. However, setprint can only
be used with a parallel line printer, and that printer must be

online. Otherwise an I/O error will occur.
EXAMPLE

To change the page width to to 150 columns, use setprint as fol-

lows:

setprint 66 150

Use the following format to set the page width back to 132

columns:

setprint 66 132

-1-

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 334 of 798

SH(1) SH(1)

NAME
sh, rsh — shell, the standard/restricted command programming
language
SYNOPSIS
sh [—ceiknrstuvx | | args |
rsh | —ceiknrstuvx | | args |
DESCRIPTION

Sh is a command programming language that executes commands
read from a terminal or a file. Rsh is a reéstricted version of the
standard command interpreter sk; it is used to set up login names
and execution environments whose capabilities are more controlled
than those of the standard shell. See Imvocation below for the
meaning of arguments to the shell.

Commands.

A simple-command is a sequence of non-blank words separated by
blanks (a blank is a tab or a space). The first word specifies the
name of the command to be executed. Except as specified below,
the rémaining words are passed as arguments to the invoked com-
mand. The command name is passed as argument 0 (see ezec(2)).
The wvalue of a simple-command is its exit status if it terminates
normally, or (octal) 200+status if it terminates abnormally (see
signal(2) for a list of status values).

A pipeline is a sequence of one or more commands separated by |
(or, for historical compatibility, by "). The standard output of
each command but the last is connected by a pipe(2) to the stan-
dard input of the next command. Each command is run as a
separate process;, the shell waits for the last command to ter-
minate.

A list is a sequence of one or more pipelines separated by ;, &,
&&, or | |, and optionally terminated by ; or &. Of these four
symbols, ; anid & have equal precedence, which is lower than that
of && and | |. The symbols && and | | also have equal pre-
cedence. A semicolon (;) causes sequential execution of the
preceding pipeline; an ampersand (&) causes asynchronous execu-
tion of the preceding pipeline (i.e., the shell does not wait for that
pipeline to finish). The symbol && (| |) causes the list following
it to be executed only if the preceding pipeline returns a zero
(non-zero) exit status. An arbitrary number of new-lines may
appear in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following.
Unless otherwise stated, the value returned by a command is that
of the last simple-command executed in the command.

for name | in word ... | do list done
Each time a for command is executed, name is set to the
next word taken from the in word list. If in word ... is

omitted, then the for command executes the do list once
for each positional parameter that is set (see Parameter
Substitution below). Execution ends when there are no
more words in the list.

DELL INC., EMC CORP.,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 335 of 798

SH(1) SH(1)

case word in [pattern | | pattern |...) list 53 | ... esac
A case command executes the list associated with the
first pattern that matches word. The form of the pat-
terns is the same as that used for file-name generation (see
File Name Generation below).

if list then list | elif list then list | ... | else list | fi
The list following if is executed and, if it returns a zero
exit status, the list following the first then is executed.
Otherwise, the list following elif is executed and, if its
value is zero, the list following the next then is executed.
Failing that, the else list is executed. If no else list or
then list is executed, then the if command returns a zero
exit status.

while list do list done
A while command repeatedly executes the while list and,
if the exit status of the last command in the list is zero,
executes the do list; otherwise the loop terminates. If no
commands in the do list are executed, then the while
command returns a zero exit status; until may be used in

place of while to negate the loop termination test.
(list)

{list;}

Execute list in a sub-shell.

list is simply executed.

The following words are only recognized as the first word of a
command and when not quoted:

if then else elif fi case esac for while until do
done { }

Comments.

A word beginning with # causes that word and all the following
characters up to a new-line to be ignored.

Command Substitution.
The standard output from a command enclosed in a pair of grave
accents (¢ ¢) may be used as part or all of a word; trailing new-
lines are removed.

Parameter Substitution.
The character $ is used to introduce substitutable parameters.
Positional parameters may be assigned values by set. Variables
may be set by writing:
name=value | name=value | ...
Pattern-matching is not performed on value.

${parameter}
A parameter is a sequence of letters, digits, or underscores
(a name), a digit, or any of the characters *, @, #, ?, —,
$, and !. The value, if any, of the parameter is substi-
tuted. The braces are required only when parameter is
followed by a letter, digit, or underscore that is not to be
interpreted as part of its name. A name must begin with
a letter or underscore. If parameter is a digit then it is a

DELL INC., EMC CORE., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 336 of 798

SH(1)

SH(1)

positional parameter. If parameter is *# or @, then all the
positional parameters, starting with $1, are substituted
(separated by spaces). Parameter $0 is set from argument
zero when the shell is invoked.

${parameter:—word}
If parameter is set and is non-null then substitute its
value; otherwise substitute word.

${parameter:=word}
If parameter is not set or is null then set it to word; the
value of the parameter is then substituted. Positional
parameters may not be assigned to in this way.

${parameter:?word}
If parameter is set and is non-null then substitute its
value; otherwise, print word and exit from the shell. If
word is omitted, then the message ‘“‘parameter null or not
set” is printed.

${parameter:+word}
If parameter is set and is non-null then substitute word;
otherwise substitute nothing.

In the above, word is not evaluated unless it is to be used as the
substituted string, so that, in the following example, pwd is exe-
cuted only if d is not set or is nuli:

echo ${d:— ¢pwd«¢} ,

If the colon (:) is omitted from the above expressions, then the
shell only checks whether parameter is set or not.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.
- Flags supplied to the shell on invocation or by the
set command.

? The decimal value returned by the last synchro-
nously executed command.

$ The process number of this shell.

! The process number of the last background com-

mand invoked.

The following parameters are used by the shell:

HOME The default argument (home directory) for the cd
command.

PATH The search path for commands (see Ezecution
below). The user may not change PATH if exe-
cuting under rsh.

CDPATH
The search path for the ¢d command.

MAIL If this variable is set to the name of a mail file,
then the shell informs the user of the arrival of
mail in the specified file.

PS1 Primary prompt string, by default “$ ”.

PS2 Secondary prompt string, by default “>

IFS Internal field separators, normally space, tab,
and new-line.

"

DELL INC., EMC CORP.,.HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 337 of 798

SH(1) SH(1)

The shell gives default values to PATH, PS1, PS2, and IFS, while
HOME and MAIL are not set at all by the shell (although HOME
is set by login(1M)).
Blank Interpretation.

After parameter and command substitution, the results of substi-
tution are scanned for internal field separator characters (those
found in IFS) and split into distinct arguments where such charac-
ters are found. Explicit null arguments (”” or 9 9) are retained.
Implicit null arguments (those resulting from perameters that
have no values) are removed.

File Name Generation.

Following substitution, each command word is scanned for the
characters *, ?, and [. If one of these characters appears then the
word is regarded as a pattern. The word is replaced with alpha-
betically sorted file names that match the pattern. If no file name
is found that matches the pattern, then the word is left
unchanged. The character . at the start of a file name or immedi-
ately following a /, as well as the character / itself, must be
matched explicitly.

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A
pair of characters separated by — matches any
character lexically between the pair, inclusive. If
the first character following the opening **[*"is a
“I” then any character not enclosed is matched.

Quoting.
The following characters have a special meaning to the shell and
cause termination of a word unless quoted:

;s & ()| ~ < > new-line space tab

A character may be guoted (i.e., made to stand for itself) by
preceding it with a \. The pair \new-line is ignored. All charac-
ters enclosed between a pair of single quote marks (9 7), except a
single quote, are quoted. Inside double quote marks (”), parame-
ter and command substitution occurs and \ quotes the characters
\, ¢, ”,and $. "$x” is equivalent to "$1 $2 ...”, whereas "$@"
is equivalent to "$1” "$2”

Prompting.
When used interactively, the shell prompts with the value of PS1
before reading a command. If at any time a new-line is typed and
further input is needed to complete a command, then the secon-
dary prompt (i.e., the value of PS2) is issued.

Input/Output.
Before a command is executed, its input and output may be
redirected using a special notation interpreted by the shell. The
following may appear anywhere in a simple-command or may pre-
cede or follow a command and are not passed on to the invoked
command; substitution occurs before word or digit is used:

DELL INC., EMC CORP-, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 338 of 798

SH(1)

SH(1)
<word Use file word as standard input (file descriptor 0).
>word Use file word as standard output (file descriptor

1). If the file does not exist then it is created; oth-
erwise, it is truncated to zero length.

>>word Use file word as standard output. If the file exists
then output is appended to it (by first seeking to
the end-of-file);, otherwise, the file is created.

<<[-]word The shell input is read up to a line that is the
same as word, or to an end-of-file. The resulting
document becomes the standard input. If any
character of word is quoted, then no interpretation
is placed upon the characters of the document;
otherwise, parameter and command substitution
occurs, (unescaped) \new-line is ignored, and \
must be used to quote the characters \, $, ¢, and
the first character of word. If — is appended to
<<, then all leading tabs are stripped from word
and from the document.

< &digit The standard input is duplicated from file descrip-
tor digit (see dup(2)). Similarly for the standard
output using >.

<&- The standard input is closed. Similarly for the
standard output using >.

If one of the above is preceded by a digit, then the file descriptor
created is that specified by the digit (instead of the default 0 or 1).
For example:

. 2>8&1
creates file descriptor 2 that is a duplicate of file descriptor 1.

If a command is followed by & then the default standard input
for the command is the empty file /dev/null. Otherwise, the
environment for the execution of a command contains the file
descriptors of the invoking shell as modified by input/output
specifications.

Redirection of output is not allowed in the restricted shell.

Environment.

The environment (see environ(5)) is a list of name-value pairs
that is passed to an executed program in the same way as a nor-
mal argument list. The shell interacts with the environment in
several ways. On invocation, the shell scans the environment and
creates a parameter for each name found, giving it the correspond-
ing value. Executed commands inherit the same environment. If
the user modifies the values of these parameters or creates new
ones, none of these affects the environment unless the export
command is used to bind the shell’s parameter to the environ-
ment. The environment seen by any executed command is thus
composed of any unmodified name-value pairs originally inherited
by the shell, plus any modifications or additions, all of which must
be noted in export commands.

The environment for any simple-command may be augmented by
prefixing it with one or more assignments to parameters. Thus:

DELL INC., EMC CORP., HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 339 of 798

SH(1)

SH(1)

TERM=450 cmd args and
(export TERM; TERM=450; cmd args)

are equivalent (as far as the above execution of c¢md is concerned).

If the —k flag is set, all keyword arguments are placed in the
environment, even if they occur after the command name. The
following first prints a==b ¢ and then c:

echo a=b ¢
set -k
echo a=b ¢

Signals.

The INTERRUPT and QUIT signals for an invoked command are
ignored if the command is followed by &; otherwise signals have
the values inherited by the shell from its parent, with the excep-
tion of signal 11 (but see also the trap command below).

Execution.

Each time a command is executed, the above substitutions are
carried out. Except for the Special Commands listed below, a new
process is created and an attempt is made to execute the com-
mand via ezec(2).

The shell parameter PATH defines the search path for the direc-
tory containing the command. Alternative directory names are
separated by a colon (:). The default path is :/bin:/usr/bin
(specifying the current directory, /bin, and /usr/bin, in that
order). Note that the current directory is specified by a null path
name, which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path list. If the
command name contains a / then the search path is not used;
such commands will not be executed by the restricted shell. Oth-
erwise, each directory in the path is searched for an executable
file. If the file has execute permission but is not an a.out file, it is
assumed to be a file containing shell commands. A sub-shell (i.e.,
a separate process) is spawned to read it. A parenthesized com-
mand is also executed in a sub-shell.

Special Commands.

The following commands are executed in the shell process and,
except as specified, no input/output redirection is permitted for
such commands:

: No effect; the command does nothing. A zero exit code is
returned.

. file Read and execute commands from file and return. The
search path specified by PATH is used to find the direc-
tory containing file.

break [n |
Exit from the enclosing for or while loop, if any. If n is
specified then break n levels.

continue [n |
Resume the next iteration of the enclosing for or while
loop. If n is specified then resume at the n-th enclosing
loop.

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 340 of 798

SH(1)

ed | arg |
Change the current directory to aerg. The shell parameter
HOME is the default arg. The shell parameter CDPATH
defines the search path for the directory containing arg.
Alternative directory names are separated by a colon ().
The default path is <null> (specifying the current direc-
tory). Note that the current directory is specified by a
null path name, which can appear immediately after the
equal sign or between the colon delimiters anywhere else
in the path list. If arg begins with a / then the search
path is not used. Otherwise, each directory in the path is
searched for arg. The ¢d command may not be executed
by rsh.

eval [arg ...]
The arguments are read as input to the shell and the
resulting command(s) executed.

exec | arg ... |
The command specified by the arguments is executed in
place of this shell without creating a new process.
Input/output arguments may appear and, if no other
arguments are given, cause the shell input/output to be
modified.

exit [n |
Causes a shell to exit with the exit status specified by n.
If n is omitted then the exit status is that of the last com-
mand executed (an end-of-file will also cause the shell to
exit.)

export [name ... |
The given names are marked for automatic export to the
environment of subsequently-executed commands. If no
arguments are given, then a list of all names that are
exported in this shell is printed.

newgrp [arg ... |
Equivalent to exec newgrp arg

read | name ... |
One line is read from the standard input and the first
word is assigned to the first name, the second word to the
second name, etc., with leftover words assigned to the last
name. The return code is O unless an end-of-file is
encountered.

readonly | name ... |
The given names are marked readonly and the values of
these names may not be changed by subsequent assign-
ment. If no arguments are given, then a list of all
readonly names is printed.

set [——ekntuvx [arg ...]]
—e Exit immediately if a command exits with a non-

zero exit status.
-k All keyword arguments are placed in the environ-

ment for a command, not just those that precede
the command name.
-n Read commands but do not execute them.

DELL INC., EMC CORP,, HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 341 of 798

SH(1)

shift |

test

times

trap |

SH(1)
-t Exit after reading and executing one command.
—u Treat unset variables as an error when substitut-
ing.
-v Print shell input lines as they are read.
-X Print commands and their arguments as they are
executed.
— Do not change any of the flags; useful in setting
$1 to —.

Using + rather than — causes these flags to be turned off.
These flags can also be used upon invocation of the shell.
The current set of flags may be found in $—. The remain-
ing arguments are positional parameters and are assigned,
in order, to $1, $2, If no arguments are given then
the values of all names are printed.

n

Th]e positional parameters from $n+1 ... are renamed
$1 If n is not given, it is assumed to be 1.

Evaluate conditional expressions. See test(1) for usage and
description.

Print the accumulated user and system times for processes
run from the shell.

arg J[n]...

arg 1s a command to be read and executed when the shell
receives signal(s) n. (Note that arg is scanned once when
the trap is set and once when the trap is taken.) Trap
commands are executed in order of signal number. Any
attempt to set a trap on a signal that was ignored on
entry to the current shell is ineffective. An attempt to
trap on signal 11 (memory fault) produces an error. If arg
is absent then all trap(s) mn are reset to their original
values. If arg is the null string then this signal is ignored
by the shell and by the commands it invokes. If n is O
then the command arg is executed on exit from the shell.
The trap command with no arguments prints a list of
commands associated with each signal number.

ulimit [—fp |[» |

imposes a size limit of n

—f imposes a size limit of n blocks on files written by
child processes (files of any size may be read).
With no argument, the current limit is printed.

-p changes the pipe size to n (UNIX/RT only).

If no option is given, —f is assumed.

umask | nan |

wait |

The user file-creation mask is set to nan (see umask(2)).
If nnn is omitted, the current value of the mask is
printed.

n

Wait for the specified process and report its termination
status. If n is not given then all currently active child
processes are waited for and the return code is zero.

DELL INC., EMC CORP., HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 342 of 798

SH(1) SH(1)

Invocation.
If the shell is invoked through ezec(2) and the first character of
argument zero is —, commands are initially read from

/etc/profile and then from $HOME/.profile, if such files exist.
Thereafter, commands are read as described below, which is also
the case when the shell is invoked as /bin/sh. The flags below
are interpreted by the shell on invocation only; Note that unless
the —c or —s flag is specified, the first argument is assumed to be
the name of a file containing commands, and the remaining argu-
ments are passed as positional parameters to that command file:

—c string If the —c flag is present then commands are read from
string .

—8 If the —s flag is present or if no arguments remain then
commands are read from the standard input. Any
remaining arguments specify the positional parameters.
Shell output is written to file descriptor 2.

-i If the —i flag is present or if the shell input and output
are attached to a terminal, then this shell is interac-
tive. In this case TERMINATE is ignored (so that kill
0 does not kill an interactive shell) and INTERRUPT is
caught and ignored (so that wait is interruptible). In
all cases, QUIT is ignored by the shell.

-r If the —r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set
command above.

Rsh Only.
Rsh is used to set up login names and execution environments
whose capabilities are more controlled than those of the standard
shell. The actions of rsh are identical to those of sh, except that
the following are disallowed:
changing directory (see cd(1)),
setting the value of $PATH,
specifying path or command names containing /,
redirecting output (> and >>).

The restrictions above are enforced after .profile is interpreted.

When a command to be executed is found to be a shell procedure,
rsh invokes sh to execute it. Thus, it is possible to provide to the
end-user shell procedures that have access to the full power of the
standard shell, while imposing a limited menu of commands; this
scheme assumes that the end-user does not have write and execute
permissions in the same directory.

The net effect of these rules is that the writer of the .profile has
complete control over user actions, by performing guaranteed
setup actions and leaving the user in an appropriate directory
(probably not the login directory).

The system administrator often sets up a directory of commands
(i.e., /usr/rbin) that can be safely invoked by rsh. Some sys-
tems also provide a restricted editor red.

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 343 of 798

SH(1) SH(1)

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the shell
to return a non-zero exit status. If the shell is being used non-
interactively then execution of the shell file is abandoned. Other-
wise, the shell returns the exit status of the last command exe-
cuted (see also the exit command above).

FILES
/ete/profile
$HOME/ .profile
/tmp/sh*
/dev/null

SEE ALSO
cd(1), env(1), login(1M), newgrp(l), test{1l), umask(l), dup(2),
exec(2), fork(2), pipe(2), signal(2), ulimit(2), umask(2), wait(2),
a.out(4), profile(4), environ(5).

BUGS
The command readonly (without arguments) produces the same
output as the command export.
If << is used to provide standard input to an asynchronous pro-
cess invoked by &, the shell gets mixed up about naming the
input document; a garbage file /tmp/sh* is created and the shell
complains about not being able to find that file by another name.

DELL INC., EMC COR®P:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 344 of 798

SHFORM (1) (AT&T UNIX PC only) SHFORM (1)

NAME
shform - displays menus and forms and returns user input to
Bourne Shell procedures.

SYNOPSIS
RET == ‘shform [-u] formname’

DESCRIPTION
The shform process displays a menu or form, waits for user input,
and returns the result to the shell procedure.

Formname is a text document, called a form description file, that
describes the menu or form to be displayed. Entries in the file use
a keyword = value syntax. (The form and menu keywords are
described below.) The file must be located in the /usr/lib/ua
directory. To insert a comment in the file, start the line with a
pound sign (#).

The value returned by the file is stored in the shell variable RET

as a list of words separated by spaces. If an error occurs, then $?
will contain an error code.

-u causes shform to place its menu or form in the current window,
resizing it appropriately to fix the menu or form. This option is
recommended.

Shform returns the following exit codes:

0 - ACK

1 — Argument error

2 — Out of memory (malloc failed)

3 - Internal table overflow

4 — Syntax error in form description file

The words in $RET are as follows:
word 1 = Name of terminating key
if form, words 2 — n = Values of the form’s fields
if menu, word 2 = Name of selected menu item

if multiselect menu, words 2 — n = Name of selected
menu items

Form Definition Keywords
Form = form name
Flags the start of a form. It is followed by a series of field
definitions. The form name specified here is used as the
title of the form. Only one Form keyword can be used in
the file.

Name = field name
Follows a Form keyword and starts a field definition. The
field name specified here is used as the prompt for the
field. The field name definition is followed by field attri-
bute definitions:

Prompt = prompt string
Displayed on the prompt line when the field is the current
field.

DELL INC., EMC CORP.}HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 345 of 798

SHFORM (1) (AT&T UNIX PC only) SHFORM (1)

Frow = number
Defines the row in the form where the current field
displays.

Ncol = number.
Defines the column in the form where the field name
displays.

Fcol = number
Defines the column in the form where the field value
displays.

Flen = number

Defines the maximum length of the field wvalue, in
columns. :

Value = initial field value
Defines the initial contents (default value) for the field.

Rmenu = menu name
If the field has an associated menu of options, this key-
word is included. The menu name must be defined later
in the file with the Menu keyword (see bélow).

Menuonly
If this keyword is present then user editing of the field is
forbidden and any key which is typed will cause the asso-
ciated menu to display.

Menu Definition Keywords
Menu = menu name
Begins a menu definition. When no form is defined,
shform displays a menu instead of a form. In this case,
only the first defined menu is displayed. If a form is
defined, then the only menus displayed are those refer-
enced in the form fields (via the Rmenu keyword, defined
above). The Menu keyword is followed by a series of
menu attribute definitions.

Prompt = prompt string
The prompt string is displayed on the prompt line when
the menu is displayed. ' '
Rows = number
Defines the number of rows in the menu display.

Columns = number
Defines the number of columns in the menu display. If
neither Rows nor Columns is defined, then the built-in
menu heuristic is used for determining the number of rows
and columns in the menu.

Multiple
If this keyword is present, the menu is multi-select. Oth-
erwise, the menu is a single select menu.

Name = item name
Follows the menu attributes and specifies the name
displayed in the menu. This keyword is returned to the
caller when this item is selected.

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 346 of 798

SHFORM (1) (AT&T UNIX PC only) SHFORM (1)

SEE ALSO
menu(3T), form(3T), tam(3T).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 347 of 798

SIZE (1) SIZE (1)

NAME

size — print section sizes of common object files
SYNOPSIS

size [—o| [-x]| [-V] files
DESCRIPTION

The size command produces section size information for each sec-
tion in the common object files. The size of the text, data, bss
(uninitialized data), and shared library sections are printed along
with the total size of the object file. If an archive file is input to
the size command the information for all archive members is
displayed.

Numbers will be printed in decimal unless either the —o or the —x
option is used, in which case they will be printed in octal or in
hexadecimal, respectively.

The —V flag will supply the version information on the size com-
mand.

SEE ALSO
as(1), ce(1), 1d(1), a.out(4), ar(4).

DIAGNOSTICS
size: name: cannot open
if name cannot be read.

size: name: bad magic
if name is not an appropriate common object file.

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 348 of 798

SLEEP (1) SLEEP (1)

NAME
sleep — suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION
Sleep suspends execution for time seconds. It is used to execute a
command after a certain amount of time as in:

(sleep 105; command)&
or to execute a command every so often, as in:

while true
do
command
sleep 37
done

SEE ALSO
alarm(2), sleep(3C).

BUGS
Time must be less than 2147483647 seconds.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 349 of 798

SORT (1) SORT (1)

NAME

sort — sort and/or merge files
SYNOPSIS

sort [—~cmubdfinrtx| [+posl [-pos2|] ... [-o output] [names]
DESCRIPTION

Sort sorts lines of all the named files together and writes the
result on the standard output. The name — means the standard
input. If no input files are named, the standard input is sorted.

The default sort key is an entire line. Default ordering is lexico-
graphic by bytes in machine collating sequence. The ordering is
affected globally by the following options, one or more of which
may appear.

b Ignore leading blanks (spaces and tabs) in field comparisons.

d “Dictionary’’ order: only letters, digits and blanks are
significant in comparisons.

f Fold upper case letters onto lower case.

Ignore characters outside the ASCII range 040-0176 in non-
numeric comparisons.

n An initial numeric string, consisting of optional blanks,
optional minus sign, and zero or more digits with optional
decimal point, is sorted by arithmetic value. Option n
implies option b.

r Reverse the sense of comparisons.
tz ‘“Tab character’” separating fields is z.

The notation +posl —pos2 restricts a sort key to a field begin-
ning at pes! and ending just before pos2. Posl and pos? each
have the form m.n, optionally followed by one or more of the
flags bdfinr, where m tells a number of fields to skip from the
beginning of the line and n tells a number of characters to skip
further. If any flags are present they override all the global order-
ing options for this key. If the b option is in effect n is counted
from the first non-blank in the field; b is attached independently
to pos2. A missing .n means .0; a missing —pos2 means the end
of the line. Under the —tz option, fields are strings separated by
z; otherwise fields are non-empty non-blank strings separated by
blanks.

When there are multiple sort keys, later keys are compared only
after all earlier keys compare equal. Lines that otherwise compare
equal are ordered with all bytes significant.

These option arguments are also understood:

c Check that the input file is sorted according to the ordering
rules; give no output unless the file is out of sort.

m Merge only, the input files are already sorted.

[

Suppress all but one in each set of equal lines. Ignored bytes
and bytes outside keys do not participate in this comparison.

DELL INC., EMC CORP:,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 350 of 798

SORT (1) SORT (1)

o The next argument is the name of an output file to use
instead of the standard output. This file may be the same
as one of the inputs.

EXAMPLES
Print in alphabetical order all the unique spellings in a list of
words (capitalized words differ from uncapitalized):
sort —u +0f +0 list

Print the password file (passwd(4)) sorted by user ID (the third
colon-separated field):

sort —t: +2n /etc/passwd

Print the first instance of each month in an already sorted file of
(month-day) entries (the options —um with just one input file
make the choice of a unique representative from a set of equal
lines predictable):
sort —um +0 -1 dates

FILES
Jusr/tmp/stm???

SEE ALSO
comm(1), join(1), unig(1).

DIAGNOSTICS

Comments and exits with non-zero status for various trouble con-
ditions and for disorder discovered under option —ec.

BUGS
Very long lines are silently truncated.

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 351 of 798

SPELL (1) SPELL (1)

NAME
spell, hashmake, spellin, hashcheck — find spelling errors

SYNOPSIS
spell [—v | [=b][-x] [-1] [+local_file | [files]

/usr/lib/spell/hashmake
/usr/lib/spell/spellin n
/usr/lib/spell/hashcheck spelling_list

DESCRIPTION
Spell collects words from the named files and looks them up in a
spelling list. Words that neither occur among nor are derivable
(by applying certain inflections, prefixes, and/or suffixes) from
words in the spelling list are printed on the standard output. If
no files are named, words are collected from the standard input.

Spell ignores most nroff(1), tbi(1), and egn(1) constructions.

Under the —v option, all words not literally in the spelling list are
printed, and plausible derivations from the words in the spelling
list are indicated.

Under the —b option, British spelling is checked. Besides prefer-
ring centre, colour, programme, speciality, traveled, etc., this
option insists upon -#se in words like standardise, Fowler and the
OED to the contrary notwithstanding.

Under the —x option, every plausible stem is printed with = for
each word.

By default, spell (like deroff(1)) follows chains of included files
(-so and .nx troff requests), unless the names of such included files
begin with /usr/lib. Under the -1 option, spell will follow the
chains of all included files.

Under the -local_file option, words found in local_file are
removed from spell’s output. Local_file is the name of a user-
provided file that contains a sorted list of words, one per line.
With this option, the user can specify a set of words that are
correct spellings (in addition to spell’s own spelling list) for each
job.

The spelling list is based on many sources, and while more hapha-
zard than an ordinary dictionary, is also more effective with
respect to proper names and popular technical words. Coverage of
the specialized vocabularies of biology, medicine, and chemistry is
light.

Pertinent auxiliary files may be specified by name arguments, indi-
cated below with their default settings (see FILES). Copies of all
output are accumulated in the history file. The stop list filters out
misspellings (e.g., thier=thy-y-ier) that would otherwise pass.

Three routines help maintain and check the hash lists used by
spell:

hashmake Reads a list of words from the standard input and
writes the corresponding nine-digit hash code on the

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 352 of 798

SPELL (1) SPELL (1)

standard output.

spellin Reads n hash codes from the standard input and
writes a compressed spelling list on the standard
output.

hashcheck Reads a compressed spelling_list and recreates the
nine-digit hash codes for all the words in it; it writes
these codes on the standard output.

FILES

D_SPELL=/usr/lib/spell/hlist{ab] hashed spelling lists, Ameri-
can & British

S_SPELL=/usr/lib/spell/hstop hashed stop list
H_SPELL=/usr/lib/spell /spellhist history file
/usr/lib/spell /spellprog program

SEE ALSO
deroff(1), eqn(1), sed(1), sort(1), tbl(1), tee(1).

BUGS

The spelling list’s coverage is uneven; new installations will prob-
ably wish to monitor the output for several months to gather local
additions; typically, these are kept in a separate local file that is
added to the hashed spelling_list via spellin.

The British spelling feature was done by an American.

DELL INC., EMC CORR., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 353 of 798

SPLIT (1) SPLIT (1)

NAME

split — split a file into pieces
SYNOPSIS

split [—n] [file [name | |
DESCRIPTION

Split reads file and writes it in n-line pieces (default 1000 lines)
onto a set of output files. The name of the first output file is
name with aa appended, and so on lexicographically, up to zz (a
maximum of 676 files). Name cannot be longer than 12 charac-
ters. If no output name is given, x is default.

If no input file is given, or if — is given in its stead, then the stan-
dard input file is used.

SEE ALSO
bfs(1), csplit(1).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 354 of 798

STRIP (1) STRIP (1)

NAME

strip — strip symbol and line number information from a common
object file

SYNOPSIS

strip [~} [-x] [-r] [-8] [-V] file-names

DESCRIPTION

FILES

The strip command strips the symbol table and line number infor-
mation from common object files, including archives. Once this
has been done, no symbolic debugging access will be available for
that file; therefore, this command is normally run only on produc-
tion modules that have been debugged and tested.

The amount of information stripped from the symbol table can be
controlled by using any of the following options:

-1 Strip line number information only; do not strip any
symbol table information.

-X Do not strip static or external symbol information.

-r Reset the relocation indexes into the symbol table.

-8 Reset the line number indexes into the symbol table (do
not remove). reset the relocation indexes into the sym-
bol table.

-V Version of strip command executing.

If there are any relocation entries in the object file and any sym-
bol table information is to be stripped, strip will complain and ter-
minate without stripping file-name unless the —r flag is used.

If the strip command is executed on a common archive file (see
ar(4)) the archive symbol table will be removed. The archive
symbol table must be restored by executing the ar(1) command
with the s option before the archive can be link edited by the
ld(1) command. Strip(1) will instruct the user with appropriate
warning messages when this situation arises.

The purpose of this command is to reduce the file storage over-
head taken by the object file.

SEE ALSO

as(1), ce(1), 14(1), ar(4), a.out(4).

DIAGNOSTICS

strip: name: cannot open
if name cannot be read.

strip: name: bad magic
if name is not an appropriate common object file.

strip: name: relocation entries present; cannot strip
if name contains relocation entries and the —r flag
is not used, the symbol table information cannot be
stripped. '

DELL INC., EMC CORP.; HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 355 of 798

STTY (1) STTY (1)

NAME

stty — set the options for a terminal
SYNOPSIS

stty [—a | [—g] [options |
DESCRIPTION

Stty sets certain terminal I/O options for the device that is the
current standard input; without arguments, it reports the settings
of certain options; with the —a option, it reports all of the option
settings; with the —g option, it reports current settings in a form
that can be used as an argument to another stty command.
Detailed information about the modes listed in the first five groups
below may be found in termio(7) for asynchronous lines. Options
in the last group are implemented using options in the previous
groups. Note that many combinations of options make no sense,
but no sanity checking is performed. The options are selected
from the following:

Control Modes
parenb (—parenb) enable (disable) parity generation and

detection.
parodd (—parodd) select odd (even) parity.
cs5 csB cs7 cs8 select character size (see termio(7)).
0 hang up phone line immediately.

50 75 110 134 150 200 300 600 1200

1800 2400 4800 9600 exta extb
Set terminal baud rate to the number
given, if possible. (All speeds are not sup-
ported by all hardware interfaces.)

hupel (~hupel) hang up (do not hang up) DATA-PHONE
connection on last close.

hup (~hup) same as hupel (~hupel).

cstopb (—cstopb) use two (one) stop bits per character.

cread (—cread) enable (disable) the receiver.

clocal (~clocal) assume a line without (with) modem con-
trol.

Input Modes
ignbrk (—ignbrk) ignore (do not ignore) break on input.
brkint (~brkint) signal (do not signal) INTR on break.
ignpar (—ignpar) ignore (do not ignore) parity errors.
parmrk (—parmrk) mark (do not mark) parity errors (see ter-

mio(7)).
inpek (—inpck) enable (disable) input parity checking.
istrip (—istrip) strip (do not strip) input characters to
seven bits.
inler (—inler) map (do not map) NL to CR on input.
igner (—igner) ignore (do not ignore) CR on input.
icrnl (—icrnl) map (do not map) CR to NL on input.
iucle (~iuclc) map (do not map) upper-case alphabetics to

lower case on input.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 356 of 798

STTY (1)

ixon (—ixon)

ixany (-ixany)

ixoff (—ixoff)

Output Modes
opost (—opost)

olcue (—olcuc)

onler (—onler)
ocrnl (—ocrnl)
onocr (—onocr)
onlret (—onlret)

ofill (—ofill)
ofdel (—ofdel)
cr0 crl cr2 cr3

nl0 nl1

STTY (1)

enable (disable) START/STOP output con-
trol. Output is stopped by sending an
ASCII DC3 and started by sending an ASCII
DC1.

allow any character (only DC1) to restart
output.) ,

request that the system send (not send)
START/STOP characters when the input
queue is nearly empty/full.

post-process output (do not post-process
output; ignore all other output modes).

map (do not map) lower-case alphabetics to
upper case on output.

map (do not map) NL to CR-NL on output.
map (do not map) CR to NL on output.

do not (do) output CRs at column zero.

on the terminal NL performs {does not per-
form) the CR function. »

use fill characters (use timing) for delays.
fill characters are DELs (NULs).

select style of delay for carriage returns (see
termio(7)).

select style of delay for line-feeds (see ter-
mio(7)).

tab0 tabl tab2 tab3

bs0 bsl
ffo ff1
vt0 vtl

Local Modes
isig (~isig)
icanon (-iéanon)
xcase (—xcase)
echo (~echo)

echoe (—echoe)

echok (—echok)

select style of delay for horizontal tabs (see
termio(7).

select style of delay for backspaces (see ter-
mio(7)).

select style of delay for form-feeds (see ter-
mio(7)).

select style of delay for vertical tabs (see
termio(7)).

enable (disable) the checking of characters
against the special control characters INTR
and QUIT. »

enable (disable) canonical input (ERASE
and KILL processing).

canonical (unprocessed) upper/lower-case
presentation.

echo back (do not echo back) every charac-
ter typed.

echo (do not echo) ERASE character as a
backspace-space-backspace string. Note:
this mode will erase the ERASEed character
on many CRT terminals; however, it does
not keep track of column position and, as a
result, may be confusing on escaped charac-
ters, tabs, and backspaces.

echo (do not echo) NL after KILL character.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 357 of 798

STTY (1) STTY(1)

Ifke (~1fke) the same as echok (—echok); obsolete.

echonl (—echonl) echo (do not echo) NL.

noflsh (—noflsh) disable (enable) flush after INTR or QUIT.

stwrap (—stwrap) disable (enable) truncation of lines longer
than 79 characters on a synchronous line.

stflush (—stflush) enable (disable) flush on a synchronous line
after every write(2).

stappl (—stappl) use application mode (use line mode) on a
synchronous line.

Control Assignments

control-character ¢ set control-character to ¢, where control-
character is erase, kill, intr, quit, eof,
eol, ctab, min, or time (ctab is used with
—stappl; see termio(7)). If ¢ is preceded
by an (escaped from the shell) caret (7,
then the value used is the corresponding
CTRL character (e.g., ‘“"d” is a CTRL-d)};
“*?” s interpreted as DEL and ‘“"-" is
interpreted as undefined.

line ¢ set line discipline to 1 (0 < § < 127).
Combination Modes

evenp or parity enable parenb and cs7.

oddp enable parenb, ¢s7, and parodd.

—parity, —evenp, or —oddp
disable parenb, and set cs8.

raw (—raw or cooked)
enable (disable) raw input and output (no
ERASE, KILL, INTR, QUIT, EOT, or output
post processing).

nl (—nl) unset (set) icrnl, onler. In addition —nl
unsets inler, igner, ocrnl, and onlret.
lcase (—Ilcase) set (unset) xcase, iucle, and olcuc.

LCASE (-LCASE) same as lcase (—lcase).
tabs (—tabs or tab3)
preserve (expand to spaces) tabs when

printing.
ek reset ERASE and KILL characters back to
normal # and @.
sane resets all modes to some reasonable values.
term set all modes suitable for the terminal type

term, where term is one of tty33, tty37,
vt05, tn300, ti700, or tek.
SEE ALSO
tabs(1), ioctl(2).
termio(7) in the UNIX System Administrator’s Manual.

DELL INC., EMC CORP.,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 358 of 798

SU(1) SU(1)

NAME

su — become super-user or another user
SYNOPSIS

su | — | [name [arg ...]|
DESCRIPTION

Su allows one to become another user without logging off. The
default user name is root (i.e., super-user).

To use su, the appropriate password must be supplied (unless one
is already super-user). If the password is correct, su will execute a
new shell with the user ID set to that of the specified user. To
restore normal user ID privileges, type an EOF to the new shell.

Any additional arguments are passed to the shell, permitting the
super-user to run shell procedures with restricted privileges (an
arg of the form —c string executes string via the shell). When
additional arguments are passed, /bin/sh is always used. When
no additional arguments are passed, su uses the shell specified in
the password file.

An initial — flag causes the environment to be changed to the one
that would be expected if the user actually logged in again. This
is done by invoking the shell with an arg0 of —su causing the
.profile in the home directory of the new user ID to be executed.
Otherwise, the environment is passed along with the possible
exception of $PATH, which is set to
/bin:/ete:/usr/bin:/usr/local/bin for root. Note that the
.profile can check arg0 for —sh or —su to determine how 1t was

invoked.

FILES
/ete/passwd system’s password file
$HOME/.profile user’s profile

SEE ALSO

env(1), login(1M), sh(1), environ(5).

DELL INC., EMC CORP:,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 359 of 798

SUM(1) SUM(1)

NAME . .

sum — print checksum and block count of a file
SYNOPSIS

sum [—r | file
DESCRIPTION

Sum calculates and prints a 16-bit checksum for the named file,
and also prints the number of blocks in the file. It is typically
used to look for bad spots, or to validate a file communicated over
some transmission line. The option —r causes an alternate algo-
rithm to be used in computing the checksum.

SEE ALSO
we(l).

DIAGNOSTICS _
“Read error” is indistinguishable from end of file on most devices;
check the block count.

DELL INC., EMC CORP:,'HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 360 of 798

SYNC(1) SYNC (1)

NAME

sync — update the super block
SYNOPSIS

sync

DESCRIPTION
Sync executes the sync system primitive. If the system is to be
stopped, sync¢ must be called to insure file system integrity. It
will flush all previously unwritten system buffers out to disk, thus
assuring that all file modifications up to that point will be saved.
See sync(2) for details.

SEE ALSO
sync(2).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 361 of 798

TABS (1) TABS (1)

NAME

tabs — set tabs on a terminal
SYNOPSIS

tabs [tabspec | [+mn | [—~Ttype]
DESCRIPTION

Tabs sets the tab stops on the user’s terminal according to the tab
specification tabspec, after clearing any previous settings. The
user must of course be logged in on a terminal with remotely-
settable hardware tabs.

Users of GE TermiNet terminals should be aware that they behave
in a different way than most other terminals for some tab settings:
the first number in a list of tab settings becomes the left margin
on a TermiNet terminal. Thus, any list of tab numbers whose
first element is other than 1 causes a margin to be left on a Ter-
miNet, but not on other terminals. A tab list beginning with 1
causes the same effect regardless of terminal type. It is possible to
set a left margin on some other terminals, although in a different
way (see below).

Four types of tab specification are accepted for (fabspec:
“canned,” repetitive, arbitrary, and file. If no tabspec is given,
the default value is —8, i.e,, UNIX ‘‘standard” tabs. The lowest
column number is 1. Note that for tebs, column 1 always refers
to the leftmost column on a terminal, even one whose column
markers begin at 0, e.g., the DASI 300, DASI 300s, and DASI 450.

—code Gives the name of one of a set of “canned’ tabs. The
legal codes and their meanings are as follows:

-a 1,10,16,36,72
Assembler, IBM S/370, first format

-a2 1,10,16,40,72
Assembler, IBM S/370, second format

—c 1,8,12,16,20,55
COBOL, normal format

-c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using
this code, the first typed character corresponds to card
column 7, one space gets you to column 8 and a tab
reaches column 12. Files using this tab setup should
include a format specification as follows:

<:t—c2 m6 s66 d:>

—c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58 62,67
COBOL compact format (columns 1-6 omitted), with
more tabs than —¢2. This is the recommended format for
COBOL. The appropriate format specification is:

<:t—c3 m6 s668 d:>

-f 1,7,11,15,19,23
FORTRAN

-p 1,5,9,13,17,21,25,29,33,37 41,45,49,53,57,61
PL/I

-8 1,10,55
SNOBOL

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 362 of 798

TABS (1) TABS (1)

~u 1,12,20,44
UNIVAC 1100 Assembler

In addition to these “canned’’ formats, three other types exist:

-n A repetitive specification requests tabs at columns 1+n,
1+2#n, etc. Note that such a setting leaves a left margin
of n columns on TermiNet terminals only. Of particular
importance is the value —8: this represents the UNIX
“standard” tab setting, and is the most likely tab setting
to be found at a terminal. It is required for use with the
nroff —h option for high-speed output. Another special
case is the value —0, implying no tabs at all.

nl,n2,..

The arbitrary format permits the user to type any chosen
set of numbers, separated by commas, in ascending order.
Up to 40 numbers are allowed. If any number (except
the first one) is preceded by a plus sign, it is taken as an
increment to be added to the previous value. Thus, the
tab lists 1,10,20,30 and 1,10,410,+10 are considered
identical.

——file If the name of a file is given, fabs reads the first line of
the file, searching for a format specification. If it finds
one there, it sets the tab stops according to it, otherwise
it sets them as —8. This type of specification may be
used to make sure that a tabbed file is printed with
correct tab settings, and would be used with the pr(1)
command:

tabs —— file; pr file

Any of the following may be used also; if a given flag occurs more
than once, the last value given takes effect:

—Ttype Tabs usually needs to know the type of terminal in order
to set tabs and always needs to know the type to set
margins. Type is a name listed in ferm(5). If no -T
flag is supplied, tabs searches for the $TERM value in
the environment (see environ(5)). If no type can be
found, tabs tries a sequence that will work for many ter-
minals.

+mn The margin argument may be used for some terminals.
It causes all tabs to be moved over n columns by making
column n+1 the left margin. If 4+m is given without a
value of n, the value assumed is 10. For a TermiNet,
the first value in the tab list should be 1, or the margin
will move even further to the right. The normal (left-
most) margin on most terminals is obtained by +m0.
The margin for most terminals is reset only when the
+m flag is given explicitly.

Tab and margin setting is performed via the standard output.

DIAGNOSTICS
illegal tabs when arbitrary tabs are ordered incorrectly.
tllegal increment when a zero or missing increment is found in
an arbitrary specification.

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 363 of 798

TABS(1) TABS(1)

unknown tab code when a “canned” code cannot be found.

can’t open if ——file option used, and file can’'t be
opened.
file indirection if ——file option used and the specification in

that file points to yet another file. Indirec-
tion of this form is not permitted.

SEE ALSO
nroff(1), environ(5), term(5).

BUGS
There is no consistency among different terminals regarding ways
of clearing tabs and setting the left margin.
It is generally impossible to usefully change the left margin
without also setting tabs.
Tabs clears only 20 tabs (on terminals requiring a long sequence),
but is willing to set 40.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 364 of 798

TAIL(1) TAIL (1)

NAME

tail — deliver the last part of a file

SYNOPSIS

tail [+[number][lbe[f] | | [file]

DESCRIPTION

Tail copies the named file to the standard output beginning at a
designated place. If no file is named, the standard input is used.

Copying begins at distance +number from the beginning, or
—number from the end of the input (if number is null, the value
10 is assumed). Number is counted in units of lines, blocks, or
characters, according to the appended option 1, b, or ¢. When no
units are specified, counting is by lines.

With the —f (‘“follow”) option, if the input file is not a pipe, the
program will not terminate after the line of the input file has been
copied, but will enter an endless loop, wherein it sleeps for a
second and then attempts to read and copy further records from
the input file. Thus it may be used to monitor the growth of a file
that is being written by some other process. For example, the
command:

tail —f fred

will print the last ten lines of the file fred, followed by any lines
that are appended to fred between the time fa:l is initiated and
killed. As another example, the command:

tail —15c¢f fred

will print the last 15 characters of the file fred, followed by any
lines that are appended to fred between the time tasl is initiated
and killed.

SEE ALSO

BUGS

dd(1).

Tails relative to the end of the file are treasured up in a buffer,
and thus are limited in length. Various kinds of anomalous
behavior may happen with character special files.

DELL INC., EMC CORP., HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 365 of 798

TAR(1) TAR(1)

NAME

tar — tape file archiver
SYNOPSIS

tar | key | [files]
DESCRIPTION

Tar saves and restores files on magnetic tape. Its actions are con-
trolled by the key argument. The key is a string of characters
containing at most one function letter and possibly one or more
function modifiers. Other arguments to the command are files (or
directory names) specifying which files are to be dumped or
restored. In all cases, appearance of a directory name refers to the
files and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following
letters:

r The named files are written on the end of the tape. The
¢ function implies this function.

X The named files are extracted from the tape. If a named
file matches a directory whose contents had been written
onto the tape, this directory is (recursively) extracted.
The owner, modification time, and mode are restored (if
possible). If no files argument is given, the entire con-
tent of the tape is extracted. Note that if several files
with the same name are on the tape, the last one
overwrites all earlier ones.

t The names of the specified files are listed each time that
they occur on the tape. If no files argument is given, all
the names on the tape are listed.

u The named files are added to the tape if they are not
already there, or have been modified since last written on
that tape.

c Create a new tape; writing begins at the beginning of the

tape, instead of after the last file. This command implies
the r function.

The following characters may be used in addition to the letter
that selects the desired function:

0,...,7 This modifier selects the drive on which the tape is
mounted. The default is 1.

v Normally, tar does its work silently. The v (verbose)
option causes it to type the name of each file it treats,
preceded by the function letter. With the t function, v
gives more information about the tape entries than just
the name.

w causes tar to print the action to be taken, followed by
the name of the file, and then wait for the user’s
confirmation. If a word beginning with y is given, the
action is performed. Any other input means “no”.

DELL INC., EMC CORP.,;HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 366 of 798

TAR(1) TAR(1)

f causes tar to use the next argument as the name of the
archive instead of /dev/mt?. If the name of the file is
—, tar writes to the standard output or reads from the
standard input, whichever is appropriate. Thus, tar can
be used as the head or tail of a pipeline. Tar can also be
used to move hierarchies with the command:

cd fromdir; tar ¢f - .| (cd todir; tar xf -)

b causes tar to use the next argument as the blocking fac-
tor for tape records. The default is 1, the maximum is
20. This option should only be used with raw magnetic
tape archives (see f above). The block size is determined
automatically when reading tapes (key letters x and t).

1 tells tar to complain if it cannot resolve all of the links
to the files being dumped. If 1 is not specified, no error
messages are printed.

m tells tar not to restore the modification times. The
modification time of the file will be the time of extrac-
tion.

FILES
/dev/mt?
/tmp/tar*
DIAGNOSTICS

BUGS

Complaints about bad key characters and tape read/write errors.
Complaints if not enough memory is available to hold the link
tables.

There is no way to ask for the n-th occurrence of a file.

Tape errors are handled ungracefully.

The u option can be slow.

The b option should not be used with archives that are going to
be updated. The current magnetic tape driver cannot backspace
raw magnetic tape. If the archive is on a disk file, the b option
should not be used at all, because updating an archive stored on
disk can destroy it.

The current limit on file-name length is 100 characters.

DELL INC., EMC CORRB., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 367 of 798

TBL (1) TBL (1)

NAME

tbl — format tables for nroff or troff

SYNOPSIS

thl [—TX | | files]

DESCRIPTION

Tbl is a preprocessor that formats tables for nroff or troff (not
included on the UNIX PC). The input files are copied to the stan-
dard output, except for lines between .TS and .TE command lines,
which are assumed to describe tables and are re-formatted by ¢b!.
(The .TS and .TE command lines are not altered by tb!).

TS is followed by global options. The available global options
are:

center center the table (default is left-adjust);
expand make the table as wide as the current line

length;
box enclose the table in a box;
doublebox

enclose the table in a double box;

allbox enclose each item of the table in a box;

tab (z) use the character z instead of a tab to
separate items in a line of input data.

The global options, if any, are terminated with a semi-colon (3).

Next come lines describing the format of each line of the table.
Each such format line describes one line of the actual table, except
that the last format line (which must end with a period) describes
all remaining lines of the table. Each column of each line of the
table is described by a single key-letter, optionally followed by
specifiers that determine the font and point size of the correspond-
ing item, that indicate where vertical bars are to appear between
columns, that determine column width, inter-column spacing, etc.
The available key-letters are:

c center item within the column;

r right-adjust item within the column;

1 left-adjust item within the column;

n numerically adjust item in the column: units posi-

tions of numbers are aligned vertically;

span previous item on the left into this column;
center longest line in this column and then left-
adjust all other lines in this column with respect
to that centered line;

span down previous entry in this column;

- replace this entry with a horizontal line;

= replace this entry with a double horizontal line.

The characters B and I stand for the bold and italic fonts, respec-
tively; the character | indicates a vertical line between columns.

P w

A

The format lines are followed by lines containing the actual data
for the table, followed finally by .TE. Within such data lines,
data items are normally separated by tab characters.

DELL INC., EMC CORP., HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 368 of 798

TBL (1) TBL (1)

If a data line consists of only _ or =, a single or double line,
respectively, is drawn across the table at that point; if a single
item in a data line consists of only _ or =, then that item is

replaced by a single or double line.

Full details of all these and other features of ¢b! are given in the
reference manual cited below.

The -TX option forces tbl to use only full vertical line motions,
making the output more suitable for devices that cannot generate
partial vertical line motions (e.g., line printers).

If no file names are given as arguments (or if — is specified as the
last argument), tb! reads the standard input, so it may be used as
a filter. When it is used with egn(1) or negn, tbl should come
first to minimize the volume of data passed through pipes.

EXAMPLE
If we let — represent a tab (which should be typed as a genuine
tab), then the input:

TS

center box ;

cB s s

cl | cs

~] ce

1| nn.

Household Population

Town—Households
—Number—Size
Bedminster—789—3.26
Bernards Twp.—3087—3.74
Bernardsville—2018-—-3.30
Bound Brook—3425—3.04
Bridgewater—7897—3.81
Far Hills—240—3.19

.TE
yields:
Household Population
Town Households
Number __Size |
Bedminster 789 3.26
Bernards Twp. 3087 3.74
Bernardsville 2018 3.30
Bound Brook 3425 3.04
Bridgewater 7897 3.81
Far Hills 240 3.19
SEE ALSO

TBL-A Program to Format Tebles in the UNIX System Document
Processing Guide .
cw(1), eqn(1), mm(1), nroff(1), mm(5).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 369 of 798

TBL (1) TBL (1)

BUGS
See BUGS under nroff(1).

DELL INC., EMC CORP.,. HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 370 of 798

TC(1) TC(1)

NAME

tc — phototypesetter simulator
SYNOPSIS

te [-t][-sn] [—pl]]|file]
DESCRIPTION

Tec interprets its input (standard input default) as device codes for
a Wang Laboratories, Inc. C/A/T phototypesetter. The standard
output of tc is intended for a Tektronix 4014 terminal with ASCII
and APL character sets. The sixteen typesetter sizes are mapped
into the 4014’s four sizes; the entire TROFF character set is drawn
using the 4014’s character generator, with overstruck combina-
tions where necessary. Typical usage is:

troff —t files | tc

At the end of each page, tc waits for a new-line (empty line) from
the keyboard before continuing on to the next page. In this wait
state, the command e will suppress the screen erase before the
next page; sn will cause the next n pages to be skipped; and temd
will send emd to the shell.

The command line options are:
-t Don’t wait between pages (for directing output into a file).
—8sn Skip the first n pages.

-pl Set page length to I; | may include the scale factors p
(points), i (iniches), ¢ {centimeters), and P (picas); default
is picas. i
SEE ALSO
4014(1), sh(1).

BUGS
Font distinctions are lost.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 371 of 798

TEE(1) TEE (1)

NAME

tee — pipe fitting
SYNOPSIS

tee [1] [-a][file] ..
DESCRIPTION

Tee transcribes the standard input to the standard output and
makes copies in the files. The —i option ignores interrupts; the
—a option causes the output to be appended to the files rather
than overwriting them.

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 372 of 798

TEST (1)

NAME

TEST (1)

test — condition evaluation command

SYNOPSIS
test expr

[expr]
DESCRIPTION

Test evaluates the expression expr and, if its value is true, returns
a zero (true) exit status; otherwise, a non-zero (false) exit status is
returned; test also returns a non-zero exit status if there dare no
arguments. The following primitives are used to construct ezpr:

—r file
-w file
—x file
~f file
—d file
—~c file
~b file
—p file
—u file
—g file
-k file
—s file
~t | fildes |

-z sl

-n sl

81 = s2
sl t== 32
si

nl —eq n?

true if file exists and is readable.

true if file exists and is writable.

true if file exists and is executable.

true if file exists and is a regular file.

true if file exists and is a directory.

true if file exists and is a character special file.
true if file exists and is a block special file.
true if file exists and is a named pipe (fifo).
true if file exists and its set-user-ID bit is set.
true if file exists and its set-group-ID bit is set.
true if file exists and its sticky bit is set.

true if file exists and has a size greater than zero.

true if the open file whose file descriptor number is
fildes (1 by default) is associated with a terminal
device.

true if the length of string s is zero.

true if the length of the string s! is non-zero.
true if strings s and s2 are identical.

true if strings s and s2 are not identical.
true if 81 is not the null string.

true if the integers ni and 22 are algebraically
equal. Any of the comparisons —ne, —gt, —ge, —1It,
and —le may be used in place of —eq.

These primaries may be combined with the following operators:

1
—a

-0

(expr)

unary negation operator.
binary and operator.

binary or operator (—a has higher precedence than
-o).

parentheses for grouping.

Notice that all the operators and flags are separate arguments to
test. Notice also that parentheses are meaningful to the shell and,
therefore, must be escaped.

DELL INC., EMC CORP.,'HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 373 of 798

TEST (1) TEST (1)

SEE ALSO
find(1), sh(1).
WARNING
’ In the second form of the command (i.e., the one that uses [],
rather than the word test), the square brackets must be delimited
by blanks.
Some UNIX systems do not recognize the second form of the com-
mand.

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 374 of 798

TIME (1) TIME (1)

NAME
time — time a command

SYNOPSIS
time command

DESCRIPTION
The command is executed; after it is complete, time prints the
elapsed time during the command, the time spent in the system,

and the time spent in execution of the command. Times are
reported in seconds.

The execution time can depend on what kind of memory the pro-
gram happens to land in; the user time in MOS is often half what
it is in core.

The times are printed on standard error.

SEE ALSO
times(2).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 375 of 798

TOUCH (1) TOUCH (1)

NAME

touch —~ update access and modification times of a file
SYNOPSIS

touch | —amec | [mmddhhmm[yy] | files
DESCRIPTION

Touch causes the access and modification times of each argument
to be updated. If no time is specified (see date(1)) the current
time is used. The —a and —m options cause touch to update only
the access or modification times respectively (default is —am).
The —c option silently prevents fouch from creating the file if it
did not previously exist.

The return code from touch is the number of files for which the
times could not be successfully modified (including files that did
not exist and were not created).

SEE ALSO
date(1), utime(2).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 376 of 798

TR(1)

NAME

TR(1)

tr — translate characters

SYNOPSIS

tr [—eds | [stringl [string2 |]

DESCRIPTION

Tr copies the standard input to the standard output with substi-
tution or deletion of selected characters. Input characters found
in string? are mapped into the corresponding characters of
string2. Any combination of the options —eds may be used:

-c Complements the set of characters in stringl with
respect to the universe of characters whose ASCII codes
are 001 through 377 octal.

—-d Deletes all input characters in string?.

-8 Squeezes all strings of repeated output characters that
are in string? to single characters.

The following abbreviation conventions may be used to introduce
ranges of characters or repeated characters into the strings:

[a—z] Stands for the string of characters whose ASCII codes run
from character a to character z, inclusive.

[a*n] Stands for n repetitions of a. If the first digit of n is O,
n is considered octal; otherwise, n is taken to be decimal.
A zero or missing n is taken to be huge; this facility is
useful for padding string?2.

The escape character \ may be used as in the shell to remove spe-
cial meaning from any character in a string. In addition, \ fol-
lowed by 1, 2, or 3 octal digits stands for the character whose
ASCII code is given by those digits.

The following example creates a list of all the words in file! one
per line in file2, where a word is taken to be a maximal string of
alphabetics. The strings are quoted to protect the special charac-
ters from interpretation by the shell; 012 is the ASCII code for
newline.

tr —cs "[A-Z]ja-z]” "[\012%¢]” <filel >file2

SEE ALSO

BUGS

ed(1), sh(1), ascii(5).

Won't handle ASCII NUL in stringl or string2; always deletes
NUL from input.

DELL INC., EMC CORP:, HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 377 of 798

TRUE (1) TRUE (1)

NAME
true, false — provide truth values

SYNOPSIS
true

false

DESCRIPTION
True does nothing, successfully. False does nothing, unsuccess-
fully. They are typically used in input to sh(1) such as:

while true
do

command
done

The following UNIX PC files are linked to either true or false:
/bin/mcB8k
/bin/pdpl1l
/bin/u370
/bin/u3b
/bin/vax
SEE ALSO
sh(1).
DIAGNOSTICS
True has exit status zero, false nonzero.

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 378 of 798

TSET (1) (AT&T UNIX PC only) TSET (1)

NAME
tset — set terminal modes

SYNOPSIS
tset | options | [—m [ident|[test baudrate]:type ... | [type

DESCRIPTION

Tset causes terminal dependent processing such as setting erase
and kill characters, setting or resetting delays, and the like. It
first determines the type of terminal involved, names for which are
specified by the /etc/termcap data base, and then does necessary
initializations and mode settings. In the case where no argument
types are specified, tset simply reads the terminal type out of the
environment variable TERM and re-initializes the terminal. The
rest of this manual concerns itself with type initialization, done
typically once at login, and options used at initialization time to
determine the terminal type and set up terminal modes.

When used in a startup script .profile it is desirable to give infor-
mation about the types of terminal usually used on terminals
which are not hardwired. These ports are initially identified as
being dialup or plugboard or arpanet, etc. To specify what termi-
nal type is usually used on these ports —m is followed by the
appropriate port type identifier, an optional baud-rate
specification, and the terminal type to be used if the mapping con-
ditions are satisfied. If more than one mapping is specified, the
first applicable mapping prevails. A missing type identifier
matches all identifiers.

Baud rates are specified as with stty(1), and are compared with
the speed of the diagnostic output (which is almost always the
control terminal). The baud rate test may be any combination of:
>, =, <, @ and !; @ is a2 synonym for = and ! inverts the
sense of the test. To avoid problems with metacharacters, it is
best to place the entire argument to —m within “ **’ characters.

Thus

tset -m ‘dialup>300:adm3a” -m dialup:dw2 -m
‘plugboard:?adm3a’

causes the terminal type to be set to an adm3a if the port in use is
a dialup at a speed greater than 300 baud; to a dw2 if the port is
(otherwise) a dialup (i.e. at 300 baud or less). If the type above
begins with a question mark, the user is asked if s/he really wants
that type. A null response means to use that type; otherwise,
another type can be entered which will be used instead. Thus, in
this case, the user will be queried on a plugboard port as to
whether they are using an adm$ae. For other ports the port type
will be taken from the /etc/ttytype file or a final, default type
option may be given on the command line not preceded by a —m:.

It is often desirable to return the terminal type, as specified by the
—m options, and information about the terminal to a shell's
environment. This can be done using the —s option; using the
Bourne shell, sh{1):

DELL INC., EMC CORP:;, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 379 of 798

1 AT&T U C only TSET (1
TSET T&T UNIX PC onl

FILES

eval ‘tset —s options...®

These commands cause tset to generate as output a sequence of
shell commands which place the variables TERM and TERMCAP
in the environment; see environ(5).

Once the terminal type is known, tset engages in terminal mode
setting. This normally involves sending an initialization sequence
to the terminal and setting the single character erase (and option-
ally the line-kill (full line erase)) characters.

On terminals that can backspace but not overstrike (such as a
CRT), and when the erase character is the default erase character
(‘# on standard systems), the erase character is changed to a
Control-H (backspace).

The options are:

—e set the erase character to be the named character ¢ on all
terminals, the default being the backspace character on
the terminal, usually “H.

-k is similar to —e but for the line kill character rather than
the erase character; ¢ defaults to "X (for purely historical
reasons); “U is the preferred setting. No kill processing is
done if ~k is not specified.

-1 suppresses outputting terminal initialization strings.
-Q suppresses printing the “Erase set to’ and “Kill set to”
messages.

-85 Outputs the strings to be assigned to TERM and

(wewereast) TERMCAP in the environment rather than commands for

a shell.

Jete/ttytype terminal id to type map database
/ete/termeap terminal capability database

SEE ALSO

BUGS

sh(1), stty(1), environ(5), ttytype(5), termeap(5)

Should be merged with stty(1).

NOTES

For compatibility with earlier versions of tset a number of flags
are accepted whose use is discouraged:

—d type equivalent to —~m dialup:type
—p type equivalent to —m plugboard:type
—a type equivalent to —m arpanet:type

-Ec Sets the erase character to ¢ only if the terminal can
backspace.

- prints the terminal type on the standard output
-r prints the terminal type on the diagnostic output.

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 380 of 798

TSORT (1) TSORT (1)

NAME

tsort — topological sort
SYNOPSIS

tsort [file |
DESCRIPTION

Tsort produces on the standard output a totally ordered list of
items consistent with a partial ordering of items mentioned in the
input file. If no file is specified, the standard input is understood.
The input consists of pairs of items (nonempty strings) separated
by blanks. Pairs of different items indicate ordering. Pairs of
identical items indicate presence, but not ordering.

SEE ALSO
lorder(1).

DIAGNOSTICS
Odd data: there is an odd number of fields in the input file.

BUGS

Uses a quadratic algorithm; not worth fixing for the typical use of
ordering a library archive file.

DELL INC., EMC CORP.,-HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 381 of 798

TTY (1) TTY (1)

NAME

tty — get the terminal’s name
SYNOPSIS

tty [-1] [-s]
DESCRIPTION

Tty prints the path name of the user’s terminal. The -1 option
prints the synchronous line number to which the user’s terminal is
connected, if it is on an active synchronous line. The —s option
inhibits printing of the terminal’s path name, allowing one to test
just the exit code.

EXIT CODES
2 if invalid options were specified,
0 if standard input is a terminal,
1 otherwise.

DIAGNOSTICS

‘“‘not on an active synchronous line” if the standard input is not a
synchronous terminal and —1 is specified.

“not a tty” if the standard input is not a terminal and —s is not
specified.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 382 of 798

UAHELP (1) (AT&T UNIX PC only) UAHELP (1)

NAME

uahelp — user agent help process
SYNOPSIS

uahelp —h helpfile [—t title] | —d debugfile |
DESCRIPTION

Ushelp is a help facility which is driven by a text file (helpfile).
The syntax of this file is described below.

Title, if specified, is the title of the initial help display.

If the —~d (debug) option is specified, then as helpfile is being
parsed, the lines are written to debugfile. When a syntax error
occurs during the parsing of helpfile, then uahelp displays an error
message and quits. The line containing the error is the last line
written to debugfile. This option is used to debug new helpfiles.

Helpfile is an ordinary ASCII text file, with a “‘keyword = value”
syntax. The following keywords are defined:

Keyword Value

Wilabel Window label
Contents Lists of help displays in this file

Name Name of current help display
Llabel Long screen label for current display
Slabel Short screen label for current display

Branch List of help displays available via SLK'’s from
the current help display

Title Title of current help display

Text Text of current help display

All keywords must be case correct and followed by an equal sign
(=) and a value. The Wlabel and Contents keywords must be
defined at the beginning of the kelpfile, and they are followed by
a series of definitions of the individual help displays, one for each
display listed under Contents.

The individual help displays begin with a Name definition, which
must be one of the names listed under Contents. The remaining
keyword definitions apply to the current help display, up until the
Text keyword, which terminates the help display definition.

The value of the Contents and Branch keywords must consist
of a list of one or more help display names. These names must be
separated by commas, and the final one must be terminated with
a new line character. The value of the Name keyword is a single
help display name, 16 characters or less. The value of the Wla-
bel, Llabel, Slabel, and Title keywords are strings enclosed in
double quotes (" ”).

The value of the Text keyword is text in ADF format (see
ADF(4)). The following embedded codes are recognized:

\CEN\ Center the line
\IND\ Indent to the next tab stop
\UL\ Begin underlining

DELL INC., EMC CORP.; HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 383 of 798

UAHELP (1) (AT&T UNIX PC only) UAHELP (1)

\US\ End underlining
\BL\ Begin bold text (reverse video)
\BS\ End bold text

\EOT)\ End of text

EXAMPLE
The following is the beginning of a help file, which might be used
for a word processing help facility. It is recommended that all
help files include a help display called “Using help,” as in this
example.

Wlabel = "Word processor help”

Contents = Using help, Getting started, Cursor,

Insert, Edit, Format

Name = Using help

LLlabel = 7 USING HELP”

Slabel = ” HELP”

Branch = Using help, Getting started

Title = "How to use the HELP facility”

Text = You can use the HELP facility in two different ways:

Normal help displays consist of a description which \

displayed in a window. If the description doesn’t fit \

in the window, the ROLL UP and ROLL DOWN keys may be \
used to view the rest of the display. The screen \

labeled keys at the bottom of the display contain the \

names of other help displays. Press one of these function \
keys to view a different help display.

Press function key F1 (labeled\UL\TABLE OF
CONTENTS\US\ on the screen) \

to see a listing of all available help \

displays. Select the help display you want with the \
cursor and press ENTER.

In either case, pressing EXIT ends the help display \EOT)\

Name = Getting started

Llabel = "GETTING STARTED”

Slabel = "STARTING”

Branch = Using help, Cursor, Insert, Edit, Format
Title = ”Starting to use the word processor”

Text =

Note that the returns are all escaped with the backslash (\),
except for the hard returns at the end of paragraphs.

SEE ALSO
message(3T), ADF(4).

CAVEATS
Uahelp arbitrarily limits help files to 100 distinct displays, and
each display is limited to 100 lines.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 384 of 798

UAUPD (1) (AT&T UNIX PC only) UAUPD (1)

NAME
uaupd — update user agent special files

SYNOPSIS
uaupd -r ObjectName [-a UpdateFile] filename

DESCRIPTION
Uaupd updates the special file named in the command line. This
file is assumed to reside in the directory /usr/lib/ua.

The -r option must be specified, and removes the entry associated
with the given ObjectName from the special file.

The -a option adds the contents of the UpdateFile to the special
file. The format of the user agent special files is described in
ua(4).

SEE ALSO

ua(4).

DELL INC., EMC CORP. HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 385 of 798

UMASK (1) UMASK (1)

NAME

umask — set file-creation mode mask
SYNOPSIS

umask [000 |
DESCRIPTION

The user file-creation mode mask is set to ooo. The three octal
digits refer to read/write/execute permissions for owner, group,
and others, respectively (see chmod(2) and umask(2)). The value
of each specified digit is subtracted from the corresponding ‘‘digit’”’
specified by the system for the creation of a file (see creat(2)).
For example, umask 022 removes group and others write per-
mission (files normally created with mode 777 become mode 755;
files created with mode 8688 become mode 644). Umask 022 is the
default on the UNIX PC.

If ooo is omitted, the current value of the mask is printed.
Umask is recognized and executed by the shell.

SEE ALSO
chmod(1), sh(1), chmod(2), creat(2), umask(2).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 386 of 798

UMODEM (1) UMODEM (1)

NAME
umodem — remote file transfer program for CP/M terminals

SYNOPSIS
umodem — [rb | rt |[sb|st][q][1][m][d][y]
[7] filename

DESCRIPTION
Umodem cooperates with the MODEM.COM, YAM.COM, or similar
program, running on a CP/M-based intelligent terminal, to per-
form a file transfer. The integrity of the transfer is enhanced by
use of a block checksum for error detection, and block retransmis-
sion for error correction.

Umodem requires exactly one of the following commands:

rb Receive Binary-transfer a file from the terminal, in raw
binary mode. Every byte of the file will be transferred
intact. This mode is usually used to transfer, for example,
.COM files.

rt Receive Text—transfer a file from the terminal, in text
mode. In this mode the program attempts to convert
from the CP/M text file format to the UNIX format on-
the-fly, by stripping carriage-return characters, and by
ceasing to store data after a control-Z is detected.

sb Send Binary-transfer a file o the terminal, in raw binary
mode. Every byte of the file will be transferred intact.
This mode is usually used to transfer, for example, .COM
files.

st Send Text-transfer a file to the terminal, in text mode.
In this mode the program attempts to convert from the
UNIX text file format to the CP/M format on-the-fly, by
adding carriage-return characters, and by appending a
control-Z to the end of the file.

In addition, umodem recognizes the following options:

q Quiet option—the initial ‘‘boiler plate’ of program name,
file size, etc., is suppressed.

1 Logfile option—enables logging the progress of the file
transfer. This option is primarily useful for debugging.

m “Mung-mode” option—unless this option is specified, an
attempt to receive a filename that already exists will be
denied. With this option, the existing file is overwritten.

d Delete the logfile, if it exists, before starting.
Yy Display file status (size) information only.

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 387 of 798

UMODEM(1) UMODEM (1)

7 Seven-bit transfer option-strip off the high-order bit of
each byte before it is sent (—st case) or stored (~rt case).
This option is valid only for text-mode transfers.

EXAMPLES

To transfer MODEM.COM (an executable binary file) to UNIX:
umodem -rb modem.com

To transfer MYDOC.TXT (a WordStar ™ text file) to UNIX, and get
rid of the high-order formatting bits that WordStar™ loves to
embed in the file:

umodem -rt7 mydoc.txt
To transfer foo.c (a UNIX C-source file) to the CP/M terminal:

umodem -st foo.c

FILES

$HOME /umodem.log created or appended to if the -1 option
1s specified.

SEE ALSO
MODMPROT .001-Ward Christensen’s description of the
MODEM protocol
MODEM7xx.DOC-Documentation for the MODEM?7 series of
CP/M smart terminal programs, written in 8080 assembly language
YAMDOC.RNO-Documentation for the YAM smart terminal pro-
gram, written in BDS C.

BUGS

The program supports only the checksum block error check, and
not the more robust CRC.

The program supports neither the MODEM7 nor the YAM batch
file transfer protocols. Only single file transfers are supported.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 388 of 798

UNAME (1) UNAME (1)

NAME
' uname — print name of current UNIX system
SYNOPSIS
uname [—snrvma |
DESCRIPTION

Uname prints the current system name of UNIX on the standard
output file. It is mainly useful to determine what system one is
using. The options cause selected information returned by
uname(2) to be printed:

-8 print the system name (default).

-n print the nodename (the nodename may be a name that
the system is known by to a communications network).

—r print the operating system release.

-V print the operating system version.

—-m print the machine hardware name.
—a print all the above information.
Arguments not recognized default the command to the —s option.

SEE ALSO
uname(2).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 389 of 798

UNGET (1)

NAME

UNGET (1)

unget — undo a previous get of an SCCS file

SYNOPSIS

unget [-rSID] [—s] [—n] files

DESCRIPTION

Unget undoes the effect of a get —e done prior to creating the
intended new delta. If a directory is named, unget behaves as
though each file in the directory were specified as a named file,
except that non-SCCS files and unreadable files are silently
ignored. If a name of — is given, the standard input is read with
each line being taken as the name of an SCCS file to be processed.

Keyletter arguments apply independently to each named file.

—rSID

SEE ALSO

Uniquely identifies which delta is no longer
intended. (This would have been specified by
get as the ‘“‘new delta”). The use of this
keyletter is necessary only if two or more out-
standing gets for editing on the same SCCS file
were done by the same person (login name). A
diagnostic results if the specified SID is ambi-
guous, or if it is necessary and omitted on the
command line.

Suppresses the printout, on the standard out-
put, of the intended delta’s SID.

Causes the retention of the gotten file which
would normally be removed from the current
directory.

delta(1), get(1), sact(1).

DIAGNOSTICS

Use help(1) for explanations.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 390 of 798

UNIQ (1) UNIQ(1)

NAME

uniq — report repeated lines in a file
SYNOPSIS

uniq [—ude [+n | [-n] | [input [output |]
DESCRIPTION

Uniq reads the input file comparing adjacent lines. In the normal
case, the second and succeeding copies of repeated lines are
removed; the remainder is written on the output file. Input and
output should always be different. Note that repeated lines must
be adjacent in order to be found; see sort(1). If the —u flag is
used, just the lines that are not repeated in the original file are
output. The -—d option specifies that one copy of just the
repeated lines is to be written. The normal mode output is the
union of the —u and —d mode outputs.

The —c option supersedes —u and —d and generates an output
report in default style but with each line preceded by a count of
the number of times it occurred.

The n arguments specify skipping an initial portion of each line in
the comparison:

-n The first n fields together with any blanks before each
are ignored. A field is defined as a string of non-space,
non-tab characters separated by tabs and spaces from its
neighbors.

+n The first n characters are ignored. Fields are skipped
before characters.

SEE ALSO

comm(1), sort(1).

DELL INC., EMC CORP:,IHPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 391 of 798

UNITS (1) UNITS (1)

NAME
units — conversion program
SYNOPSIS
units
DESCRIPTION
Units converts quantities expressed in various standard scales to
their equivalents in other scales. It works interactively in this
fashion:
You have: inch
You want: e¢m
* 2.540000e+00
/ 3.937008¢—01
A quantity is specified as a multiplicative combination of units
optionally preceded by a numeric multiplier. Powers are indicated
by suffixed positive integers, division by the usual sign:
You have: 15 lbs force/in2
You want: atm
* 1.020689¢+00
/ 9.797299e—01
Units only does multiplicative scale changes; thus it can convert
Kelvin to Rankine, but not Celsius to Fahrenheit. Most familiar
units, abbreviations, and metric prefixes are recognized, together
with a generous leavening of exotica and a few constants of nature
including;
pi ratio of circumference to diameter,
c speed of light,
e charge on an electron,
g acceleration of gravity,
force sameasg,
mole Avogadro’s number,
water pressure head per unit height of water,
au astronomical unit.
Pound is not recognized as a unit of mass; Ib is. Compound
names are run together, (e.g. lightyear). British units that differ
from their U.S. counterparts are prefixed thus: brgallon. For a
complete list of units, type:
cat /usr/lib/unittab
FILES

/usr/lib/unittab

DELL INC., EMC CORP:,IHPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 392 of 798

UUCP (1C) UUCP (1C)

NAME
uucp, uulog, uuname — UNIX-to-UNIX copy

SYNOPSIS
uucp | options | source-files destination-file

uulog | options |
uuname | -1]

DESCRIPTION
Uucp.
Uucp copies files named by the source-file arguments to the
destination-file argument. A file name may be a path name on
your machine, or may have the form:

system-name!path-name

where system-name is taken from a list of system names which
uucp knows about. The system-name may also be a list of names
such as

in which case an attempt is made to send the file via the specified
route, and only to a destination in PUBDIR (see below). Care
should be taken to insure that intermediate nodes in the route are
willing to forward information.

The shell metacharacters ?, * and [...] appearing in path-name
will be expanded on the appropriate system.

Path names may be one of:
(1) a full path name;

(2) a path name preceded by “user where user is a
login name on the specified system and is replaced
by that user’s login directory;

(3) a path name preceded by ~/user where user is a
login name on the specified system. and is replaced
by that user’s directory under PUBDIR;

(4) anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system the
copy will fail. If the destination-file is a directory, the last part of
the source-file name is used.

Uucp preserves execute permissions across the transmission and
gives 0666 read and write permissions (see chmod(2)).

The following options are interpreted by uucp:
-d Make all necessary directories for the file copy (default).
~f Do not make intermediate directories for the file copy.

-c Use the source file when copying out rather than copying
the file to the spool directory (default).

-C Copy the source file to the spool directory.

—mfile Report status of the transfer in file. If file is omitted,
send mail to the requester when the copy is completed.

DELL INC., EMC CORP;, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 393 of 798

UUCP (1C) UUCP (1C)

—nuser Notify user on the remote system that a file was sent.

—esys Send the uucp command to system sys to be executed
there. (Note: this will only be successful if the remote
machine allows the wucp command to be executed by
/usr/lib/uucp/uuxqt.)

Uucp returns on the standard output a string which is the job
number of the request. This job number can be used by uustat to
obtain status or terminate the job.

Uulog.

Uulog queries a summary log of sucp and wuz(1C) transactions in
the file /usr/spool/uucp/LOGFILE.

The options cause uulog to print logging information:
—s8sys Print information about work involving system sys.
—uuser Print information about work done for the specified user.

Uuname.

Uuname lists the uucp names of known systems. The -1 option
returns the local system name.

FILES
/usr /spool /uucp spool directory
/usr/spool/uucppublic public directory for receiving and sending
(PUBDIR)
Jusr/lib/uucp/* other data and program files
SEE ALSO

mail(1), uux(1C).

WARNING

BUGS

The domain of remotely accessible files can (and for obvious secu-
rity reasons, usually should) be severely restricted. You will very
likely not be able to fetch files by path name; ask a responsible
person on the remote system to send them to you. For the same
reasons you will probably not be able to send files to arbitrary
path names. As distributed, the remotely accessible files are those
whose names begin /usr/spool/uucppublic (equivalent to
“nuuecp or just 7).

All files received by uucp will be owned by uucp.

The —m option will only work sending files or receiving a single
file. Receiving multiple files specified by special shell characters ?
* [...] will not activate the —m option. .

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 394 of 798

UUSTAT(1C)

NAME

UUSTAT (1C)

uustat — uucp status inquiry and job control

SYNOPSIS

uustat | options |

DESCRIPTION

Uustat will display the status of, or cancel, previously specified
uucp commands, or provide general status on uucp connections to
other systems. The following options are recognized:

—jjobn

—kjobn

—rjobn

—chour
—uuser
—88Ys

—ohour
—yhour

—mmech

~Mmch

Report the status of the wucp request jobn. If all is
used for jobm, the status of all wucp requests is
reported. If jobn is omitted, the status of the current
user’s uucp requests is reported.

Kill the uucp request whose job number is jobn. The
killed wucp request must belong to the person issuing
the uustat command unless one is the super-user.

Rejuvenate jobn. That is, jobn is touched so that its
modification time is set to the current time. This
prevents zuclean from deleting the job until the job’s
modification time reaches the limit imposed by
uuclean.

Remove the status entries which are older than hour
hours. This administrative option can only be initiated
by the user uucp or the super-user.

Report the status of all zucp requests issued by user.

Report the status of all wucp requests which communi-
cate with remote system sys.

Report the status of all wucp requests which are older
than kour hours.

Report the status of all wuep requests which are
younger than kour hours.

Report the status of accessibility of machine mch. If
mch is specified as all, then the status of all machines
known to the local sucp are provided.

This is the same as the -m option except that two
times are printed: the time that the last status was
obtained and the time that the last successful transfer
to that system occurred.

Report the uucp status using the octal status codes
listed below. If this option is not specified, the verbose
description is printed with each wucp request.

List the number of jobs and other control files queued
for each machine and the time of the oldest and
youngest file queued for each machine. If a lock file
exists for that system, its date of creation is listed.

When no options are given, uustat outputs the status of all uwucp
requests issued by the current user. Note that only one of the

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 395 of 798

UUSTAT(1C) UUSTAT (1C)

options —j, —m, -k, —e, —r, can be used with the rest of the
other options.

For example, the command:
uustat -uhdc —smhtsa -y72

will print the status of all vucp requests that were issued by user
hdc to communicate with system mhtsa within the last 72 hours.
The meanings of the job request status are:

job-number user remote-system comimand-time
status-time status

where the status may be either an octal number or a verbose
description. The octal code corresponds to the following descrip-
tion:

OCTAL STATUS

000001 the copy failed, but the reason cannot be
determined

000002 permission to access local file is denied

000004 permission to access remote file is denied

000010 bad uvucp command is generated

000020 remote system cannot create temporary file

000040 cannot copy to remote directory

000100 cannot copy to local directory

000200 local system cannot create temporary file

000400 cannot execute wucp

001000 copy (partially) succeeded

002000 copy finished, job deleted

004000 job is queued

010000 job killed (incomplete)

020000 job killed (complete)

The meanings of the machine accessibility status are:
system-name time status

where time is the latest status time and status is a self-
explanatory description of the machine status.

FILES
/usr/spool/uucp spool directory
Jusr/lib/uucp/L_stat system status file
/usr/lib/uucp/R_stat request status file
SEE ALSO

uucp(1C).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 396 of 798

UUTO (1C) UUTO (1C)

NAME
uuto, uupick — public UNIX-to-UNIX file copy
SYNOPSIS
uuto [options | source-files destination
uupick | —s system |
DESCRIPTION
Uuto sends source-files to destination. Uuto uses the wucp(1C)
facility to send files, while it allows the local system to control the
file access. A source-file name is a path name on your machine.
Destination has the form:
system!user

where system is taken from a list of system names that uuep
knows about (see uuname). Logname is the login name of some-
one on the specified system.

Two options are available:

-p Copy the source file into the spool directory before
transmission.
—m Send mail to the sender when the copy is complete.

The files (or sub-trees if directories are specified) are sent to PUB-
DIR on system, where PUBDIR is a public directory defined in the
uucp source. Specifically the files are sent to

PUBDIR /receive/ user/ mysystem/files.
The destined recipient is notified by masl(1) of the arrival of files.

Uupick accepts or rejects the files transmitted to the user.
Specifically, supick searches PUBDIR for files destined for the user.
For each entry (file or directory) found, the following message is
printed on the standard output:

from system: [file file-name] [dir dirname] ?

Uupick then reads a line from the standard input to determine the
disposition of the file:

<new-line> Go on to next entry.

d Delete the entry.

m [dir | Move the entry to named directory dir (current
directory is default).

a | dir | Same as m except moving all the files sent from
system .

P Print the content of the file.

q Stop.

EOT (control-d) Same as q.

tcommand Escape to the shell to do command.

*

Print a command summary.

Uupick invoked with the —ssystem option will only search the
PUBDIR for files sent from system.

DELL INC., EMC CORP; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 397 of 798

UUTO (1C) UUTO(1C)

FILES
PUBDIR /usr/spool/uucppublic ~ public directory

SEE ALSO
mail(1), uuclean(1M), uucp(1C), uustat(1C), uux(1C).

DELL INC., EMC CORP-, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 398 of 798

UUX (1C) UUX (1C)

NAME

uux — UNIX-to-UNIX command execution
SYNOPSIS

uux [options | command-string
DESCRIPTION

Uuz will gather zero or more files from various systems, execute a
command on a specified system and then send standard output to
a file on a specified system. Note that, for security reasons, many
installations will limit the list of commands executable on behalf
of an incoming request from uuz. Many sites will permit little
more than the receipt of mail (see mail(1)) via uuz.

The command-string is made up of one or more arguments that
look like a Shell command line, except that the command and file
names may be prefixed by system-name!l. A null system-name is
interpreted as the local system.

File names may be one of
(1) a full path name;

(2) a path name preceded by “zzz where zzz is a login
name on the specified system and is replaced by that
user’s login directory;

(3) anything else is prefixed by the current directory.
As an example, the command
uux " Idiff usg!/usr/dan/f1 pwbal/a4/dan/f1 > |{1.diff”

will get the f1 files from the “usg” and “pwba’” machines, execute
a diff command and put the results in f1.diff in the local direc-

tory.

Any special shell characters such as < >3] should be quoted either
by quoting the entire command-string, or quoting the special char-
acters as individual arguments.

Uuz will attempt to get all files to the execution system. For files
which are output files, the file name must be escaped using
parentheses. For example, the command

uux aluucp b!/usr/file \(c!/usr/file\)

will send a wucp command to system “a’ to get /usr/file from
system “b”’ and send it to system “c’’.

Uuz will notify you if the requested command on the remote sys-
tem was disallowed. The response comes by remote mail from the
remote machine.

The following options are interpreted by uwuz:

- The standard input to uuz is made the standard input to
the command-string .

-n Send no notification to user.

—mfile Report status of the transfer in file. If file is omitted,
send mail to the requester when the copy is completed.

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 399 of 798

UUX (1C) UUX (10)

Uuz returns an ASCII string on the standard output which is the
job number. This job number can be used by wustat to obtain the
status or terminate a job.

FILES
Jusr/lib/uucp/spool spool directory
/usr/lib/uucp/* other data and programs
SEE ALSO
uuclean(1M), uuep(1C).
BUGS

Only the first command of a shell pipeline may have a system-
name!. All other commands are executed on the system of the
first command.

The use of the shell metacharacter * will probably not do what
you want it to do. The shell tokens < < and > > are not imple-
mented.

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 400 of 798

VAL (1) VAL (1)

NAME

val — validate SCCS file
SYNOPSIS

val —)

val [—s| [-rSID] [~mname] [-ytype| files
DESCRIPTION

Val determines if the specified file is an SCCS file meeting the
characteristics specified by the optional argument list. Arguments
to vel may appear in any order. The arguments consist of
keyletter arguments, which begin with a —, and named files.

Val has a special argument, —, which causes reading of the stan-
dard input until an end-of-file condition is detected. Each line
read is independently processed as if it were a command line argu-
ment list.

Val generates diagnostic messages on the standard output for each
command line and file processed and also returns a single 8-bit
code upon exit as described below.

The keyletter arguments are defined as follows. The effects of any
keyletter argument apply independently to each named file on the
command line.

-8 The presence of this argument silences the
diagnostic message normally generated on
the standard output for any error that is
detected while processing each named file
on a given command line.

—rSID The argument value SID (SCCS
IDentification String) is an SCCS delta
number. * A check is made to determine if
the SID is ambiguous (e. g., rl is ambiguous
because it physically does not exist but
implies 1.1, 1.2, etc. which may exist) or
invalid (e. g, rl.0 or r1.1.0 are invalid
because neither case can exist as a valid
delta number). If the SID is valid and not
ambiguous, a check is made to determine if
it actually exists.

—mname The argument value name is compared
with the SCCS %M% keyword in file.
—ytype The argument value type is compared with

the SCCS %Y% keyword in file.

The 8-bit code returned by wal is a disjunction of the possible
errors, i. e., can be interpreted as a bit string where (moving from
left, to right) set bits are interpreted as follows:

bit 0 = missing file argument;

bit 1 = unknown or duplicate keyletter argument;

bit 2 = corrupted SCCS file; v

bit 3 = can’t open file or file not SCCS;

bit 4 = SID is invalid or ambiguous;

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 401 of 798

VAL(1) VAL(1)

bit 5 = SID does not exist;
bit 6 = %Y%, —y mismatch;
bit 7 = %M%, —m mismatch;
Note that val can process two or more files on a given command
line and in turn can process multiple command lines (when read-
ing the standard input). In these cases an aggregate code is
returned—a logical OR of the codes generated for each command
line and file processed.
SEE ALSO
admin(1), delta(1), get(1), prs(1).
DIAGNOSTICS
Use help(1) for explanations.

BUGS

Val can process up to 50 files on a single command line. Any
number above 50 will produce a core dump.

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 402 of 798

ve (1) ve(1)

NAME
ve — version control

SYNOPSIS
ve [-a] [-t] [-ecchar] [-8] [keyword=value ... keyword=value]

DESCRIPTION
The ve command copies lines from the standard input to the stan-
dard output under control of its arguments and control state-
ments encountered in the standard input. In the process of per-
forming the copy operation, user declared keywords may be
replaced by their string value when they appear in plain text
and/or control statements.

The copying of lines from the standard input to the standard out-
put is conditional, based on tests (in control statements) of key-
word values specified in control statements or as ve command
arguments.

A control statement is a single line beginning with a control char-
acter, except as modified by the —t keyletter (see below). The
default control character is colon (:), except as modified by the —c
keyletter (see below). Input lines beginning with a backslash (\)
followed by a control character are not control lines and are
copied to the standard output with the backslash removed. Lines
beginning with a backslash followed by a non-control character
are copied in their entirety.

A keyword is composed of 9 or less alphanumerics; the first must
be alphabetic. A value is any ASCII string that can be created
with ed(1); a numeric value is an unsigned string of digits. Key-
word values may not contain blanks or tabs.

Replacement of keywords by values is done whenever a keyword
surrounded by control characters is encountered on a version con-
trol statement. The —a keyletter (see below) forces replacement
of keywords in all lines of text. An uninterpreted control charac-
ter may be included in a value by preceding it with \. If a literal
\ is desired, then it too must be preceded by \.

Keyletter Arguments
-8 Forces replacement of keywords surrounded by control
characters with their assigned value in all text lines and
not just in vc statements.

-t All characters from the beginning of a line up to and
including the first fab character are ignored for the pur-
pose of detecting a control statement. If one is found, all
characters up to and including the tab are discarded.

—cchar Specifies a control character to be used in place of :.

-8 Silences warning messages (not error) that are normally
printed on the diagnostic output.

Version Control Statements
:dcl keyword|, ..., keyword]
Used to declare keywords. All keywords must be declared.

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 403 of 798

vC(1) ve(1)

sasg keyword=value
Used to assigh values to keywords. An asg statement over-
rides the assignment for the corresponding keyword on the
ve command line and all previous asg’s for that keyword.
Keywords declared, but not assigned values have null values.
:@if condition

send

Used to skip lines of the standard input. If the condition is
true all linies between the if statement and the matching end
statement are copied to the standard output. If the condi-
tion is false, all intervening lines are discarded, including
control statements. Note that intervening if statements and
matching end statements are recognized solely for the pur-
pose of maintaining the proper if-end matching.

The syntax of a condition is:

<cond> = | "not” | <or>

<or> u= <and> | <and> "|” <or>

<and> = <exp> | <exp> "&”" <and>

<exp> u= (" <or> ") | <value> <op>
<value>

<0p> a=—= ’l___ll | II!=II l II<II I II>II

<value> 1= < arbitrary ASCII string> | <numeric
string >

The available operators and their meanings are:

equal

not equal

and

or

greater than

less than

used for logical groupings

may only occur immediately after the if,
and when present, inverts the value of
the entire condition

AVTET I

~—
8v
(2l

The > and < operate only on unsigned integer values (e. g.:
012 > 12 is false). All other operators take strings as argu-
ments (e. g.: 012 = 12 is true). The precedence of the
operators (from highest to lowest) is:

I= > < all of equal precedence

&

Parentheses may be used to alter the order of precedence.
Values must be separated from operators or parentheses by
at least one blank or tab.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 404 of 798

veC (1) ve(1)

ssitext
Used for keyword replacement on lines that are copied to the
standard output. The two leading control characters are
removed, and keywords surrounded by control characters in
text are replaced by their value before the line is copied to
the output file. This action is independent of the -a

keyletter.
:on
soff

Turn on or off keyword replacement on all lines.
:ctl char

Change the control character to char.
:msg message
Prints the given message on the diagnostic output.
:eIT message
Prints the given message followed by:
ERROR: err statement on line ... (915)

on the diagnostic output. V¢ halts execution, and returns
an exit code of 1.

DIAGNOSTICS
Use help(1) for explanations.

EXIT CODES
0 — normal
1 — any error

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 405 of 798

VI(1) VI(1)
NAME

vi, view — screen oriented (visual) display editor based on ex
SYNOPSIS

vi[-t tag][-r] [dcommand][-1] [—wn] —x name
DESCRIPTION

Vi (visual) is a display oriented text editor based on ez(1) View is
synonymous with »f. Ez and ¢ run the same code; it is possible
to get to the command mode of ez from within »¢ and vice-versa.

Note that the ability to edit encrypted files is present only in the
domestic (U.S.) version of the UNIX PC software.

COMMANDS

The following summarizes the v commands and procedures. The
Introduction to Display Editing with Vi provides full details on

using vi.

NOTATION AND SPECIAL KEYS

]

object

<ESC>

<CR>
BS

DELETE

Denotes the CONTROL key (Ctrl on the
UNIX PC) to be held down while the follow-
ing character is typed.

Used to show the caret (") should be typed.

Optional number of repetitions preceding a
command. Do not type []. In most cases
omitting n defaults to one.

The text object—(character, word, sentence,
paragraph, or line) that a command operates
on.

A prefix to a set of commands for file and
option manipulation and escapes to the shell.
The : and later keystrokes appear at the bot-
tom of the screen. The command is ter-
minated with a <CR> or <ESC>.

ESCAPE key (Esc on the UNIX PC) used to
return to command mode. Type <ESC>
when you are not sure of the current mode.
Causes a beep if already in command mode
(harmless).

Carriage RETURN key.

BACKSPACE key. “H on terminals without
a backspace key.

Sometimes labeled DEL, BREAK, or
RUBOUT (shift of the Esc key on the UNIX

PC). This key generates an interrupt that
tells the editor to stop what it is doing.

ENTERING THE VI EDITOR
Note: Follow entry with <CR>.

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 406 of 798

VI(1)

vi file

vy

vi + n file

vi + file

vi-r

vi —r file

vi filel, file2, ...

vi -t tag
vi +/pat file
view file

VI(1)

Edit at first line of file

Edit a new empty file

Edit at = line in file

Edit at last line in file

List saved files

Recover file and edit saved file

Edit file1; file2; ... (after editing filel enter
:n for each remaining file)

Edit at tag file in tags file
Search for and edit at pattern in file
Read only view of file

LEAVING VI EDITOR

:q<CR>

:q!<CR>
stwq<CR>
YAA

Quit ¢ when no changes have occurred since
last write

Quit v1, do not save changes since last write
Write and quit (exit v¢, saving changes)
Write and quit (exit v¢, saving changes)

POSITIONING THE CURSOR

File Positioning
[r]'F
[»['B
[r]'D
[r['U
[n]E
Y
[nG
[n]/pat
[n]tpat
[nn
[»/N
[n]/pat/+m
[n]?pat?—m
Screen Positioning

[nJHE
L
M

Line Positioning
0

Forward [n/ full screens
Backward screens

Scroll down (default is half screen)
Scroll up (default is half screen)
Scroll down 1 line

Scroll up 1 line

Go to line n (default is last line of file)
Go to next line matching pat
Previous line matching pat
Repeat last / or ?

Reverse last / or ?

mth line after pat

mth line before pat

To nth line from top of display. Without =,
to top

To nth line from bottom of display. Without
n, to bottom

To middle line of display

Beginning of line

DELL INC., EMC CORR., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 407 of 798

VI(1)

Character Positioning

[n]$

[n]+

[n]-
[n]<CR>
[n]l] orj
fafi] or k

[njt

[n/h or —
[n]l or «
[n/spacebar
[n]backspace
[n]"H

[n]fz

[n[Fz

[n]te
[n]Tz

[n];

[n],

fn]

Word Positioning

[njw

[n]b

[n]e
[n]W
[n]B
[n[E

VI(1)

End of line

Next line, at first non-white
Previous line, at first non-white
Return, same as +

Next line, same column

Previous line, same column

Within a Line
First non-white

Forward one character
Backward one character
Same as —

Backwards one character
Same as + or backspace
Find z forward

Find z backward

Move up to z forward
Move up to z backward
Repeat last f, F, t, or T
Inverse of ;

Move to specified column number n

Move forward to beginning of word. Punc-
tuation and strings of punctuation count as
words.

Move back to beginning of word. Punctua-
tion and strings of punctuation count as
words.

Move forward to end of word. Punctuation
and strings of punctuation count as words.

Move forward to beginning of word. Punc-
tuation ignored.

Move back to beginning of word. Punctua-
tion ignored.

Move forward to end of word. Punctuation
ignored.

Sentence, Paragraph, Heading Positioning

[n])
[(
[n}
M

Forward to next sentence
Back a sentence

Forward to next paragraph
Back a paragraph

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 408 of 798

vI(1)

[/]]

Al
CREATING TEXT
atext<ESC>

itert<ESC>
Atert<ESC>
Itext<ESC>
otezt<ESC>
Otest<ESC>

vI(1)

Forward to next heading
Back a heading

Append after cursor, until <ESC>
Insert before cursor

Append at end of line

Insert before first non-blank

Open line below

Open above

MAKING CORRECTIONS DURING TEXT CREATION

‘W
kill

[n/BS
‘H

\

<ESC>

~?

‘D

1D

0D

Y%
MODIFYING TEXT
Chaliging Text

[n]Ctext<ESC>

[n[Rtext<ESC>
[n{Stest<ESC>
[n]cobjtext<ESC>

[njrz
[n]stext<ESC>
[n]cctezt<ESC>

Deleting Text
D

fnfx
X
[n]d(object)

Erase last word during an insert

Kill the insert on this line (usually @, "X, or
“U)

Erase last character

Erase last character

Escapes “H, your erase and kill

Ends insertion, back to command mode
Interrupt, terminates insert

Backtab over autoindent

Kill autoindent, save for next

... but at margin next also

Quote non-printing character

Switch character from lowercase to uppercase
and vice versa

Change from cursor to end of line (same as
c$)

Replace characters
Substitute on lines

Change the specified object (word) to the fol-
lowing text

Replace character with
Replace a character with a fezt string
Change a whole line

Delete from cursor to end of line
Delete a character
Delete character to left of cursor

Delete the specified object (word, sentence,
paragraph, etc.)

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 409 of 798

vI(1)

[njdd

Moving Text
Ilr

n

™

" P

p
P

Copying Text
n r

¥ /njobject
n]Y

[n]yy
”Tp

"rP

p
P

VI(1)
Delete a line

Named register » that save delete commands.
Legal values of r are letters a through z.

Puts deleted text from registers ”r after or
below cursor

Puts deleted text from registers ”r before or
above cursor

Puts last deleted text after or below cursor

Puts last deleted text before or above cursor

Named register r that can precede a yank
command. Legal values of r are letters a
through z.

Yanks a copy of the following object into a
register

Yanks a copy of the current line into a regis-
ter

Same as Y

Puts yanked text from register ”r after or
below cursor

Puts yanked text from register ”r before or
above cursor

Puts last yanked text after or below cursor
Puts last yanked text before or above cursor

UNDOING, REDOING, RETRIEVING

u
U

3

llhp .

Undo last change
Restore current line
Repeat last change

Retrieve one of last 9 deletes; A is a hidden
register numbered 1 through 9. Retrieved in
reverse order.

DOING GLOBAL SEARCHES AND CHANGES
Note: Follow entry with <CR>.

g/ text

g/ text [p

:g/tezt /nu
s/m],[n]g/text
:/m],[n]g/ text/p
:/mf,[n]g/text/nu

g/ text/s/ [newtext

Move cursor to last line in file with fext
Print all lines with text

Print all lines and line numbers with text
Move cursor to = line in file with tezt
Print all lines with text from line m to n

Print all lines and line numbers with text
from line m to n

Change first appearance of text in each line in

DELL INC., EMC CORP.,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 410 of 798

VI(1) VI(1)

file to newtext

g/ text/s/ [newtext/p
' Change first appearance of fext in each line in
file to newtext and print each changed line

g/ test/s/ [newtest/c
List one at a time each line with tezt and
change as required to newfext using a
y<CR>

s[mf,[n]g/text/s] [newtext
Change first appearance of tezf in each line in
file to newtext

:/m/,[n]g/text/s/ [newtext/p
Change first appearance of tezt in lines from
m to n to newtert and print each changed line
s/m],[n]g/test/s/ [newtezt/c
List one at a time each line with fext from m
to n and change as required to newtert using
ay<CR>
MANIPULATING FILES
Copy From Another File
ir file<CR> Copy file into buffer after current line

:/nfr file< CR> Copy file to buffer after nth line

Copy To Another File
Note: Follow entry with <CR>.

:w file Write the current file to file

sw! file Overwrite existing file with file

tw> > file Add current file to end of file

sfmf,[njw file Write lines m through » to file

:[mf,[nJw! file Overwrite existing file with file containing

lines m through n

sfmf,[njw>>file Add lines m through n to end of file
Edit Current File

w<CR> Write changes to current file
ww file<<CR> Write file to current unnamed file
"e! < CR> Reedit current file, discarding changes since
last write
#f<CR> Show current file and line
‘G Synonym for :f
tta tag<CR> To tag file entry tag
7] :ta, following word is tag
Edit Other Files From Current File
se file< CR> Edit file when write has occurred in current

file, return to shell after edit, changes not lost
in current file - -

DELL INC., EMC CORR., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 411 of 798

VI(1) VI(1)

el file<CR> Edit file when no write has occurred in
current file, return to shell after edit, changes
list in current file

e + name<CR> Edit starting at end
e + n<CR> Edit starting at line n

:n<<CR> Edit next file in list when v¢ was called with
more than one file

:n args<CR> Specify new list of files to be edited

e ##<CR> Edit alternate file when two files are being
edited
“1 Synonym for :e #.
ESCAPING TO THE SHELL
:sh<CR> Start a separate shell (to run several com-

mands), return with "D

dcommand<CR> Run one shell command, then return to
current buffer
M.ARKING AND RETURNING
Previous context

s,

. at first non-white in line

mz Mark position with letter z
‘z to mark z
‘z ... -at first non-white in line

MISCELLANEOUS OPERATIONS
Repeat the last append, insert, open, delete,
change, or put command

Switch character from lowercase to uppercase
and vice versa

“? Delete or rubout interrupts
i<CR><ESC> Split a line before the cursor
a<CR><ESC> Split a line after the cursor

‘L Reprint screen if “? scrambles it
J Join lines

mu<CR> Line number cursor is on

Xp Switch characters

SETTING OPTIONS
Initializing Options
:set 2<<CR> Enable option z

:set noz<<CR> Disable option z

:set 2=val<<CR> Assign a value to z option
iset<<CR> Show changed options
:set all<CR> Show all options

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 412 of 798

VI(1) Vi(1)

:set 2?2 <<CR> Show value of option z

Options
autoindent, ai (default: noai)
When on, in the append, change, insert, open, or substi-
tute mode a new line will be started at same indent as
previous line.

audoprint, ap (default: ap)
Causes the current line to be printed after each delete,
copy, join, move, substitute, t, undo or shift command.
This has the same effect as supplying a trailing p to each
such command. The autoprint is suppressed in globals
and only applies to the last of many commands on a line.

autowrite, aw (default: noaw)

Causes the contents of the buffer to be written to the
current file (if you have modified it) and gives a next,
rewind, tab, or | command, or a “f (switch files) or *] (tag
goto) command. Note: the command does not autowrite.
In each case, there is an equivalent way of switching when
the autowrite option is set to avoid the autowrite (ex for
next, rewind! for rewind, tag! for tag, shell for |, and :e
#nd for a :tal command).

beautify, bf (default: nobeautify)
Causes all control characters except tab, newline, and
form-feed to be discarded from the input. A complaint is
registered the first time a backspace character is dis-
carded. The beautify option does not apply to command
input.

directory, dir (default: dir=/tmp)
Specifies the directory in which v¢ places its buffer file. If
this directory is not writable, then the editor will exit
abruptly when it fails to be able to create its buffer there.

edcompatible (default: noedcompatible)
Causes the presence or absence of g and ¢ suffixes on sub-
stitute commands to be remembered and to be toggled by
repeating the suffixes. The suffix r makes the substitution
be as in the ~ command, instead of line &.

errorbells, eb (default: noeb)
Error messages are preceded by a bell. Bell ringing in
open and wvisual mode on errors is not suppressed by set-
ting noeb. If possible the editor always places the error
message in a standout mode of the terminal (such as
inverse video) instead of ringing the bell.

hardtabs, ht (default: ht=8)
Gives the boundaries on which terminal hardware tabs are
set (or on which the system expands tabs).

ignorecase, ic (default: noic)
All uppercase characters in the text are mapped to lower
case in regular expression matching and vice versa, except
in character class specifications.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 413 of 798

VI(1)

VI(1)

lisp (default: nolisp)
The autoindent option indents appropriately for lisp code,
and the (), {}, [[and]] commands in open and visual
modes are modified to have meaning for lisp.

list (default: nolist)
All printed lines will be displayed more unambiguously,
showing tabs and end-of-lines as in the list command.

magic (default: magic for i)
If nomagic is set, the number of regular expression meta-
characters is greatly reduced, with only t and $ having
special effects. In addition, the metacharacters ~ and & of
the replacement pattern are treated as normal characters.
All the normal metacharacters may be made magic when
nomagic is set by preceding them with a \.

mesg (default: mesg)
Causes write permission to be turned off to the terminal
while you are in visual mode if nomesg is set.

number, nu (default: nonumber)
Causes all output lines to be printed with line numbers.
In addition, each input line will be prompted for by sup-
plying the line number it will have.

open (default: open)
If noopen, the commands open and visual are not permit-
ted.

optimize opt (default: optimize)
Throughput of text is expedited by setting the terminal
not to do automatic carriage returns when printing more
than one (logical) line of output, greatly speeding output
on terminals without addressable cursors when text with
leading white space is printed.

paragraphs, para (default: para=IPLPPPQPPLIbp)
Specifies the paragraphs for the { and } operations in
open and wisual mode. The pairs of characters in the
option’s value are the names of the macros which start
paragraphs.

prompt (default: prompt)
Command mode input is prompted for with a colon (2).

readonly (default: noreadonly)
Set by chmod shell command to allow read but no write.

redraw (default: noredraw)
The editor simulates (using great amounts of output) an
intelligent terminal on a dumb terminal (e.g., during inser-
tions in visual mode the characters to the right of the cur-
sor position are refreshed as each input character is
typed). This option is useful only at very high speed.

remap (default: remap)
If on, macros are repeatedly tried until they are
unchanged. For example, if o is mapped to O, and O is

DELL INC., EMC CORP.; HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 414 of 798

VI(1) vI(1)

mapped to I, then if remap is set, o will map to I; but of
noremap is set, if will map to O.

report (default: report=>5)

Specifies a threshold for feedback from commands. Any
command which modifies more than the specified number
of lines will provide feedback as to the scope of its
changes. For commands such as global, open, undo, and
visual, which have potentially more far-reaching scope,
the net change in the number of lines in the buffer is
presented at the end of the command subject to this same
threshold. Thus, notification is suppressed during a global
command on the individual commands performed.

scroll (default: scroll=%window)
Determines the number of logical lines scrolled when an
end-of-file is received from a terminal input in command
mode and the number of lines printed by a command
mode z command (double the value of scroll).

sections (default: sections=SHNHH HU)
Specifies the section macros for the [[and]] operations in
open and visual modes. The pairs of characters in the
option’s value are the names of the macros which start
paragraphs.

shell, sh (default: sh=/bin/sh)
Gives the pathname of the shell forked for the shell escape
command !, and by the shell command. The default is
taken from SHELL in the environment, if present.

shiftwidth, sw (default: sw=8)
Gives the width a software tabstop used in reverse tab-
bing with "D when using autoindent to append text, and
by the shift commands.

showmatch, sm (default: nosm)
In open and visual modes, when a) or } is typed, the cur-
sor moves to the matching (or { for one second if this
matching character is on the screen. Extremely useful
with lisp.

slowopen, slow (default: terminal dependent)
Affects the display algorithm used in visual mode, holding
off display updating during input of new text to improve
throughput when the terminal in use is both slow and
unintelligent.

tabstop, ts (default: ts==8)
The editor expands tabs in the input file to be on tabstop
boundaries for the purposes of display.

taglength, tl (default: t1=0)
Tags are not significant beyond this many characters. A
value of zero (the default) means that all characters are
significant.

tags (default: tags==tags /usr/lib/tags)
A path of files to be used as tag files for the fag command.
DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 415 of 798

VI(1)

FILES

VI(1)

A requested tag is searched for in the specified files,
sequentially. By default, files called tags are searched for
in the current directory and in /usr/lib (a master file for
the entire system).

term (default from environment $TERM)
The terminal type of the output device.

terse (default: noterse)
Shorter error diagnostics are produced for the experienced
user.

ttytype=—
Terminal type defined to system for visual mode. Can be
defined before entering visual editor by TERM=type.

warn (default: warn)
Warns if there has been “|No write since last change]”
before a ! command escape.

window (default: window=speed dependent)
The number of lines in a text window in the visual com-
mand. The default is 8 at slow speeds (600 baud or less),
16 at medium speed (1200 baud), and the full screen
(minus one line) at higher speeds.

w300, w1200, w9600
These are not true options but set window only if the
speed is slow (300), medium (1200), or high (9600), respec-
tively. They are suitable for an EXINIT and make it easy
to change the 8/16/full screen rule.

wrapscan, ws (default: ws)
Searches that use regular expressions in addressing will
wrap around past the end of the file.

wrapmargin, wm (default: wm=0)
Defines a margin for automatic wrapover of text during
input in open and wisual modes.

writeany, wa (default: nowa)
Inhibit checks normally made before write commands,
allowing a write to any file which the system protection
mechanism will allow.

See ez(1).

SEE ALSO

BUGS

ex(1), edit (1), “An Introduction to Display Editing with Vi”.

Software tabs using “T work only immediately after the autoin-
dent.

Left and right shifts on intelligent terminals don't make use of
insert and delete character operations in the terminal.

The wrapmargin option can be fooled since it looks at output
columns when blanks are typed. If a long word passes through
the margin and onto the next line without a break, then the line

DELL INC., EMC CORP., HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 416 of 798

VI(1)

vI(1)

won’t be broken.

Insert/delete within a line can be slow if tabs are present on intel-
ligent terminals, since the terminals need help in doing this
correctly.

Saving text on deletes in the named buffers is somewhat
inefficient.

The source command does not work when executed as :source;
there is no way to use the :append, :change, and :insert com-
mands, since it is not possible to give more than one line of input
to a : escape. To use these on a :global you must Q to ex com-
mand mode, execute them, and then reenter the screen editor with
vi or open.

Moving the cursor backward a screen at a time does not work
correctly.

The [n] precursor does not work for these commands: B, U, /pat,
?pat, [pat, /pat/+m, Ppat?-m.

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 417 of 798

WAIT (1) WAIT (1)

NAME
walit — await completion of process

SYNOPSIS
wait
DESCRIPTION

Wait until all processes started with & have completed, and
report on abnormal terminations.

Because the wait(2) system call must be executed in the parent
process, the shell itself executes wast, without creating a new pro-
cess.

SEE ALSO
sh(1).
BUGS

Not all the processes of a 3- or more-stage pipeline are children of
the shell, and thus can’t be waited for.

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 418 of 798

WC (1) we (1)

NAME

wc — word count
SYNOPSIS

we [—lwe | | names |
DESCRIPTION

We counts lines, words and characters in the named files, or in
the standard input if no names appear. It also keeps a total
count for all named files. A word is a maximal string of charac-
ters delimited by spaces, tabs, or new-lines.

The options 1, w, and ¢ may be used in any combination to
specify that a subset of lines, words, and characters are to be
reported. The default is —lwe.

When names are specified on the command line, they will be
printed along with the counts.

DELL INC., EMC CORP.,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 419 of 798

WHAT (1) WHAT (1)

NAME

what - identify SCCS files
SYNOPSIS

what files
DESCRIPTION

What searches the given files for all occurrences of the pattern
that get(1) substitutes for %Z% (this is @(#) at this printing)
and prints out what follows until the first ”, >, new-line, \, or
null character. For example, if the C program in file f.c contains

char ident|] = ” @(#)identification information ”;
and f.c is compiled to yield f.o and a.out, then the command
what f.c f.o a.out

will print
f.c:
identification information
f.o:
identification information
a.out:

identification information

What is intended to be used in conjunction with the command
get(1), which automatically inserts identifying information, but it
can also be used where the information is inserted manually.

SEE ALSO

get(1), help(1).

DIAGNOSTICS

BUGS

Use help(1) for explanations.

It’s possible that an unintended occurrence of the pattern @(#)
could be found just by chance, but this causes no harm in nearly
all cases.

DELL INC., EMC CORP:,HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 420 of 798

WIIO (1) WHO (1)

NAME
who — who is on the system
SYNOPSIS
who [-uTlpdbrtas| | file]
who am i
DESCRIPTION

Who can list the user’s name, terminal line, login time, elapsed
time since activity occurred on the line, and the process-ID of thie
command interpreter (shell) for each current UNIX user. It exam-
ines the /ete/utmp file to obtain its information. If file is given,
that file is examined. Usually, file will be /ete/wtmp, which
contains a history of all the logins since the file was last created.

Who with the am i option identifies the invoking user.

Except for the default —s option, the general format for output
entries is:

name [state] line time activity pid [comment] [exit]

With options, who can list logins, logoffs, reboots, and changes to
the system clock, as well as other processes spawned by the inst
process. These options are:

—u This option lists only those users who are currently logged
in. The name is the user’s login name. The line is the
name of the line as found in the directory /dev. The time
is the time that the user logged in. The activity is the
number of hours and minutes since activity last occurred on
that particular line. A dot (.) indicates that the terminal
has seen activity in the last minute and is therefore
“current’’. If more than twenty-four hours have elapsed or
the line has not been used since boot time, the entry is
marked old. This field is useful when trying to determine
whether a person is working at the terminal or not. The
pid is the process-ID of the user’s shell. The comment is the
comment field associated with this line as found in
/ete/inittab (see inittab(4)). This can contain informa-
tion about where the terminal is located, the telephone
number of the dataset, type of terminal if hard-wired, etc.

—T This option is the same as the —u option, except that the
state of the terminal line is printed. The state describes
whether someone else can write to that terminal. A +
appears if the terminal is writable by anyone; a — appears
if it is not. Root can write to all lines having a + or a —
in the state field. If a bad line is encountered, a ? is
printed.

-1 This option lists only those lines on which the system is
waiting for someone to login. The name field is LOGIN in
such cases. Other fields are the same as for user entries
except that the state field doesn’t exist.

~p This option lists any other process which is currently active
and has been previously spawned by init. The name field

DELL INC., EMC CORP:,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 421 of 798

WHO (1)

WHO (1)

is the name of the program executed by #nit as found in
/etc/inittab. The state, line, and activity fields have no
meaning. The comment field shows the #d field of the line
from /etc/inittab that spawned this process. See init-
tab(4).

—d This option displays all processes that have expired and not
been respawned by #nit. The ezit field appears for dead
processes and contains the termination and exit values (as
returned by wast(2)), of the dead process. This can be use-
ful in determining why a process terminated.

—b This option indicates the time and date of the last reboot.

-r This option indicates the current run-level of the inst pro-
cess.

-t This option .indicates the last change to the system clock
(via the date(1) command) by root. See su(1).

—a This option processes /etc/utmp or the named file with
all options turned on.

-8 This option is the default and lists only the name, line and
time fields.

FILES

/ete/utmp

/ete/wtmp

/etc/inittab

SEE ALSO

init(1M) in the UNIX System Administrator’s Manual.
date(1), login(1M), mesg(1), su(1), wait(2), inittab(4), utmp(4).

DELL INC., EMC CORP:, HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 422 of 798

WRITE (1) WRITE (1)

NAME

write — write to another user

SYNOPSIS

write user | line |

DESCRIPTION

Write copies lines from your terminal to that of another user.
When first called, it sends the message:

Message from yourname (tty??) [date |...

to the person you want to talk to. When it has successfully com-
pleted the connection it also sends two bells to your own terminal
to indicate that what you are typing is being sent.

The recipient of the message should write back at this point.
Communication continues until an end of file is read from the ter-
minal or an interrupt is sent. At that point write writes EOT on
the other terminal and exits.

If you want to write to a user who is logged in more than once,
the line argument may be used to indicate which line or terminal
to send to (e.g., tty00); otherwise, the first instance of the user
found in /etc/utmp is assumed and the following message
posted:

user is logged on more than one place.
You are connected to "terminal”.
Other locations are:

terminal

Permission to write may be denied or granted by use of the
mesg(1l) command. Writing to others is normally allowed by
default. Certain commands, in particular nroff(1) and pr(1) disal-
low messages in order to prevent interference with their output.
However, if the user has super-user permissions, messages can be
forced onto a write inhibited terminal.

If the character ! is found at the beginning of a line, write calls
the shell to execute the rest of the line as 2 command.

The following protocol is suggested for using write: when you first
write to another user, wait for them to write back before starting
to send. Each person should end a message with a distinctive sig-
nal (i.e., (o) for “over”) so that the other person knows when to
reply. The signal (oo) (for “over and out”) is suggested when
conversation is to be terminated.

FILES
/etc/utmp to find user
/bin/sh to execute !
SEE ALSO

mail(1), mesg(1), nroff{1), pr(1), sh(1), who(1).

DIAGNOSTICS

“user not logged in' if the person you are trying to write to is
not logged in.

DELL INC., EMC CORP.; HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 423 of 798

XARGS (1) XARGS (1)

NAME
xargs — construct argument list(s) and execute command

SYNOPSIS
xargs |flags] [command [initial-arguments | |

DESCRIPTION
Xargs combines the fixed fnitial-arguments with arguments read
from standard input to execute the specified command one or
more times. The number of arguments read for each command
invocation and the manner in which they are combined are deter-
mined by the flags specified.

Command, which may be a shell file, is searched for, using one’s
$PATH. If commeand is omitted, /bin/echo is used.

Arguments read in from standard input are defined to be contigu-
ous strings of characters delimited by one or more blanks, tabs, or
new-lines; empty lines are always discarded. Blanks and tabs may
be embedded as part of an argument if escaped or quoted: Charac-
ters enclosed in quotes (single or double) are taken literally, and
the delimiting quotes are removed. Outside of quoted strings a
backslash (\) will escape the next character.

Each argument list is constructed starting with the initial-
arguments, followed by some number of arguments read from
standard input (Exception: see —i flag). Flags —i, -1, and —n
determine how arguments are selected for each command invoca-
tion. When none of these flags are coded, the initial-arguments
are followed by arguments read continuously from standard input
until an internal buffer is full, and then command is executed with
the accumulated args. This process is repeated until there are no
more args. When there are flag conflicts (e.g., =1 vs. —n), the last
flag has precedence. Flag values are:

—lnumber Command is executed for each non-empty number
lines of arguments from standard input. The last
invocation of command will be with fewer lines of
arguments if fewer than number remain. A line is
considered to end with the first new-line unless the
last character of the line is a blank or a tab; a trail-
ing blank/tab signals continuation through the next
non-empty line. If number is omitted 1 is assumed.
Option —x is forced.

—ireplstr Insert mode: command is executed for each line from
standard input, taking the entire line as a single arg,
inserting it in initial-arguments for each occurrence
of replstr. A maximum of 5 arguments in tnitial-
arguments may each contain one or more instances
of replstr. Blanks and tabs at the beginning of each
line are thrown away. Constructed arguments may
not grow larger than 255 characters, and option —x
is also forced. {} is assumed for replstr if not
specified.

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 424 of 798

XARGS (1)

—nnumber

-X

—ssize

—eeofstr

XARGS (1)

Execute command using as many standard input
arguments as possible, up to number arguments
maximum. Fewer arguments will be used if their
total size is greater than size characters, and for the
last invocation if there are fewer than number argu-
ments remaining. If option —x is also coded, each
number arguments must fit in the size limitation,
else rargs terminates execution.

Trace mode: the command and each constructed
argument list are echoed to file descriptor 2 just
prior to their execution.

Prompt mode: the user is asked whether to execute
command each invocation. Trace mode (-—t) is
turned on to print the command instance to be exe-
cuted, followed by a ?... prompt. A reply of y
(optionally followed by anything) will execute the
command; anything else, including just a carriage
return, skips that particular invocation of command.

Causes zargs to terminate if any argument list
would be greater than stze characters; —x is forced
by the options —i and —-1. When neither of the
options —i, -1, or —n are coded, the total length of
all arguments must be within the size limit.

The maximum total size of each argument list is set
to stze characters; size must be a positive integer
less than or equal to 470. If —s is not coded, 470 is
taken as the default. Note that the character count
for size includes one extra character for each argu-
ment and the count of characters in the command
name.

Eofstr is taken as the logical end-of-file string.
Underbar (_) is assumed for the logical EOF string
if —e is not coded. —e with no eofstr coded turns off
the logical EOF string capability (underbar is taken
literally). Xargs reads standard input until either
end-of-file or the logical EOF string is encountered.

Xargs will terminate if it receives a return code of —1 from, or if
it cannot execute, command. When command is a shell program,
it should explicitly ezit (see sh(1)) with an appropriate value to
avoid accidentally returning with —1.

EXAMPLES

The following will move all files from directory $1 to directory $2,
and echo each move command just before doing it:

ls $1 | xargs —i -t mv $1/{} $2/{}

The following will combine the output of the parenthesized com-
mands onto one line, which is then echoed to the end of file log:

(logname; date; echo $0 $*) | xargs > >log

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 425 of 798

XARGS (1) XARGS (1)

The user is asked which files in the current directory are to be
archived and archives them into arch (1.) one at a time, or (2.)
many at a time.

1. Is | xargs —p -1 ar r arch
2. Is | xargs —p -1 | xargs ar r arch

The following will execute diff(1) with successive pairs of argu-
ments originally typed as shell arguments:

echo $* | xargs -n2 diff

DIAGNOSTICS
Self explanatory.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 426 of 798

YACC (1) YACC(1)

NAME

yacc — yet another compiler-compiler

SYNOPSIS

yacc | —vdlt | grammar

DESCRIPTION

FILES

Yacc converts a context-free grammar into a set of tables for a
simple automaton which executes an LR(1) parsing algorithm. The
grammar may be ambiguous; specified precedence rules are used to
break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to
produce a program yypaerse. This program must be loaded with
the lexical analyzer program, yyler, as well as main and yyerror,
an error handling routine. These routines must be supplied by the
user; lez(1) is useful for creating lexical analyzers usable by yacc.

If the —v flag is given, the file y.output is prepared, which con-
tains a description of the parsing tables and a report on conflicts
generated by ambiguities in the grammar.

If the —d flag is used, the file y.tab.h is generated with the
#define statements that associate the yacc-assigned ‘‘token
codes” with the user-declared ‘‘token names’”. This allows source
files other than y.tab.c to access the token codes.

If the —1 flag is given, the code produced in y.tab.e will not con-
tain any #line constructs. This should only be used after the
grammar and the associated actions are fully debugged.

Runtime debugging code is always generated in y.tab.c under
conditional compilation control. By default, this code is not
included when y.tab.c is compiled. However, when yacc’s —t
option is used, this debugging code will be compiled by default.
Independent of whether the —t option was used, the runtime
debugging code is under the control of YYDEBUG, a pre-
processor symbol. If YYDEBUG has a non-zero value, then the
debugging code is included. If its value is zero, then the code will
not be included. The size and execution time of a program pro-
duced without the runtime debugging code will be smaller and
slightly faster.

y.output

y.tab.c

y.tab.h defines for token names
yacc.tmp,

yacc.debug, yacc.acts temporary files
/usr/lib/yaccpar parser prototype for C programs

SEE ALSO

lex(1).
YACC-Yet Another Compiler Compiler in the UNIX System Sup-
port Tools Guide.

DELL INC., EMC CORP., HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 427 of 798

YACC(1) YACC(1)

DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is reported
on the standard error output; a more detailed report is found in
the y.output file. Similarly, if some rules are not reachable from
the start symbol, this is also reported.

BUGS
Because file names are fixed, at most one yacc process can be
active in a given directory at a time.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 428 of 798

INTRO (2) INTRO (2)

intro - introduction to system calls and error numbers

SYNOPSIS

#include <errno.h>

DESCRIPTION

This section describes all of the system calls. Most of these calls
have one or more error returns. An error condition is indicated by
an otherwise impossible returned value. This is almost always —1;
the individual descriptions specify the details. An error number is
also made available in the external variable errno. Errno is not
cleared on successful calls, so it should be tested only after an
error has been indicated.

All of the possible error numbers are not listed in each system call
description because many errors are possible for most of the calls.
The following is a complete list of the error numbers and their
names as defined in <errno.h>.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file
in some way forbidden except to its owner or super-user.
It is also returned for attempts by ordinary users to do
things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file
should exist but doesn’t, or when one of the directories in
a path name does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified
by pid in kil or ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which
the user has elected to catch, occurred during a system
call. If execution is resumed after processing the signal, it
will appear as if the interrupted system call returned this
error condition.

5 EIO 1/O error
Some physical I/O error. This error may in some cases
occur on a call following the one to which it actually
applies.

6 ENXIO No such device or address
1/O on a special file refers to a subdevice which does not
exist, or beyond the limits of the device. It may also
occur when, for example, a tape drive is not on-line or no
disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a
member of the ezec family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has

DELL INC., EMC CORP., HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 429 of 798

INTRO(2) INTRO (2)

the appropriate permissions, does not start with a valid
magic number (see a.out(4)).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read
(respectively write) request is made to a file which is open
only for writing (respectively reading).

10 ECHILD No child processes
A wait, was executed by a process that had no existing or
unwaited-for child processes.

11 EAGAIN No more processes
A fork, failed because the system’s process table is full or
the user is not allowed to create any more processes.

12 ENOMEM Not enough space
During an ezec, brk, or sbrk, a program asks for more
space than the system is able to supply. This is not a
temporary condition; the maximum space size is a system
parameter. The error may also occur if the arrangement
of text, data, and stack segments requires too many seg-
mentation registers, or if there is not enough swap space
during a fork.

13 EACCES Permission denied

An attempt was made to access a file in a way forbidden
by the protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to
use an argument of a system call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was
required, e.g., in mount.

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted
or an attempt was made to dismount a device on which
there is an active file (open file, current directory,
mounted-on file, active text segment). It will also occur if
an attempt is made to enable accounting when it is
already enabled.

17 EEXIST File exists
An existing file was mentioned in an inappropriate con-
text, e.g., link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system
call to a device; e.g., read a write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is

required, for example in a path prefix or as an argument
to chdir(2).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 430 of 798

INTRO (2) INTRO (2)

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINVAL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted
device; mentioning an undefined signal in signal, or kill;
reading or writing a file for which lseek has generated a
negative pointer). Also set by the math functions
described in the (3M) entries of this manual.

23 ENFILE File table overflow
The system’s table of open files is full, and temporarily no
more opens can be accepted.

24 EMFILE Too many open files
No process may have more than 80 file descriptors open at
a time.

25 ENOTTY Not a typewriter

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is
currently open for writing (or reading). Also an attempt
to open for writing a pure-procedure program that is
being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size
(2,147,483,647 bytes) or ULIMIT; see ulimit(2).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space
left on the device.

29 ESPIPE Illegal seek
An Iseek was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a
device mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of
links (1000) to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the
data. This condition normally generates a signal; the
error is returned if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is
out of the domain of the function.

34 ERANGE Result too large

The value of a function in the math package (3M) is not
representable within machine precision.

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 431 of 798

INTRO (2) INTRO (2)

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that
does not exist on the specified message queue; see
msgop(2).

36 EIDRM Identifier Removed
This error is returned to processes that resume execution
due to the removal of an identifier from the file system’s
name space (see msgctl(2), semctl(2), and shmctl(2)).

DEFINITIONS
Process ID
Each active process in the system is uniquely identified by a posi-
tive integer called a process ID. The range of this ID is from O to
30,000.

Parent Process ID
A new process is created by a currently active process; see fork(2).
The parent process ID of a process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group that is
identified by a positive integer called the process group ID. This
ID is the process ID of the group leader. This grouping permits the
signaling of related processes; see kill(2).

Tty Group ID
Each active process can be a member of a terminal group that is
identified by a positive integer called the tty group ID. This
grouping is used to terminate a group of related process upon ter-
mination of one of the processes in the group; see ezit(2) and sig-
nal(2).

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive integer
called a real user ID.

Each user is also a member of a group. The group is identified by
a positive integer called the real group ID.

An active process has a real user ID and real group ID that are set
to the real user ID and real group ID, respectively, of the user
responsible for the creation of the process.

Effective User ID and Effective Group ID
An active process has an effective user ID and an effective group ID
that are used to determine file access permissions (see below). The
effective user ID and effective group ID are equal to the process’s
real user ID and real group ID respectively, unless the process or
one of its ancestors evolved from a file that had the set-user-ID bit
or set-group ID bit set; see exec(2).

Super-user

A process is recognized as a super-user process and is granted spe-
cial privileges if its effective user ID is 0.

Special Processes
The processes with a process ID of 0 and a process ID of 1 are spe-
cial processes and are referred to as proc0 and procl.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 432 of 798

INTRO (2) INTRO (2)

Proc0 is the scheduler. Proc! is the initialization process (init).
Procl is the ancestor of every other process in the system and is
used to control the process structure.

File Name.
Names consisting of 1 to 14 characters may be used to name an
ordinary file, special file or directory.

These characters may be selected from the set of all character
values excluding \O (null) and the ASCII code for / (slash).

Note that it is generally unwise to use *, ?, [, or] as part of file
names because of the special meaning attached to these characters
by the shell. See sh(1). Although permitted, it is advisable to
avoid the use of unprintable characters in file names.

Path Name and Path Prefix
A path name is a null-terminated character string starting with an
optional slash (/), followed by zero or more directory names
separated by slashes, optionally followed by a file name.

More precisely, a path name is a null-terminated character string
constructed as follows:

< path-name > ::=<file-name >| <path-prefix> < file-name>|/
< path-prefix >::= < rtprefix>| / <rtprefix >
<rtprefix > =< dirname > /| <rtprefix> <dirname> /

where <file-name> is a string of 1 to 14 characters other than
the ASCII slash and null, and <dirname> is a string of 1 to 14
characters (other than the ASCII slash and null) that names a
directory.

If a path name begins with a slash, the path search begins at the
root directory. Otherwise, the search begins from the current
working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated
as if it named a non-existent file.

Directory.
Directory entries are called links. By convention, a directory con-
tains at least two links, . and .., referred to as dot and dot-dot
respectively. Dot refers to the directory itself and dot-dot refers
to its parent directory.

Root Directory and Current Working Directory.
Each process has associated with it a concept of a root directory
and a current working directory for the purpose of resolving path
name searches. A process’s root directory need not be the root
directory of the root file system, and is determined by the userid
entry in /etc/passwd. The working directory for each process is
determined either by cd(1) or chdir(2).

File Access Permissions.
Read, write, and execute/search permissions on a file are granted
to a process if one or more of the following are true:

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 433 of 798

INTRO(2) INTRO (2)

The process’s effective user ID is super-user.

The process’s effective user ID matches the user ID of the
owner of the file and the appropriate access bit of the
“owner” portion (0700) of the file mode is set.

The process’s effective user ID does not match the user ID
of the owner of the file, and the process’s effective group
ID matches the group of the file and the appropriate
access bit of the “group” portion (070) of the file mode is
set.

The process’s effective user ID does not match the user ID
of the owner of the file, and the process’s effective group
ID does not match the group ID of the file, and the
appropriate access bit of the “‘other” portion (07) of the
file mode is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier
A message queue identifier (msqgid) is a unique positive integer
created by a msgget(2) system call. Each msqgid has a message

queue and a data structure associated with it. The data structure
is referred to as msqid_ds and contains the following members:

struct ipc_perm msg_perm; /#* operation permission struct */

ushort msg_qnum; /* number of msgs on q */

ushort msg_qbytes; /* max number of bytes on q */
ushort msg_lspid; /* pid of last msgsnd operation */
ushort msg_lrpid; /* pid of last msgrev operation */
time_t msg_stime; /* last msgsnd time */

time_t msg_rtime; /* last msgrev time */

time_t msg_ctime; /* last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

Msg_perm is a ipc_perm structure that specifies the message
operation permission (see below). This structure includes the fol-
lowing members:

ushort cuid,; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */

ushort gid; /* group id */

ushort mode; /* r/w permission */

Msg_qgnum is the number of messages currently on the queue.
Msg_gbytes is the maximum number of bytes allowed on the
queue. Msg_lspid is the process id of the last process that per-
formed a msgsnd operation. Msg_lrpid is the process id of the
last process that performed a msgrcv operation. Msg_stime is
the time of the last msgsnd operation, msg_rtime is the time of
the last msgrev operation, and msg_ectime is the time of the last
msgetl(2) operation that changed a member of the above struc-
ture.

Message Operation Permissions.
In the msgop(2) and msgct!(2) system call descriptions, the

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 434 of 798

INTRO (2) INTRO (2)

permission required for an operation is interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a msqid are granted to a process if
one or more of the following are true:

The process’s effective user ID is super-user.

The process’s effective user ID matches msg_perm.[c]uid
in the data structure associated with msgid and the
appropriate bit of the ‘‘user” portion (0600) of
msg_perm.mode is set.

The process’s effective user ID does not match
msg_perm.[c]Juid and the process’s effective group ID
matches msg_perm.[c]gid and the appropriate bit of the
“group”’ portion (060) of msg_perm.mode is set.

The process’s effective user ID does not match
msg_perm.[cluid and the process’s effective group ID
does not match msg_perm.[c]gid and the appropriate bit
of the “other” portion (06) of msg_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier
A semaphore identifier (semid) is a unique positive integer created
by a semget(2) system call. Each semid has a set of semaphores
and a data structure associated with it. The data structure is
referred to as semid_ds and contains the following members:

struct ipc_perm sem_perm; /* operation permission struct */

ushort sem_nsems; /* number of sems in set */
time_t sem_otime; /* last operation time */
time_t sem_ctime; /* last change time */

/* Times measured in secs since */
/% 00:00:00 GMT, Jan. 1, 1970 */

Sem_perm is a ipc_perm structure that specifies the semaphore
operation permission (see below). This structure includes the fol-
lowing members:

ushort cuid, /#* creator user id */
ushort cgid; /* creator group id */
ushort uid,; /* user id */

ushort gid; /* group id */

ushort mode; /* r/a permission */

The value of sem_nsems is equal to the number of semaphores in
the set. Each semaphore in the set is referenced by a positive
integer referred to as a sem_num. Sem_num values run sequen-
tially from O to the value of sem_nsems minus 1. Sem_otime is
the time of the last semop(2) operation, and sem_ctime is the
time of the last semctl(2) operation that changed a member of the
above structure.

DELL INC., EMC CORP.,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 435 of 798

INTRO (2) INTRO (2)

A semaphore is a data structure that contains the following

members:
ushort semval; /* semaphore value */
short sempid; /* pid of last operation */
ushort semncnt; /* # awaiting semval > cval */
ushort semzent; /* # awaiting semval = 0 */

Semval is a non-negative integer. Sempid is equal to the process
ID of the last process that performed a semaphore operation on
this semaphore. Semnent is a count of the number of processes
that are currently suspended awaiting this semaphore’s semval to
become greater than its current value. Semzcent is a count of the
number of processes that are currently suspended awaiting this
semaphore’s semval to become zero.

Semaphore Operation Permissions.
In the semop(2) and semctl(2) system call descriptions, the per-
mission required for an operation is interpreted as follows:

00400 Read by user
00200 Alter by user
00060 Read, Alter by group
00006 Read, Alter by others

Read and Alter permissions on a semid are granted to a process if
one or more of the following are true:

The process’s effective user ID is super-user.

The process’s effective user ID matches sem_perm.[c]uid
in the data structure associated with semid and the
appropriate bit of the ‘user” portion (0600) of
sem_perm.mode is set.

The process’s effective user ID does not match
sem_perm.[cJuid and the process’s effective group ID
matches sem_perm.[c]gid and the appropriate bit of the
“group’’ portion (060) of sem_perm.mode is set.

The process’s effective user ID does not match
sem_perm.[cJuid and the process’s effective group ID
does not match sem_perm.[c]gid and the appropriate bit
of the “other” portion (06) of sem_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive integer
created by a shmget(2) system call. Each shmid has a segment of
memory (referred to as a shared memory segment) and a data
structure associated with it. The data structure is referred to as
shmid_ds and contains the following members:

struct ipc_perm shm_perm; /# operation permission struct */

int shm_segsz; /* size of segment */

ushort shm_cpid,; /* creator pid */

ushort shm_lpid; /* pid of last operation */

short shm_nattch; /* number of current attaches */
time_t shm_atime; /* last attach time */

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 436 of 798

INTRO(2) INTRO (2)

time_t shm_dtime; /* last detach time */

time_t shm_ctime; /* last change time */
/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

Shm_perm is a ipc_perm structure that specifies the shared
memory operation permission (see below). This structure includes
the following members:

ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */

ushort gid; /* group id */

ushort mode; /* r/w permission */

Shm_segsz specifies the size of the shared memory segment.
Shm_ecpid is the process id of the process that created the shared
memory identifier. Shm_lpid is the process id of the last process
that performed a shmop(2) operation. Shm_nattch is the
number of processes that currently have this segment attached.
Shm_atime is the time of the last shmat operation, shm_dtime
is the time of the last shmdt operation, and shm_ctime is the
time of the last shmcitl(2) operation that changed one of the
members of the above structure.

Shared Memory Operation Permissions.
In the shmop(2) and shmctl(2) system call descriptions, the per-
mission required for an operation is interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a shmid are granted to a process if
one or more of the following are true:

The process’s effective user ID is super-user.

The process’s effective user ID matches shm_perm.[c]uid
in the data structure associated with shmid and the
appropriate bit of the ‘‘user” portion (0600) of
shm_perm.mode is set.

The process’s effective wuser ID does not match
shm_perm.[c]uid and the process’s effective group ID
matches shm_perm.[c]gid and the appropriate bit of the
“group” portion (060) of shm_perm.mode is set.

The process’s effective user ID does not match
shm_perm.[c]uid and the process’s effective group ID
does not match shm_perm.[c]gid and the appropriate
bit of the ‘“other” portion (06) of shm_perm.mode is
set.

Otherwise, the corresponding permissions are denied.

SEE ALSO
intro(3).

DELL INC., EMC CORP;,"HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 437 of 798

ACCESS (2) ACCESS (2)

NAME

access — determine accessibility of a file

SYNOPSIS

int access (path, amode)
char #path;
int amode;

DESCRIPTION

Path points to a path name naming a file. Access checks the
named file for accessibility according to the bit pattern contained
in amode, using the real user ID in place of the effective user ID
and the real group ID in place of the effective group ID. The bit
pattern contained in amode is constructed as follows:

04 read

02 write

01 execute (search)

00 check existence of file

Access to the file is denied if one or more of the following are true:

A component of the path prefix is not a directory.
[ENOTDIR]

Read, write, or execute (search) permission is requested for
a null path name. [ENOENT]

The named file does not exist. [ENOENT)

Search permission is denied on a component of the path
prefix. [EACCES]

Write access is requested for a file on a read-only file sys-
tem. [EROFS]

Write access is requested for a pure procedure (shared
text) file that is being executed. [ETXTBSY]|

Permission bits of the file mode do not permit the
requested access. [EACCES]

Path points outside the process’s allocated address space.
[EFAULT)

The owner of a file has permission checked with respect to the
“owner” read, write, and execute mode bits, members of the file's
group other than the owner have permissions checked with respect
to the ‘“‘group” mode bits, and all others have permissions checked
with respect to the “other’’ mode bits.

RETURN VALUE

If the requested access is permitted, a value of 0 is returned. Oth-
erwise, a value of —1 is returned and errno is set to indicate the
error.

SEE ALSO

chmod(2), stat(2).

DELL INC., EMC CORP., HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 438 of 798

ACCT (2) ACCT (2)

NAME
acct — enable or disable process accounting

SYNOPSIS
int acct (path)
char *path;

DESCRIPTION
Acct is used to enable or disable the system’s process accounting
routine. If the routine is enabled, an accounting record will be
written on an accounting file for each process that terminates.
Termination can be caused by one of two things: an ezt call or a
signal; see ezit(2) and signal(2). The effective user ID of the cal-
ling process must be super-user to use this call.

Path points to a path name naming the accounting file. The
accounting file format is given in acct(4).

The accounting routine is enabled if path is non-zero and no errors
occur during the system call. It is disabled if path is zero and no
errors occur during the system call.

Acct will fail if one or more of the following are true:

The effective user ID of the calling process is not super-
user. [EPERM]

An attempt is being made to enable accounting when it is
already enabled. [EBUSY]

A component of the path prefix is not a directory.
[ENOTDIR|

One or more components of the accounting file’s path
name do not exist. [ENOENT]

A component of the path prefix denies search permission.
[EACCES]

The file named by path is not an ordinary file. [EACCES]

Mode permission is denied for the named accounting file.
[EACCES)

The named file is a directory. [EISDIR]
The named file resides on a read-only file system. [EROFS|
Path points to an illegal address. {EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

DELL INC., EMC CORP:;, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 439 of 798

ALARM(2) ALARM (2)

NAME
alarm — set a process’s alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned sec;

DESCRIPTION
Alarm instructs the calling process’s alarm clock to send the sig-
nal SIGALRM to the calling process after the number of real time
seconds specified by sec have elapsed; see signal(2).

Alarm requests are not stacked; successive calls reset the calling
process’s alarm clock. '

If sec is 0, any previously made alarm request is canceled.

RETURN VALUE
Alarm returns the amount of time previously remaining in the cal-
ling process’s alarm clock. '

SEE ALSO
pause(2), signal(2).

DELL INC., EMC CORP;HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 440 of 798

BRK (2) BRK (2)

NAME

brk, sbrk - change data segment space allocation
SYNOPSIS

int brk (endds)

char *endds;

char *sbrk (incr)

int incr;
DESCRIPTION

Brk and sbrk are used to change dynamically the amount of space
allocated for the calling process’s data segment; see ezec(2). The
change is made by resetting the process’s break value and allocat-
ing the appropriate amount of space. The break value is the
address of the first location beyond the end of the data segment.
The amount of allocated space increases as the break wvalue
increases.

Brk sets the break value to endds and changes the allocated space
accordingly.

Sbrk adds tncr bytes to the break value and changes the allocated
space accordingly. Incr can be negative, in which case the
amount of allocated space is decreased. Sbrk clears only the page
actually allocated, starting at a page boundary.

Brk and sbrk will fail without making any change in the allocated
space if one or more of the following are true:

Such a change would result in more space being allocated
than is allowed by a system-imposed maximum (see
ulimit(2)). [ENOMEM]

Such a change would result in the break value being
greater than or equal to the start address of any attached
shared memory segment (see shmop(2)).

RETURN VALUE

Upon successful completion, brk returns a value of 0 and sbrk
returns the old break value. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

SEE ALSO

exec(2).

DELL INC., EMC CORP;, HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 441 of 798

CHDIR(2) CHDIR (2)

NAME
chdir — change working directory

SYNOPSIS
int chdir (path)
char *path;

DESCRIPTION
Path points to the path name of a directory. Chdir causes the
named directory to become the current working directory, the
starting point for path searches for path names not beginning with

Chdir will fail and the current working directory will be
unchanged if one or more of the following are true:

A component of the path name is not a directory.
[ENOTDIR|

The named directory does not exist. [ENOENT]

Search permission is denied for any component of the path
name. [EACCES]|

Path points outside the process’s allocated address space.
[EFAULT)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

SEE ALSO
chroot(2).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 442 of 798

CHMOD (2) CHMOD (2)

NAME
chmod — change mode of file

SYNOPSIS
int chmod (path, mode)
char *path;
int mode;

DESCRIPTION
Path points to a path name naming a file. Chmod sets the access
permission portion of the named file's mode according to the bit
pattern contained in mode.

Access permission bits are interpreted as follows:

04000 Set user ID on execution.

02000 Set group ID on execution.

01000 Save text image after execution

00400 Read by owner

00200 Write by owner

00100 Execute (or search if a directory) by owner
00070 Read, write, execute (search) by group
00007 Read, write, execute Esearchg by others

The effective user ID of the process must match the owner of the
file or be super-user to change the mode of a file.

If the effective user ID of the process is not super-user, mode bit
01000 (save text image on execution) is cleared.

If the effective user ID of the process is not super-user or the
effective group ID of the process does not match the group ID of
the file, mode bit 02000 (set group ID on execution) is cleared.

If an executable file is prepared for sharing then mode bit 01000
prevents the system from abandoning the swap-space image of the
program-text portion of the file when its last user terminates.
Thus, when the next user of the file executes it, the text need not
be read from the file system but can simply be swapped in, saving
time.

Chmod will fail and the file mode will be unchanged if one or
more of the following are true:

A component of the path prefix is not a directory.
[ENOTDIR|

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path
prefix. [EACCES]

The effective user ID does not match the owner of the file
and the effective user ID is not super-user. [EPERM]

The named file resides on a read-only file system. [EROFS]

Path points outside the process’s allocated address space.
[EFAULT]

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 443 of 798

CHMOD (2) CHMOD (2)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

SEE ALSO
chown(2), mknod(2).

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 444 of 798

CHOWN(2) CHOWN (2)

NAME , v
chown - change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char *path;
int owner, group;

DESCRIPTION
Path points to a path name naming a file. The owner ID and
group ID of the named file are set to the numeric values contained
in owner and group respectively.

Only processes with effective user ID equal to the file owner or
super-user may change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID
and set-group-ID bits of the file mode, 04000 and 02000 respec-
tively, will be cleared.

Chown will fail and the owner and group of the named file will
remain unchanged if one or more of the following are true:

A component of the path prefix is not a directory.
[ENOTDIR|

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path
prefix. [EACCES)

The effective user ID does not match the owner of the file
and the effective user ID is not super-user. [EPERM]

The named file resides on a read-only file system. [EROFS]

Path points outside the process’s allocated address space.
[EFAULT)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 445 of 798

CHROOT (2) CHROOT (2)

NAME
chroot — change root directory

SYNOPSIS
int chroot (path)
char #path;

DESCRIPTION
Path points to a path name naming a directory. Chroot causes
the named directory to become the root directory, the starting
point for path searches for path names beginning with /.

The effective user ID of the process must be super-user to change
the root directory.

The .. entry in the root directory is interpreted to mean the root
directory itself. Thus, .. cannot be used to access files outside the
subtree rooted at the root directory.

Chroot will fail and the root directory will remain unchanged if
one or more of the following are true:

Any component of the path name is not a directory.
[ENOTDIR]

The named directory does not exist. [ENOENT]
The effective user ID is not super-user. [EPERM]

Path points outside the process’s allocated address space.
[EFAULT)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

SEE ALSO
chdir(2).

DELL INC., EMC CORP,, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 446 of 798

CLOSE (2) CLOSE (2)

NAME
close — close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fentl,
or pipe system call. Close closes the file descriptor indicated by
fildes.

Close will fail if fildes is not a valid open file descriptor. [EBADF]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), exec(2), fentl(2), open(2), pipe(2).

DELL INC., EMC CORP:,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 447 of 798

CREAT (2) CREAT (2)

NAME
creat — create a new file or rewrite an existing one

SYNOPSIS
int creat (path, mode)
char *path;
int mode;

DESCRIPTION
Creat creates a new ordinary file or prepares to rewrite an existing
file named by the path name pointed to by path.
If the file exists, the length is truncated to O and the mode and
owner are unchanged. Otherwise, the file’s owner ID is set to the
process’s effective user ID, the file’s group ID is set to the process’s
effective group ID, and the low-order 12 bits of the file mode are
set to the value of mode modified as follows:

All bits set in the process’s file mode creation mask are
cleared. See umask(2).

The “‘save text image after execution bit” of the mode is
cleared. See chmod(2).

Upon successful completion, a non-negative integer, namely the
file descriptor, is returned and the file is open for writing, even if
the mode does not permit writing. The file pointer is set to the
beginning of the file. The file descriptor is set to remain open
across erec system calls. See fentl(2). No process may have more
than 80 files open simultaneously. A new file may be created with
a mode that forbids writing.

Creat will fail if one or more of the following are true:

A component of the path prefix is not a directory.
[ENOTDIR]

A component of the path prefix does not exist. [ENOENT]

Search permission is denied on a component of the path
prefix. [EACCES]

The path name is null. [ENOENT]

The file does not exist and the directory in which the file
is to be created does not permit writing. [EACCES]

The named file resides or would reside on a read-only file
system. [EROFS]

The file is a pure procedure (shared text) file that is being
executed. [ETXTBSY]

The file exists and write permission is denied. [EACCES]
The named file is an existing directory. [EISDIR|
Eighty (80) file descriptors are currently open. [EMFILE]

Path points outside the process’s allocated address space.
[EFAULT]

RETURN VALUE
Upon successful completion, a non-negative integer, namely the

DELL INC., EMC CORP:,iHPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 448 of 798

CREAT (2) CREAT (2)

file descriptor, is returned. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

SEE ALSO
close(2), dup(2), lseek(2), open(2), read(2), umask(2), write(2).

DELL INC., EMC CORP-, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 449 of 798

DUP (2) DUP (2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int fildes;

DESCRIPTION)
Fildes is a file descriptor obtained from a creat, open, dup, fentl,
or pipe system call. Dup returns a new file descriptor having the
following in common with the original:

Same open file (or pipe).

Same file pointer. (i.e., both file descriptors share oné file
pointer.)

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across ezec system
calls. See fentl(2).

The file descriptor returned is the lowest one available.

Dup will fail if one or more of the following are true:
Fildes is not a valid open file descriptor. [EBADF]
Eighty (80) file descriptors are currently open. [EMFILE]|

RETURN VALUE
Upon successful completion a non-negative integer, namely the file
descriptor, is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

SEE ALSO ‘
creat(2), close(2), exec(2), fentl(2), open(2), pipe(2).

DELL INC., EMC CORP:;,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 450 of 798

EXEC(2) EXEC (2)

NAME
execl, execv, execle, execve, execlp, execvp — execute a file

SYNOPSIS
int execl (path, arg0, argl, ..., argn, 0)
char *path, *arg0, #argl, ..., *argn;

int execv (path, argv)
char #path, *argv| J;

int execle (path, arg0, argl, ..., argn, 0, envp)
char *path, *arg0, *argl, ..., *argn, *envp[J;

int execve (path, argv, envp)
char *path, *argv[], *envp[|;

int execlp (file, arg0, argl, ..., argn, 0)
char #*file, *arg0, *argl, ..., *argn;

int execvp (file, argv)
char #file, *argv| |;

DESCRIPTION

Ezec in all its forms transforms the calling process into a new pro-
cess. The new process is constructed from an ordinary, executable
file called the new process file. This file consists of a header (see
a.out(4)), a text segment, and a data segment. The data segment
contains an initialized portion and an uninitialized portion (bss).
There can be no return from a successful ezec because the calling
process is overlaid by the new process.

When a C program is executed, it is called as follows:

main (arge, argv, envp)
int arge;
char *#*argv, #*envp;

where arge is the argument count and argv is an array of charac-
ter pointers to the arguments themselves. As indicated, argc is
conventionally at least one and the first member of the array
points to a string containing the name of the file.

Path points to a path name that identifies the new process file.

File points to the new process file. The path prefix for this file is
obtained by a search of the directories passed as the environment
line "PATH =" (see environ(5)). The environment is supplied by
the shell (see sh(1)).

Arg0, argl, ..., argn are pointers to null-terminated character
strings. These strings constitute the argument list available to the
new process. By convention, at least arg0 must be present and
point to a string that is the same as path (or its last component).

Argv is an array of character pointers to null-terminated strings.
These strings constitute the argument list available to the new
process. By convention, argv must have at least one member, and
it must point to a string that is the same as path (or its last com-
ponent). Argv is terminated by a null pointer.

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 451 of 798

EXEC (2) EXEC (2)

Envp is an array of character pointers to null-terminated strings.
These strings- constitute the environment for the new process.
Envp is terminated by a null pointer. For ezec! and ezecv, the C
run-time start-off routine places a pointer to the calling process’s
environment in the global cell:
extern char **environ;

and it is used to pass the calling process’s environment to the new
process.

File descriptors open in the calling process remain open in the new
process, except for those whose close-on-exec flag is set; see
fentl(2). For those file descriptors that remain open, the file
pointer is unchanged.

Signals set to terminate the calling process will be set to terminate
the new process. Signals set to be ignored by the calling process
will be set to be ignored by the new process. Except for SIG-
PHONE and SIGWIND, signals set to be caught by the calling
process will be set to terminate new process; see signal(2).

If the set-user-ID mode bit of the new process file is set (see
chmod(2)), exec sets the effective user ID of the new process to the
owner ID of the new process file. Similarly, if the set-group-ID
mode bit of the new process file is set, the effective group ID of the
new process is set to the group ID of the new process file. The real
user ID and real group ID of the new process remain the same as
those of the calling process.

The shared memory segments attached to the calling process will
not be attached to the new process (see shmop(2)).

Profiling is disabled for the new process; see profil(2).

The new process also inherits the following attributes from the
calling process:

nice value (see nice(2))

process ID

parent process ID

process group ID

semadj values (see semop(2))

tty group ID (see ezit(2) and signal(2))

trace flag (see ptrace(2) request 0)

time left until an alarm clock signal (see alarm(2))
current working directory

root directory

file mode creation mask (see umask(2))

file size limit (see ulimit(2))

utime, stime, cuttme, and cstime (see times(2))

Ezxec will fail and return to the calling process if one or more of
the following are true:

One or more components of the new process file’s path
name do not exist. [ENOENT]

A component of the new process file’s path prefix is not a
directory. [ENOTDIR]

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 452 of 798

EXEC (2)

EXEC (2)

Search permission is denied for a directory listed in the
new process file’s path prefix. [EACCES]

The new process file is not an ordinary file. [EACCES]

The new process file mode denies execution permission.
[EACCES]

The exec is not an ezeclp or execvp, and the new process
file has the appropriate access permission but an invalid
magic number in its header. [ENOEXEC]

The new process file is a pure procedure (shared text) file
that is currently open for writing by some process.
[ETXTBSY]

The new process requires more memory than is allowed by
the system-imposed maximum MAXMEM. |[ENOMEM]|

The number of bytes in the new process’s argument list is
greater than the system-imposed limit of 5120 bytes.
[E2BIG)

The new process file is not as long as indicated by the size
values in its header. [EFAULT]

Path, argv, or envp point to an illegal address. [EFAULT)

RETURN VALUE
If exec returns to the calling process an error has occurred; the
return value will be —1 and errno will be set to indicate the error.

SEE ALSO

exit(2), fork(2), environ(5).

DELL INC., EMC CORP.,-HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 453 of 798

EXIT(2)

NAME

EXIT (2)

exit, _exit — terminate process

SYNOPSIS

void exit (status)
int status;
void _exit (status)
int status;

DESCRIPTION

Ezit terminates the calling process with the following conse-
quences:

All of the file descriptors open in the calling process are
closed.

If the parent process of the calling process is executing a
wait, it is notified of the calling process’s termination and
the low order eight bits (i.e., bits 0377) of status are made
available to it; see wait(2).

If the parent process of the calling process is not executing
a watt, the calling process is transformed into a zombie
process. A zombie process is a process that only occupies
a slot in the process table. It has no other space allocated
either in user or kernel space. The process table slot that
it occupies is partially overlaid with time accounting infor-
mation (see <sys/proc.h>) to be used by times.

The parent process ID of all of the calling process’s exist-
ing child processes and zombie processes is set to 1. This
means the initialization process (see intro(2)) inherits each
of these processes.

Each attached shared memory segment is detached and
the value of shm_nattach in the data structure associ-
ated with its shared memory identifier is decremented by
1.

For each semaphore for which the calling process has set a
semadj value (see semop(2)), that semadj value is added
to the semval of the specified semaphore.

If the process has a process, text, or data lock, an unlock
is performed [see plock (2)].

If the process ID, tty group ID, and process group ID of the
calling process are equal, (i.e. it is a process group leader),
the SIGHUP signal is sent to each process that has a pro-
cess group ID equal to that of the calling process.

If the process is a process group leader, all processes in its
group are made members of the null group.

The C function ezit may cause cleanup actions before the process
exits. The function _ezit circumvents all cleanup.

SEE ALSO

intro(2), semop(2), signal(2), wait(2).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 454 of 798

EXIT (2) EXIT (2)

WARNING
See WARNING in signal(2).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 455 of 798

FCNTL (2)

NAME

FCNTL (2)

fentl — file control

SYNOPSIS

#include <fentl.h>

int fentl (fildes, emd, arg)
int fildes, cmd, arg;

DESCRIPTION

Fentl provides for control over open files. Fildes is an open file
descriptor obtained from a creat, open, dup, fentl, or pipe system

call.

The c¢mds available are:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL
F_SETFL

F_GETLK

F_SETLK

Return a new file descriptor as follows:

Lowest numbered available file descriptor greater
than or equal to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file
descriptors share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors share
the same file status flags).

The close-on-exec flag associated with the new file
descriptor is set to remain open across ezec(2) sys-
tem calls.

Get the close-on-exec flag associated with the file
descriptor fildes. If the low-order bit is 0 the file
will remain open across ezec, otherwise the file will
be closed upon execution of exec.

Set the close-on-exec flag associated with fildes to
the low-order bit of arg (0 or 1 as above).

Get file status flags.

Set file status flags to arg. Only certain flags can
be set; see fentl(5).

Get the first block which blocks the lock description
given by the variable of type struct flock pointed to
by arg. The information retrieved overwrites the
information passed to fentl in the flock structure. If
no lock is found that would prevent this lock from
being created, then the structure is passed back
unchanged except for the lock type which will be set
to F_UNLCK.

Set or clear a file segment lock according to the vari-
able of type struct flock pointed to by arg [see
fentl(5)]. The c¢md F_SETLK is used to establish
read (F_RDLCK) and write (F_WRLCK) locks, as
well as remove either type of lock (F_UNLCK). Ifa
read or write lock cannot be set fentl will return

DELL INC., EMC CORP.,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 456 of 798

FCNTL (2) FCNTL (2)

immediately with an error value of —1.

F_SETLKW This ¢md is the same as F_SETLK except that if a
read or write lock is blocked by other locks, the pro-
cess will sleep until the segment is free to be locked.

A read lock prevents any process from write locking the protected
area. More than one read lock may exist for a given segment of a
file at a given time. The file descriptor on which a read lock is
being placed must have been opened with read access.

A write lock prevents any process from read locking or write lock-
ing the protected area. Only one write lock may exist for a given
segment of a file at a given time. The file descriptor on which a
write lock is being placed must have been opened with write
access.

The structure describes the type ({_type), starting offset (I_start),
relative offset (I_whence), size (I_len), process id (I_pid), and sys-
tem id ({_sysid) of the segment of the file to be affected. The pro-
cess id and system id fields are used only with the F_GETLK c¢md
to return the values for a blocking lock. Locks may start and
extend beyond the current end of a file, but may not be negative
relative to the beginning of the file. A lock may be set to always
extend to the end of the file by setting I_len to zero (0). If such a
lock also has I_where and I_start set to zero (0), the whole file will
be locked. Changing or unlocking a segment from the middle of a
larger locked segment leaves two smaller segments for either end.
Locking a segment that is already locked by the calling process
causes the old lock type to be removed and the new lock type to
take effect. All locks associated with a file for a given process are
removed when a file descriptor for that file is closed by that pro-
cess or the process holding that file descriptor terminates. Locks
are not inherited by a child process in a fork(2) system call.

When mandatory file and record locking is active on a file [see
chmod(2)], read and write system calls issued on the file will be
affected by the record locks in effect.

Fentl will fail if one or more of the following are true:
[EBADF] Fildes is not a valid open file descriptor.

[EINVAL] Cmd is F_DUPFD. Aryg is either negative, or greater
than or equal to, the configured value for the max-
imum number of open file descriptors allowed each
user.

[EINVAL] Cmd is F_GETLK, F_SETLK, or SETLKW and arg
or the data it points to is not valid.

[EACCES] Cmd is F_SETLK, the type of lock (!_type) is a read
(F_RDLCK) lock and the segment of a file to be
locked is already write locked by another process or
the type is a write lock (F_WRLCK) and the seg-
ment of a file to be locked is already read or write
locked by another process.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 457 of 798

FCNTL (2)

[ENOLCK]

[EDEADLK]

[EFAULT)

SEE ALSO

FCNTL (2)

Cmd is F_SETLK or F_SETLKW, the type of lock
is a read or write lock, and there are no more record
locks available (too many file segments locked).

Cmd is F_SETLKW, the lock is blocked by some
lock from another process, and putting the calling
process to sleep, waiting for that lock to become
free, would cause a deadlock.

Cmd 1s F_SETLK, arg points outside the program
address space.

close(2), creat(2), dup(2), exec(2), fork(2), open(2), pipe(2), fentl(5).

DIAGNOSTICS

Upon successful completion, the value returned depends on ¢md as

follows:
F_DUPFD
F_GETFD
F_SETFD
F_GETFL
F_SETFL
F_GETLK
F_SETLK
F_SETLKW
WARNINGS

A new file descriptor.

Value of flag (only the low-order bit is defined).
Value other than —1.

Value of file flags.

Value other than ~1.

Value other than -1.

Value other than —1.

Value other than —1.

Because in the future the variable errno will be set to EAGAIN
rather than EACCES when a section of a file is already locked by
another process, portable application programs should expect and
test for either value.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 458 of 798

FORK (2)

NAME

FORK (2)

fork — create a new process

SYNOPSIS

int fork ()

DESCRIPTION

Fork causes creation of a new process. The new process (child
process) is an exact copy of the calling process (parent process).
This means the child process inherits the following attributes from
the parent process:

environment

close-on-exec flag (see ezec(2))

signal handling settings (i.e., SIG_DFL, SIG_ING, func-
tion address)

set-user-ID mode bit

set-group-ID mode bit

profiling on/off status

nice value (see nice(2))

all attached shared memory segments (see shmop(2))
process group ID

tty group ID (see exit(2) and signal(2))

trace flag (see ptrace(2) request 0)

current working directory

root directory

file mode creation mask (see umask(2))

file size limit (see ulimit(2))

The child process differs from the parent process in the following

ways:

The child process has a unique process ID.

The child process has a different parent process ID (i.e.,
the process ID of the parent process).

The child process has its own copy of the parent’s file
descriptors. Each of the child’s file descriptors shares a
common file pointer with the corresponding file descriptor
of the parent.

All semadj values are cleared (see semop(2)).

Process locks, text locks and data locks are not inherited
by the child (see plock(2)).

The child process’s utime, stime, cutime, and cstime are
set to 0.

The child process has a different amount of time left until
an alarm clock signal (see alarm(2)).

Fork will fail and no child process will be created if one or more
of the following are true:

The system-imposed limit on the total number of
processes under execution would be exceeded. [EAGAIN]

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 459 of 798

FORK (2) FORK (2)

The system-imposed limit on the total number of
processes under execution by a single user would be
exceeded. [EAGAIN]

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child
process and returns the process ID of the child process to the
parent process. Otherwise, a value of —1 is returned to the parent
process, no child process is created, and errno is set to indicate
the error.

SEE ALSO
exec(2), times(2), wait(2).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 460 of 798

GETPID (2) GETPID (2)

NAME
getpid, getpgrp, getppid — get process, process group, and parent
process IDs

SYNOPSIS
int getpid ()
int getpgrp ()
int getppid ()
DESCRIPTION
Getpid returns the process ID of the calling process.

Getpgrp returns the process group ID of the calling process.
Getppid returns the parent process ID of the calling process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 461 of 798

GETUID (2) GETUID (2)

NAME
getuid, geteuid, getgid, getegid — get real user, effective user, real
group, and effective group IDs

SYNOPSIS
int getuid ()

int geteuid ()
int getgid ()
int getegid ()

DESCRIPTION
Getuid returns the real user ID of the calling process.

Geteuid returns the effective user ID of the calling process.
Getgid returns the real group ID of the calling process.
Getegid returns the effective group ID of the calling process.

SEE ALSO
intro(2), setuid(2).

DELL INC., EMC CORP.,.-HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 462 of 798

IOCTL (2) IOCTL (2)

NAME
ioctl — control device

SYNOPSIS
ioctl (fildes, request, arg)

DESCRIPTION
Ioctl performs a variety of functions on character special files
(devices). The writeups of various devices in Section 7 discuss
how 1octl applies to them.

Toctl will fail if one or more of the following are true:
Fildes is not a valid open file descriptor. [EBADF|

Fildes is not associated with a character special device.
[ENOTTY|

Request or arg is not valid. See Section 7. [EINVAL]

RETURN VALUE
If an error has occurred, a value of —1 is returned and errno is set
to indicate the error.

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 463 of 798

KILL(2) | KILL (2)

NAME

kill — send a signal to a process or a group of processes

SYNOPSIS

int kill (pid, sig)
int pid, sig;

DESCRIPTION

Kill sends a signal to a process or a group of processes. The pro-
cess or group of processes to which the signal is to be sent is
specified by pid. The signal that is to be sent is specified by sig
and is either one from the list given in signal(2), or 0. If sig is O
(the null signal), error checking is performed but no signal is actu-
ally sent. This can be used to check the validity of pid.

The real or effective user ID of the sending process must match the
real or effective user ID of the receiving process, unless the effective
user ID of the sending process is super-user.

The processes with a process ID of 0 and a process ID of 1 are spe-
cial processes (see intro(2)) and will be referred to below as proco
and proci respectively.

If pid is greater than zero, sig will be sent to the process whose
process ID is equal to pid. Pid may equal 1.

If pid is 0, stg will be sent to all processes excluding proc0 and
procl whose process group ID is equal to the process group ID of
the sender.

If pid is —1 and the effective user ID of the sender is not super-
user, stg will be sent to all processes excluding proc0 and proci
whose real user ID is equal to the effective user ID of the sender.

If pid is ~1 and the effective user ID of the sender is super-user,
stg will be sent to all processes excluding proc0 and proci.

If pid is negative but not -1, sig will be sent to all processes
whose process group ID is equal to the absolute value of pid.

Kill will fail and no signal will be sent if one or more of the fol-
lowing are true:

Sig is not a valid signal number. [EINVAL]

No process can be found corresponding to that specified
by pid. [ESRCH]

The user ID of the sending process is not super-user, and
its real or effective user ID does not match the real or
effective user ID of the receiving process. [EPERM]|

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

SEE ALSO

kill(1), getpid(2), setpgrp(2), signal(2).

DELL INC., EMC CORP, HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 464 of 798

LINK (2)

NAME

LINK (2)

link - link to a file

SYNOPSIS

int link (pathl, path?2)
char #pathl, *path2;
DESCRIPTION
Pathl points to a path name naming an existing file. Path2

points to a path name naming the new directory entry to be
created. Link creates a new link (directory entry) for the existing

file.

Link will fail and no link will be created if one or more of the fol-
lowing are true:

A component of either path prefix is not a directory.
[ENOTDIR|

A component of either path prefix does not exist.
[ENOENT]

A component of either path prefix denies search permis-
sion. [EACCES]

The file named by pathi does not exist. [ENOENT]
The link named by path2 exists. [EEXIST]

The file named by path!l is a directory and the effective
user ID is not super-user. [EPERM)]

_ The link named by path2 and the file named by pathl are

“on different logical devices (file systems). [EXDEV]
Path?2 points to a null path name. [ENOENT]

The requested link requires writing in a directory with a
mode that denies write permission. [EACCES|

The requested link requires writing in a directory on a
read-only file system. [EROFS|

Path points outside the process’s allocated address space.
[EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

SEE ALSO

unlink(2).

DELL INC., EMC CORP:,:HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 465 of 798

LSEEK (2) LSEEK (2)

NAME
Iseek — move read/write file pointer

SYNOPSIS
long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION
Fildes is a file descriptor returned from a creat, open, dup, or
fentl system call. Lseek sets the file pointer associated with fildes
as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location
plus offset.

If whence is 2, the pointer is set to the size of the file plus
offset.

Upon successful completion, the resulting pointer location as meas-
ured in bytes from the beginning of the file is returned.

Lseek will fail and the file pointer will remain unchanged if one or
more of the following are true:

Fildes is not an open file descriptor. [EBADF]

Fildes is associated with a pipe or fifo. [ESPIPE]
Whence is not 0, 1 or 2. [EINVAL and SIGSYS signal]
The resulting file pointer would be negative. [EINVAL]

Some devices are incapable of seeking. The value of the file
pointer associated with such a device is undefined.

RETURN VALUE
Upon successful completion, a non-negative integer indicating the
file pointer value is returned. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), fentl(2), open(2).

DELL INC., EMC CORP:,'HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 466 of 798

MKNOD (2) MKNOD (2)

NAME
mknod — make a directory, or a special or ordinary file

SYNOPSIS
int mknod (path, mode, dev)
char *path;
int mode, dev;

DESCRIPTION
Mknod creates a new file named by the path name pointed to by
path. The mode of the new file is initialized from mode, where
the value of mode is interpreted as follows:
0170000 file type; one of the following:
0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file
0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the follow-
ing
0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The file’s owner ID is set to the process’s effective user ID. The
file’s group ID is set to the process’s effective group ID.

Values of mode other than those above are undefined and should
not be used. The low-order 9 bits of mode are modified by the
process’s file mode creation mask: all bits set in the process’s file
mode creation mask are cleared. See umask(2). If mode indicates
a block or character special file, dev is a configuration dependent
specification of a character or block I/O device. If mode does not
indicate a block special or character special device, dev is ignored.

Mknod may be invoked only by the super-user for file types other
than FIFO special.

Mknod will fail and the new file will not be created if one or more
of the following are true:

The process’s effective user ID is not super-user. [EPERM)]

A component of the path prefix is not a directory.
[ENOTDIR|

A component of the path prefix does not exist. [ENOENT]

The directory in which the file is to be created is located
on a read-only file system. [EROFS]

The named file exists. [EEXIST]
Path points outside the process’s allocated address space.
[EFAULT]
DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 467 of 798

MEKNOD (2) MKNOD (2)

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

SEE ALSO
mkdir(1), chmod(2), exec(2), umask(2), fs(4).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 468 of 798

MOUNT (2) MOUNT (2)

NAME
mount — mount a file system

SYNOPSIS
int mount (spec, dir, rwflag)
char *spec, *dir;
int rwflag;

DESCRIPTION
Mount requests that a removable file system contained on the
block special file identified by spec be mounted on the directory
identified by dir. is the standard UNIX PC directory for mounting
floppy diskettes. Spec and dir are pointers to path names.

Upon successful completion, references to the file dir will refer to
the root directory on the mounted file system.

The low-order bit of rwflag is used to control write permission on
the mounted file system; if 1, writing is forbidden, otherwise writ-
ing is permitted according to individual file accessibility.

Mount may be invoked only by the super-user.

Mount will fail if one or more of the following are true:
The effective user ID is not super-user. [EPERM]
Any of the named files does not exist. [ENOENT)

A component of a path prefix is not a directory.
[ENOTDIR|

Spec is not a block special device. [ENOTBLK]
The device associated with spec does not exist. [ENXIO|
Dir is not a directory. [ENOTDIR|

Spec or dir points outside the process’s allocated address
space. [EFAULT)

Dir is currently mounted on, is someone’s current working
directory or is otherwise busy. [EBUSY]

The device associated with spec is currently mounted.
[EBUSY]

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
mount(1M), umount(2).

DELL INC., EMC CORP:,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 469 of 798

MSGCTL (2) MSGCTL (2)

NAME
msgcetl — message control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
int msgctl (msqid, emd, buf)
int msqid, emd;
struct msqid_ds *buf;

DESCRIPTION
Msgctl provides a variety of message control operations as
specified by ¢md. The following ¢mds are available:

IPC_STAT Place the current value of each member of the data
structure associated with msg¢id into the structure
pointed to by buf. The contents of this structure
are defined in intro(2). {READ}

IPC_SET Set the value of the following members of the data
structure associated with msgid to the corresponding
value found in the structure pointed to by buf:

msg_perm.uid

msg_perm.gid

msg_perm.mode /* only low 9 bits */
msg_gbytes

This ¢md can only be executed by a process that has
an effective user ID equal to either that of super user
or to the value of msg_perm.uid in the data struc-
ture associated with msgid. Only super user can
raise the value of msg_qgbytes.

IPC_RMID Remove the message queue identifier specified by
msgid from the system and destroy the message
queue and data structure associated with it. This
¢md can only be executed by a process that has an
effective user ID equal to either that of super user or
to the value of msg_perm.uid in the data structure
associated with msgid.

Msgctl will fail if one or more of the following are true:
Msgid is not a valid message queue identifier. [EINVAL)]
Cmd is not a valid command. [EINVAL]

Cmd is equal to IPC_STAT and {READ} operation per-
mission is denied to the calling process (see intro(2)).
[EACCES]

Cmd is equal to IPC_RMID or IPC_SET and the effective
user ID of the calling process is not equal to that of super
user and it is not equal to the value of msg_perm.uid in
the data structure associated with msgid. [EPERM]

Cmd is equal to IPC_SET, an attempt is being made to
increase to the value of msg_qbytes, and the effective

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 470 of 798

MSGCTL(2) MSGCTL (2)

user ID of the calling process is not equal to that of super
user. [EPERM]

Buf points to an illegal address. [EFAULT)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

SEE ALSO
msgget(2), msgop(2), stdipc(3C).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 471 of 798

MSGGET (2)

NAME

MSGGET (2)

msgget — get message queue

SYNOPSIS

#include <sys/types.h>
#include <sys/ipe.h>
ffinclude <sys/msg.h>
int msgget (key, msgflg)
key_t key;

int msgflg;

DESCRIPTION

Msgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data
structure (see intro(2)) are created for key if one of the following
are true:

Key is equal to IPC_PRIVATE.

Key does not already have a message queue identifier
associated with it, and (msgfly & IPC_CREAT) is ‘“‘true”’.

Upon creation, the data structure associated with the new message
dueue identifier is initialized as follows:

Msgget

Msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and
msg_perm.gid are set equal to the effective user ID and
effective group ID, respectively, of the calling process.

The low-order 9 bits of msg_perm.mode are set equal to
the low-order 9 bits of msgflg.

Msg_qhum, msg_lspid, msg_lrpid, msg_stime, and
msg_rtime are set equal to 0.

Msg_ctime is set equal to the current time.
Msg_qgbytes is set equal to the system limit.
will fail if one or more of the following are true:

A message queue identifier exists for key but operation
permission (see intro(2)) as specified by the low-order 9
bits of msgflg would not be granted. [EACCES]

A message queue identifier does not exist for key and
(msgflg & IPC_CREAT) is “false”. [ENOENT]|

A message queue identifier is to be created but the system
imposed limit on the maximum number of allowed mes-
sage queue identifiers system wide would be exceeded.
[ENOSPC]

A message queue identifier exists for key but ((msgfly &
IPC_CREAT) & (msgfly & IPC_EXCL)) is ‘‘true”.
[EEXIST]

RETURN VALUE
Upon successful completion, a non-negative integer, namely a mes-
sage queue identifier, is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

DELL INC., EMC CORP:;, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 472 of 798

MSGGET (2) MSGGET (2)

SEE ALSO
msgctl(2), msgop(2), stdipe(3C).

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 473 of 798

MSGOP (2) MSGOP (2)

NAME
msgop — message operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;

struct msgbuf *msgp;

int msgsz, msgflg;

int msgrev (msqid, msgp, msgsz, msgtyp, msgflig)
int msqid;
struct msgbuf *msgp;
int msgsz;
long msgtyp;
int msgfig;
DESCRIPTION
Msgsnd is used to send a message to the queue associated with the
message queue identifier specified by msgid. {WRITE} Msgp
points to a structure containing the message. This structure is
composed of the following members:
long mtype; /* message type */
char mtext|]; /* message text */
Mtype is a positive integer that can be used by the receiving pro-
cess for message selection (see msgrcv below). Miext is any text

of length msgsz bytes. Msgsz can range from 0 to a system
imposed maximum.

Msgflg specifies the action to be taken if one or more of the fol-
lowing are true:

The number of bytes already on the queue is equal to
msg_gbytes (see intro(2)).

The total number of messages on all queues system wide is
equal to the system imposed limit.

These actions are as follows:

If (msgfly & IPC_NOWAIT) is ‘“‘true”, the message will
not be sent and the calling process will return immedi-
ately.

If (msgfig & IPC_NOWALIT) is “false”, the calling process
will suspend execution until one of the following occurs:

The condition responsible for the suspension no
longer exists, in which case the message is sent.

Msgid is removed from the system (see
msgctl(2)). When this occurs, errno is set equal
to EIDRM, and a value of —1 is returned.

The calling process receives a signal that is to be
caught. In this case the message is not sent and

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 474 of 798

MSGOP (2) MSGOP (2)

the calling process resumes execution in the
manner prescribed in signal(2)).

Msgsnd will fail and no message will be sent if one or more of the
following are true:

Msgid is not a valid message queue identifier. [EINVAL]

Operation permission is denied to the calling process (see
intro(2)). [EACCES]

Mtype is less than 1. [EINVAL]

The message cannot be sent for one of the reasons cited
above and (msgfly & IPC_NOWAIT) is “true’. [EAGAIN]

Msgsz is less than zero or greater than the system imposed
limit. [EINVAL]
Msgp points to an illegal address. [EFAULT)

Upon successful completion, the following actions are taken with
respect to the data structure associated with msgid (see intro (2)).

Msg_qnum is incremented by 1.

Msg_lspid is set equal to the process ID of the calling
process.

Masg_stime is set equal to the current time.

Msgrev reads a message from the queue associated with the mes-
sage queue identifier specified by msg¢d and places it in the struc-
ture pointed to by msgp. {READ} This structure is composed of
the following members:

long mtype; /* message type */
char mtext]]; /* message text */

Mtype is the received message’s type as specified by the sending
process. Mtezt is the text of the message. Msgsz specifies the size
in bytes of mtext. The received message is truncated to msgsz
bytes if it is larger than msgsz and (msgfly & MSG_NOERROR)
is “true”. The truncated part of the message is lost and no indi-
cation of the truncation is given to the calling process.

Msgtyp specifies the type of message requested as follows:

If msgtyp is equal to O, the first message on the queue is
received.

If msgtyp is greater than 0, the first message of type
msgtyp is received.

If msgtyp is less than 0, the first message of the lowest
type that is less than or equal to the absolute value of
msgtyp is received.

Msgflg specifies the action to be taken if a message of the desired
type is not on the queue. These are as follows:

If (msgfig & TIPC_NOWAIT) is “true’’, the calling process
will return immediately with a return value of -1 and
errno set to ENOMSG.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 475 of 798

MSGOP (2) MSGOP (2)

If (msgfly & IPC_NOWALIT) is “false”, the calling process
will suspend execution until one of the following occurs:

A message of the desired type is placed on the
queue.

Msgid is removed from the system. When this
occurs, errno is set equal to EIDRM, and a value
of -1 is returned.

The calling process receives a signal that is to be
caught. In this case a message is not received
and the calling process resumes execution in the
manner prescribed in signal(2)).

Msgrev will fail and no message will be received if one or more of
the following are true:

Msgid is not a valid message queue identifier. [EINVAL]

Operation permission is denied to the calling process.
[EACCES)

Msgsz is less than 0. [EINVAL]

Mtext is greater than msgsz and (msgfly &
MSG_NOERROR) is ‘“false”. [E2BIG]

The queue does not contain a message of the desired type
and (msgtyp & IPC_NOWAIT) is “‘true”. [ENOMSG]

Msgp points to an illegal address. [EFAULT)

Upon successful completion, the following actions are taken with
respect to the data structure assoctated with msgid (see intro (2)).

Msg_gnum is decremented by 1.

Msg_lrpid is set equal to the process ID of the calling
process.

Msg_rtime is set equal to the current time.

RETURN VALUES
If msgsnd or msgrcv return due to the receipt of a signal, a value
of —1 is returned to the calling process and errno is set to EINTR.
If they return due to removal of msgqid from the system, a value of
—1 is returned and errno is set to EIDRM.

Upon successful completion, the return value is as follows:
Msgsnd returns a value of 0.

Msgrcv returns a value equal to the number of bytes actu-
ally placed into mtext.

Otherwise, a value of —1 is returned and errno is set to indicate
the error.

SEE ALSO
msgetl(2), msgget(2), stdipe(3C).

DELL INC., EMC CORP.,-HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 476 of 798

NICE (2) NICE (2)

NAME
nice — change priority of a process
SYNOPSIS
int nice (incr)
int incr;
DESCRIPTION
Nice adds the value of incr to the nice value of the calling pro-

cess. A process’s nice value is a positive number for which a more
positive value results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are
imposed by the system. Requests for values above or below these
limits result in the nice value being set to the corresponding limit.

Nice will fail and not change the nice value if ¢ncr is negative
and the effective user ID of the calling process is not super-user.
[EPERM|

RETURN VALUE
Upon successful completion, nice returns the new nice value
minus 20. Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO
nice(1), exec(2).

DELL INC., EMC CORP.; HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 477 of 798

OPEN(2)

NAME

OPEN(2)

open — open for reading or writing

SYNOPSIS

#include <fentl.h>
int open (path, oflag [, mode |)

char *path;

int oflag, mode;

DESCRIPTION

Path points to a path name naming a file. Open opens a file
descriptor for the named file and sets the file status flags according
to the value of ofiag. Oflag values are constructed by or-ing flags
from the following list (only one of the first three flags below may

be used):

O_RDONLY Open for reading only.
O_WRONLY Open for writing only.

O_RDWR
O_NDELAY

O_APPEND

O_CREAT

Open for reading and writing.

This flag may affect subsequent reads and writes.
See read(2) and write(2).

When opening a FIFO with O_RDONLY or
O_WRONLY set:

If O_NDELAY is set:

An open for reading-only will return
without delay. An open for writing-only
will return an error if no process currently
has the file open for reading.

If O_NDELAY is clear:

An open for reading-only will block until
a process opens the file for writing. An
open for writing-only will block until a
process opens the file for reading,.

When opening a file associated with a communica-
tion line:

If O_NDELAY is set:

The open will return without waiting for
carrier.

If O_NDELAY is clear:

The open will block until carrier is
present.

If set, the file pointer will be set to the end of the
file prior to each write.

If the file exists, this flag has no effect. Otherwise,
the file’'s owner ID is set to the process’s effective

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 478 of 798

OPEN(2) OPEN(2)

user ID, the file’'s group ID is set to the process’s
effective group ID, and the low-order 12 bits of the
file mode are set to the value of mode modified as
follows (see creat(2)):

All bits set in the process’s file mode crea-
tion mask are cleared. See umask(2).

The “save text image after execution bit”
of the mode is cleared. See chmod(2).

O_TRUNC If the file exists, its length is truncated to O and
the mode and owner are unchanged.

O_EXCL If O_EXCL and O_CREAT are set, open will fail if
the file exists.

Upon successful completion a non-negative integer, the file
descriptor, is returned.

The file pointer used to mark the current position within the file is
set to the beginning of the file.

The new file descriptor is set to remain open across ezec system
calls. See fentl(2).

No process may have more than 80 file descriptors open simultane-

ously.
The named file is opened unless one or more of the following are
true:
A component of the path prefix is not a directory.
[ENOTDIR|
O_CREAT is not set and the named file does not exist.
[ENOENT]
A component of the path prefix denies search permission.
[EACCES]

Oflag permission is denied for the named file. [EACCES]

The named file is a directory and oflag is write or
read/write. [EISDIR]

The named file resides on a read-only file system and
oflag is write or read/write. [EROFS|

Eighty (80) file descriptors are currently open. [EMFILE]|

The named file is a character special or block special file,
and the device associated with this special file does not
exist. [ENXIO]

The file is a pure procedure (shared text) file that is being
executed and oflag is write or read/write. [ETXTBSY]

Path points outside the process’s allocated address space.
[EFAULT)]

O_CREAT and O_EXCL are set, and the named file exists.
[EEXIST]

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 479 of 798

OPEN(2) OPEN(2)

O_NDELAY is set, the named file is a FIFO, O_WRONLY is
set, and no process has the file open for reading. [ENXIO|

RETURN VALUE
Upon successful completion, a non-negative integer, namely a file
descriptor, is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

SEE ALSO
close(2), creat(2), dup(2), fentl(2), lseek(2), read(2), write(2).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 480 of 798

PAUSE (2) PAUSE (2)

NAME

pause — suspend process until signal
SYNOPSIS

pause ()
DESCRIPTION

Pause suspends the calling process until it receives a signal. The
signal must be one that is not currently set to be ignored by the
calling process.

If the signal causes termination of the calling process, pause will
not return.

If the signal is caught by the calling process and control is
returned from the signal catching-function (see signal(2)), the cal-
ling process resumes execution from the point of suspension; with
a return value of —~1 from pause and errno set to EINTR.

SEE ALSO
alarm(2), kill(2), signal(2), wait(2).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 481 of 798

PIPE(2) PIPE (2)

NAME
pipe — create an interprocess channel

SYNOPSIS
int pipe (fildes)
int fildes[2];

DESCRIPTION
Pipe creates an 1/O mechanism called a pipe and returns two file
descriptors, fildes[0] and fildes[1]. Fildes[0] is opened for reading
and fildes[1] is opened for writing.
Writes up to 5120 bytes of data are buffered by the pipe before
the writing process is blocked. A read on file descriptor fildes|0]
accesses the data written to fildes{1] on a first-in-first-out basis.
No process may have more than 20 file descriptors open simultane-
ously.
Pipe will fail if 19 or more file descriptors are currently open.
[EMFILE]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

SEE ALSO
sh(1), read(2), write(2).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 482 of 798

PLOCK(2) PLOCK (2)

NAME
plock — lock process, text, or data in memory

SYNOPSIS
#include <sys/lock.h>

int plock (op)
int op;

DESCRIPTION
Plock allows the calling process to lock its text segment (text
lock), its data segment (data lock), or both its text and data seg-
ments (process lock) into memory. Locked segments are immune
to all routine swapping. Plock also allows these segments to be
unlocked. The effective user ID of the calling process must be
super-user to use this call. Op specifies the following:

PROCLOCK ~ lock text and data segments into
memory (process lock)

TXTLOCK - lock text segment into memory (text
lock)

DATLOCK -~ lock data segment into memory (data
lock)

UNLOCK - remove locks

Plock will fail and not perform the requested operation if one or
more of the following are true:

The effective user ID of the calling process is not super-
user. [EPERM]

Op is equal to PROCLOCK and a process lock, a text
lock, or a data lock already exists on the calling process.
[EINVAL] :

Op is equal to TXTLOCK and a text lock, or a process
lock already exists on the calling process. [EINVAL]

Op is equal to DATLOCK and a data lock, or a process
lock already exists on the calling process. [EINVAL|

Op is equal to UNLOCK and no type of lock exists on the
calling process. [EINVAL]

RETURN VALUE
Upon successful completion, a value of 0 is returned to the calling
process. Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO
exec(2), exit(2), fork(2).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 483 of 798

PROFIL (2) PROFIL (2)

NAME

profil — execution time profile

SYNOPSIS

void profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION

Buff points to an area of core whose length (in bytes) is given by
bufsiz. After this call, the user’s program counter (pc) is exam-
ined each clock tick (60th second); offset is subtracted from it,
and the result multiplied by scaele. If the resulting number
corresponds to a word inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with
binary point at the left: 0177777 (octal) gives a 1-1 mapping of
pe’s to words in buff; 077777 (octal) maps each pair of instruction
words together. 02(8) maps all instructions onto the beginning of
buff (producing a non-interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered
ineffective by giving a bufsiz of 0. Profiling is turned off when an
ezec is executed, but remains on in child and parent both after a
fork. Profiling will be turned off if an update in buff would cause
a memory fault.

RETURN VALUE

Not defined.

SEE ALSO

BUGS

prof(1), monitor(3C).

Profil() is not supported on the UNIX PC.

DELL INC., EMC CORP.; HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 484 of 798

PTRACE (2) PTRACE (2)

NAME
ptrace — process trace

SYNOPSIS
int ptrace (request, pid, addr, data);
int request, pid, addr, data;

DESCRIPTION

Ptrace provides a means by which a parent process may control
the execution of a child process. Its primary use is for the imple-
mentation of breakpoint debugging; see sdb(1). The child process
behaves normally until it encounters a signal (see signal(2) for the
list), at which time it enters a stopped state and its parent is
notified via wait(2). When the child is in the stopped state, its
parent can examine and modify its ‘‘core image” using pirace.
Also, the parent can cause the child either to terminate or con-
tinue, with the possibility of ignoring the signal that caused it to
stop.

The request argument determines the precise action to be taken
by ptrace and is one of the following:

0 This request must be issued by the child process if it
is to be traced by its parent. It turns on the child’s
trace flag that stipulates that the child should be
left in a stopped state upon receipt of a signal rather
than the state specified by func; see signal(2). The
ptd, addr, and date arguments are ignored, and a
return value is not defined for this request. Peculiar
results will ensue if the parent does not expect to
trace the child.

The remainder of the requests can only be used by the parent pro-
cess. For each, pid is the process ID of the child. The child must
be in a stopped state before these requests are made.

1, 2 With these requests, the word at location eddr in
the address space of the child is returned to the
parent process. If I and D space are separated (as
on PDP-11s), request 1 returns a word from I space,
and request 2 returns a word from D space. If I and
D space are not separated (as on the 3B-20 and
VAX-11/780), either request 1 or request 2 may be
used with equal results. The dafe argument is
ignored. These two requests will fail if eddr is not
the start address of a word, in which case a value of
—1 is returned to the parent process and the parent’s
errno is set to EIO.

3 With this request, the word at location addr in the
child’s USER area in the system’s address space (see
<sys/user.h>) is returned to the parent process.
Addresses range from O to 1024. The data argument
is ignored. This request will fail if addr is not the
start address of a word or is outside the USER area,
in which case a value of —1 is returned to the parent
process and the parent’s errno is set to EIO.

DELL INC., EMC CORP-HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 485 of 798

PTRACE (2)

PTRACE (2)

4, 5 With these requests, the value given by the data

argument is written into the address space of the
child at location eddr. Request 4 writes a word into
I space, and request 5 writes a word into D space.
Upon successful completion, the value written into
the address space of the child is returned to the
parent. These two requests will fail if addr is a loca-
tion in a pure procedure space and another process
is executing in that space, or addr is not the start
address of a word. Upon failure a value of -1 is
returned to the parent process and the parent's
errno is set to EIO.

With this request, a few entries in the child’s USER
area can be written. Date gives the value that is to
be written and addr is the location of the entry.
The few entries that can be written are:

the general registers (D0-D7, A0-A7)

certain bits of the Processor Status Word
(all bits except SUPERVISOR state and
interrupt level)

the PC register

This request causes the child to resume execution. If
the date argument is 0, all pending signals including
the one that caused the child to stop are canceled
before it resumes execution. If the data argument is
a valid signal number, the child resumes execution
as if it had incurred that signal and any other pend-
ing signals are canceled. The addr argument must
be equal to 1 for this request. Upon successful com-
pletion, the value of datae is returned to the parent.
This request will fail if date is not 0 or a valid signal
number, in which case a value of -1 is returned to
the parent process and the parent’s errno is set to
EIO.

This request causes the child to terminate with the
same consequences as ezit(2).

This request sets the trace bit in the Processor
Status Word of the child and then executes the same
steps as listed above for request 7. The trace bit
causes an interrupt upon completion of one machine

instruction. This effectively allows single stepping of
the child.

To forestall possible fraud, ptrace inhibits the set-user-id facility
on subsequent ezec(2) calls. If a traced process calls ezec, it will
stop before executing the first instruction of the new image show-
ing signal SIGTRAP.

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 486 of 798

PTRACE(2) PTRACE (2)

GENERAL ERRORS
Ptrace will in general fail if one or more of the following are true:

Request is an illegal number. [EIO]

Pid identifies a child that does not exist or has not exe-
cuted a ptrace with request 0. [ESRCH]

SEE ALSO
sdb(1), exec(2), signal(2), wait(2).

DELL INC., EMC CORP.,;HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 487 of 798

READ (2) READ (2)

NAME

read — read from file

SYNOPSIS

int read (fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

DESCRIPTION

Fildes is a file descriptor obtained from a creat, open, dup, fentl,
or pipe system call.

Read attempts to read nbyfe bytes from the file associated with
fildes into the buffer pointed to by buf.

On devices capable of seeking, the read starts at a position in the
file given by the file pointer associated with fildes. Upon return

from read, the file pointer is incremented by the number of bytes
actually read.

Devices that are incapable of seeking always read from the current
position. The value of a file pointer associated with such a file is
undefined.

Upon successful completion, read returns the number of bytes
actually read and placed in the buffer; this number may be less
than nbyte if the file is associated with a communication line (see
foctl(2) and termio(7)), or if the number of bytes left in the file is
less than nbyte bytes. A value of 0 is returned when an end-of-file
has been reached.

When attempting to read from an empty pipe (or FIFO):
If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until data is
written to the file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no
data currently available:

If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until data
becomes available.

Read will fail if one or more of the following are true:

Fildes is not a valid file descriptor open for reading.
[EBADF)

Buf points outside the allocated address space. [EFAULT]

RETURN VALUE

Upon successful completion a non-negative integer is returned
indicating the number of bytes actually read. Otherwise, a —1 is
returned and errno is set to indicate the error.

SEE ALSO

creat(2), dup(2), fentl(2), ioctl(2), open(2), pipe(2), termio(7), win-
dow(7).

DELL INC., EMC CORP.; HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 488 of 798

SEMCTL (2)

NAME

SEMCTL (2)

semctl — semaphore control operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, ecmd, arg)

int semid, cmd;

int semnum;

union semun {
int val;

struct semid_ds *buf}
ushort array| J;

} arg;
DESCRIPTION

Semctl provides a variety of semaphore control operations as

specified by emd.

The following c¢mds are executed with respect to the semaphore
specified by semid and semnum:

GETVAL

SETVAL

GETPID
GETNCNT
GETZCNT

Return the value of semval (see inéro(2)).
{READ}

Set the value of semval to arg.val.
{ALTER} When this cmd is successfully
executed the semadj value corresponding to
the specified semaphore in all processes is
cleared.

Return the value of sempid. {READ}
Return the value of semncnt. {READ}
Return the value of semzcnt. {READ}

The following c¢mds return and set, respectively, every semval in

the set of semaphores.
GETALL

SETALL

Place semvals into array pointed to by
arg.array. {READ}

Set semvals according to the array pointed
to by arg.array. {ALTER} When this cmd
is successfully executed the semad) values
corresponding to each specified semaphore
in all processes are cleared.

The following c¢mds are also available:

IPC_STAT

IPC_SET

Place the current value of each member of
the data structure associated with semid
into the structure pointed to by arg.buf.
The contents of this structure are defined
in intro(2). {READ}

Set the value of the following members of
the data structure associated with semid to

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 489 of 798

SEMCTL (2)

SEMCTL (2)

the corresponding value found in the struc-
ture pointed to by arg.buf:
sem_perm.uid

sem_perm.gid

sem_perm.mode /* only low 9 bits */

This command can only be executed by a
process that has an effective user ID equal
to either that of super user or to the value
of sem_perm.uid in the data structure
associated with semid.

IPC_RMID Remove the semaphore identifier specified

by semid from the system and destroy the
set of semaphores and data structure asso-
ciated with it. This command can only be
executed by a process that has an effective
user ID equal to either that of super user or
to the value of sem_perm.uid in the data
structure associated with semid.

Semetl will fail if one or more of the following are true:

Semid is not a valid semaphore identifier.
[EINVAL]

Semnum is less than zero or greater than
sem_nsems. [EINVAL]

Cmd is not a valid command. [EINVAL]

Operation permission is denied to the calling pro-
cess (see intro(2)). [EACCES]

Cmd is SETVAL or SETALL and the value to
which semval is to be set is greater than the sys-
tem imposed maximum. [ERANGE]

Cmd is equal to IPC_RMID or IPC_SET and the
effective user ID of the calling process is not equal
to that of super user and it is not equal to the
value of sem_perm.uid in the data structure
associated with semid. [EPERM]

Arg.buf points to an illegal address. [EFAULT]

RETURN VALUE
Upon successful completion, the value returned depends on c¢md
as follows:
GETVAL The value of semval.
GETPID The value of sempid.
GETNCNT The value of semncnt.
GETZCNT The value of semzent.
All others A value of 0.
Otherwise, a value of ~1 is returned and errno is set to indicate
the error.
SEE ALSO

semget(2), semop(2), stdipc(3C).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 490 of 798

SEMGET (2) SEMGET (2)

NAME
semget — get set of semaphores

SYNOPSIS
#include <sys/types.h>
#include <sys/ipe.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)
key_t key;
int nsems, semflg;

DESCRIPTION
Semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set con-
taining nsems semaphores (see intro(2)) are created for key if one
of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a semaphore identifier associ-
ated with it, and (semfly & IPC_CREAT) is “true’.

Upon creation, the data structure associated with the new sema-
phore identifier is initialized as follows:

Sem_perm.cuid, sem_perm.uid, sem_perm.cgid, and
sem_perm.gid are set equal to the effective user ID and
effective group ID, respectively, of the calling process.

The low-order 9 bits of sem_perm.mode are set equal to
the low-order 9 bits of semflg.

Sem_nsems is set equal to the value of nsems.

Sem_otime is set equal to 0 and sem_ctime is set equal
to the current time.

Semget will fail if one or more of the following are true:

Nsems is either less than or equal to zero or greater than
the system imposed limit. [EINVAL|

A semaphore identifier exists for key but operation permis-
sion (see intro(2)) as specified by the low-order 9 bits of
semflg would not be granted. [EACCES]

A semaphore identifier exists for key but the number of
semaphores in the set associated with it is less than nsems
and nsems is not equal to zero. [EINVAL]

A semaphore identifier does not exist for key and (semfly
& IPC_CREAT) is “false”. [ENOENT)]

A semaphore identifier is to be created but the system
imposed limit on the maximum number of allowed sema-
phore identifiers system wide would be exceeded.
[ENOSPC]

A semaphore identifier is to be created but the system
imposed limit on the maximum number of allowed sema-
phores system wide would be exceeded. [ENOSPC|

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 491 of 798

SEMGET (2) SEMGET (2)

A semaphore identifier exists for key but ((semfly &
IPC_CREAT) & (semfly & IPC_EXCL)) is ‘“‘true”.
[EEXIST)
RETURN VALUE
Upon successful completion, a non-negative integer, namely a
semaphore identifier is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.
SEE ALSO
semctl(2), semop(2), stdipc(3C).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 492 of 798

SEMOP (2) SEMOP (2)

NAME

semop — semaphore operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
F#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;

struct sembuf (*sops)[];

int nsops;

DESCRIPTION

Semop is used to atomically perform an array of semaphore opera-
tions on the set of semaphores associated with the semaphore
identifier specified by semid. Sops is a pointer to the array of
semaphore-operation structures. Nsops is the number of such
structures in the array. The contents of each structure includes
the following members:

short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem_fig; /* operation flags */

Each semaphore operation specified by sem_op is performed on
the corresponding semaphore specified by semid and sem_num.

Sem_op specifies one of three semaphore operations as follows:

If sem_op is a negative integer, one of the following will
occur: {ALTER}

If semval (see intro(2)) is greater than or equal to
the absolute value of sem_op, the absolute value
of sem_op is subtracted from semval. Also, if
(sem_flg & SEM_UNDO) is “‘true’’, the absolute
value of sem_op is added to the calling process’s
semadj value (see ezit(2)) for the specified sema-
phore.

If semval is less than the absolute value of
sem_op and (sem_fly & IPC_NOWAIT) is
“true”, semop will return immediately.

If semval is less than the absolute value of
sem_op and (sem_fly & IPC_NOWAIT) is
“false’”, semop will increment the semnent asso-
ciated with the specified semaphore and suspend
execution of the calling process until one of the
following occurs:

Semval becomes greater than or equal to the
absolute value of sem_op. When this occurs,
the value of semncnt associated with the
specified semaphore is decremented, the absolute
value of sem_op is subtracted from semval and,
if (sem_flg & SEM_UNDO) is “‘true”, the abso-
lute value of sem_op is added to the calling

DELL INC., EMC CORP.;HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 493 of 798

SEMOP (2) SEMOP (2)

process’s semad] value for the specified sema-
phore.

The semid for which the calling process is await-
ing action is removed from the system (sce
semctl(2)). When this occurs, errno is set equal
to EIDRM, and a value of —1 is returned.

The calling process receives a signal that is to
be caught. When this occurs, the value of
semncnt associated with the specified semaphore
is decremented, and the calling process resumes
execution in the manner prescribed in signal(2).

If sem_op is a positive integer, the value of sem_op is
added to semval and, if (sem_flg & SEM_UNDO) is
“true’’, the value of sem_op is subtracted from the cal-
ling process’s semad) value for the specified semaphore.
{ALTER}

If sem_op is zero, one of the following will occur: {READ}
If semval is zero, semop will return immediately.

If semval is not equal to zero and (sem_flg &
IPC_NOWAIT) is ‘“‘true”, semop will return
immediately.

If semval is not equal to zero and (sem_fly &
IPC_NOWAIT) is ‘“false”, semop will increment
the semzent associated with the specified sema-
phore and suspend execution of the calling pro-
cess until one of the following occurs:

Semval becomes zero, at which time the value of
semzent associated with the specified semaphore
is decremented.

The semid for which the calling process is await-
ing action is removed from the system. When
this occurs, errno is set equal to EIDRM, and a
value of —1 is returned.

The calling process receives a signal that is to
be caught. When this occurs, the value of
semzcnt associated with the specified semaphore
is decremented, and the calling process resumes
execution in the manner prescribed in signal(2).

Semop will fail if one or more of the following are true for any of
the semaphore operations specified by sops:

Semid is not a valid semaphore identifier. [EINVAL]

Sem_num is less than zero or greater than or equal to the
number of semaphores in the set associated with semid.
[EFBIG]

Nsops is greater than the system imposed maximum.
[E2BIG]

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 494 of 798

SEMOP (2)

SEMOP (2)

Operation permission is denied to the calling process (see
intro(2)). [EACCES|

The operation would result in suspension of the calling
process but (sem_fly & IPC_NOWAIT) is ‘‘true’.
[EAGAIN|

The limit on the number of individual processes request-
ing an SEM_UNDO would be exceeded. [ENOSPC]

The number of individual semaphores for which the cal-
ling process requests a SEM_UNDO would exceed the
limit. [EINVAL]

An operation would cause a semval to overflow the system
imposed limit. [ERANGE]

An operation would cause a semad) value to overflow the
system imposed limit. [ERANGE]

Sops points to an illegal address. [EFAULT]

Upon successful completion, the value of sempid for each sema-
phore specified in the array pointed to by sops is set equal to the
process ID of the calling process.

RETURN VALUE
If semop returns due to the receipt of a signal, a value of -1 is
returned to the calling process and errno is set to EINTR. If it
returns due to the removal of a semid from the system, a value of
—1 is returned and errno is set to EIDRM.

Upon successful completion, the value of semval at the time of the
call for the last operation in the array pointed to by sops is
returned. Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO

exec(2), exit(2), fork(2), semctl(2), semget(2), stdipe(3C).

DELL INC., EMC CORP.,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 495 of 798

SETPGRP (2) SETPGRP (2)

NAME

setpgrp — set process group ID
SYNOPSIS

int setpgrp ()
DESCRIPTION

Setpgrp sets the process group ID of the calling process to the pro-
cess ID of the calling process and returns the new process group ID.

RETURN VALUE
Setpgrp returns the value of the new process group ID.

SEE ALSO
exec(2), fork(2), getpid(2), intro(2), kill(2), signal(2), window(7).

BUGS
Setpgrp cannot be called from processes associated with windows.
Any process calling setpgrp must have stdin, stdout, and stderr
directed to devices other than window devices to function prop-
erly.

DELL INC., EMC CORP;, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 496 of 798

SETUID (2) SETUID (2)

NAME
setuid, setgid — set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;
int setgid (gid)
int gid;
DESCRIPTION

Setuid (setgid) is used to set the real user (group) ID and effective
user (group) ID of the calling process.

If the effective user ID of the calling process is super-user, the real
user (group) ID and effective user (group) ID are set to uid (gid).

If the effective user ID of the calling process is not super-user, but
its real user (group) ID is equal to uid (gid), the effective user
(group) ID is set to uid (gid).

Setuid (setgid) will fail if the real user (group) ID of the calling
process is not equal to uid (gid) and its effective user ID is not
super-user. [EPERM]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

SEE ALSO
getuid(2), intro(2).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 497 of 798

SHMCTL (2)

NAME
shmectl — shared memory control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipe.h>
#include <sys/shm.h>

int shmetl (shmid, emd, buf)
int shmid, cmd;
struct shmid_ds #buf;

DESCRIPTION

SHMCTL (2)

Shmectl provides a variety of shared memory control operations as
specified by emd. The following c¢mds are available:

IPC_STAT Place the current value of each member of

the data structure associated with shmid into
the structure pointed to by buf. The con-
tents of this structure are defined in intro{2).
{READ}

IPC_SET Set the value of the following members of

the data structure associated with shmid to
the corresponding value found in the struc-
ture pointed to by buf:

shm_perm.uid

shm_perm.gid

shm_perm.mode /#* only low 9 bits */

This ¢md can only be executed by a process
that has an effective user ID equal to either
that of super user or to the value of
shm_perm.uid in the data structure associ-
ated with shmid.

IPC_RMID Remove the shared memory identifier

specified by shmid from the system and des-
troy the shared memory segment and data
structure associated with it. This emd can
only be executed by a process that has an
effective user ID equal to either that of super
user or to the value of shm_perm.uid in
the data structure associated with shmid.

Shmetl will fail if one or more of the following are true:

Shmid is not a valid shared memory identifier.
[EINVAL]

Cmd is not a valid command. [EINVAL]

Cmd is equal to IPC_STAT and {READ} opera-
tion permission is denied to the calling process
(see intro(2)). [EACCES]

Cmd is equal to IPC_RMID or IPC_SET and the
effective user ID of the calling process is not equal

DELL INC., EMC CORP-HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 498 of 798

SHMCTL (2) SHMCTL (2)

to that of super user and it is not equal to the
value of shm_perm.uid in the data structure
associated with shmid. [EPERM]

Buf points to an illegal address. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

SEE ALSO
shmget(2), shmop(2), stdipe(3C).

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 499 of 798

SHMGET (2) SHMGET (2)

NAME
shmget — get shared memory segment

SYNOPSIS
#tinclude <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)
key_t key;
int size, shmflg;

DESCRIPTION
Shmget returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and
shared memory segment of size size bytes (see intro(2)) are
created for key if one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a shared memory identifier
associated with it, and (shmfly & IPC_CREAT) is “‘true”.

Upon creation, the data structure associated with the new shared
memory identifier is initialized as follows:

Shm_perm.cuid, shm_perm.uid, shm_perm.cgid,
and shm_perm.gid are set equal to the effective user ID
and effective group ID, respectively, of the calling process.

The low-order 9 bits of shm_perm.mode are set equal to
the low-order 9 bits of shmflg. Shm_segsz is set equal to
the value of size.

Shm_lpid, shm_nattch, shm_atime, and shm_dtime
are set equal to 0.

Shm_ctime is set equal to the current time.
Shmget will fail if one or more of the following are true:

Size is less than the system imposed minimum or greater
than the system imposed maximum. {EINVAL]

A shared memory identifier exists for key but operation
permission (see tntro(2)) as specified by the low-order 9
bits of shmflg would not be granted. [EACCES]

A shared memory identifier exists for key but the size of
the segment associated with it is less than size and size is
not equal to zero. [EINVAL]

A shared memory identifier does not exist for key and
(shmflg & IPC_CREAT) is “false”. [ENOENT)

A shared memory identifier is to be created but the sys-
tem imposed limit on the maximum number of allowed
shared memory identifiers system wide would be exceeded.
[ENOSPC]

A shared memory identifier and associated shared memory
segment are to be created but the amount of available

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 500 of 798

SHMGET (2) SHMGET (2)

physical memory is not sufficient to fill the request.
[ENOMEM|

A shared memory identifier exists for key but ((shmfly &
IPC_CREAT) & (shmfly & IPC_EXCL)) is ‘‘true”.
[EEXIST]
RETURN VALUE
Upon successful completion, a non-negative integer, namely a
shared memory identifier, is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.
SEE ALSO
shmetl(2), shmop(2), stdipe(3C).

DELL INC., EMC CORR., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 501 of 798

SHMOP (2)

NAME

SHMOP (2)

shmop — shared memory operations

SYNOPSIS

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

char #shmat (shmid, shmaddr, shmflg)
int shmid;

char *shmaddr

int shmflg;

int shmdt (shmaddr)
char *shmaddr

DESCRIPTION

Shmat attaches the shared memory segment associated with the
shared memory identifier specified by shmid to the data segment
of the calling process. The segment is attached at the address
specified by one of the following criteria:

If shmaddr is equal to zero, the segment is attached at the
first available address as selected by the system.

If shmaddr is not equal to zero and (shmfly & SHM_RND)
is “true”, the segment is attached at the address given by
(shmaddr - (shmaddr modulus SHMLBA)).

If shmaddr is not equal to zero and (shmfly & SHM_RND)
is “false”, the segment is attached at the address given by
shmaddr.

The segment is attached for reading if (shmfly & SHM_RDONLY)
is “true’’ {READ}, otherwise it is attached for reading and writing
{READ/WRITE}.

Shmat will fail and not attach the shared memory segment if one
or more of the following are true:

Shmid is not a valid shared memory identifier. [EINVAL]

Operation permission is denied to the calling process (see
intro(2)). [EACCES]

The available data space is not large enough to accommo-
date the shared memory segment. [ENOMEM]

Shmaddr is not equal to zero, and the value of (shmaddr -
{shmaddr modulus SHMLBA)) is an illegal address.
[EINVAL)

Shmaddr is not equal to zero, (shmfly & SHM_RND) is
“false”, and the value of shmaddr is an illegal address.
[EINVAL]

The number of shared memory segments attached to the
calling process would exceed the system imposed limit.
[EMFILE)

Shmdt detaches from the calling process’s data segment the shared
memory segment located at the address specified by shmaddr.

DELL INC., EMC CORP.,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 502 of 798

SHMOP (2) SHMOP (2)

Shmdt will fail and not detach the shared memory segment if
shmaddr is not the data segment start address of a shared memory
segment. [EINVAL]

RETURN VALUES
Upon successful completion, the return value is as follows:

Shmat returns the data segment start address of the
attached shared memory segment.

Shmdt returns a value of 0.

Otherwise, a value of —1 is returned and errno is set to indicate
the error.

SEE ALSO
exec(2), exit(2), fork(2), shmetl(2), shmget(2), stdipc(3C).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 503 of 798

SIGNAL (2)

NAME

SIGNAL (2)

signal — specify what to do upon receipt of a signal

SYNOPSIS

#include <sys/signal.h>
int (*signal (sig, func))()

int sig;
int (*func)();

DESCRIPTION

Signal allows the calling process to choose one of three ways in
which it is possible to handle the receipt of a specific signal. Sig
specifies the signal and func specifies the choice.

Sig can be assigned any one of the following except SIGKILL:

SIGHUP
SIGINT
SIGQUIT
SIGILL

SIGTRAP
SIGIOT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE

SIGALRM
SIGTERM
SIGUSR1
SIGUSR2
SIGCLD

SIGPWR
SIGWIND
SIGPHONE

01
02
03*
04*

05*
06*
07*
08*
09

10*
11*
12*
13

14
15
16
17
18

19
20
21

hangup

interrupt

quit

illegal instruction (not reset when
caught)

trace trap (not reset when caught)
10T instruction

EMT instruction

floating point exception

kill (cannot be caught or ignored)
bus error

segmentation violation

bad argument to system call

Write on a pipe with no one to read
it

alarm clock

software termination signal

user defined signal 1

user defined signal 2

death of a child (see WARNING
below)

power fail (see WARNING below)
window status changes

telephone status changes

See below for the significance of the asterisk (#) in the

above list.

Func is assigned one of three values: SIG_DFL, SIG_IGN, or a
function address. The actions prescribed by these values of are as

follows:

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 504 of 798

SIGNAL (2) SIGNAL (2)

SIG_DFL - terminate process upon receipt of a signal
Upon receipt of the signal sig, the receiving process is
to be terminated with all of the consequences outlined
in ezit(2) plus a ‘“‘core image” will be made in the
current working directory of the receiving process if
stg is one for which an asterisk appears in the above
list and the following conditions are met:

The effective user ID and the real user ID of
the receiving process are equal.

An ordinary file named core exists and is
writable or can be created. If the file must be
created, it will have the following properties:

a mode of 0666 modified by the file
creation mask (see umask(2))

a file owner ID that is the same as
the effective user ID of the receiving
process

a file group ID that is the same as
the effective group ID of the receiv-
ing process

SIG_IGN - ignore signal
The signal sig is to be ignored.

Note: the signal SIGKILL cannot be ignored.

function address — catch signal
Upon receipt of the signal sig, the receiving process is to
execute the signal-catching function pointed to by func.
The signal number stg will be passed as the only argu-
ment to the signal-catching function. Before entering the
signal-catching function, the value of func for the caught
signal will be set to SIG_DFL unless the signal is SIGILL,
SIGTRAP, or SIGPWR.

Upon return from the signal-catching function, the
receiving process will resume execution at the point it
was interrupted.

When a signal that is to be caught occurs during a read,
a write, an open, or an toct! system call on a slow device
(like a terminal; but not a file), during a pause system
call, or during a weait system call that does not return
immediately due to the existence of a previously stopped
or zombie process, the signal catching function will be
executed and then the interrupted system call will return
a —1 to the calling process with errno set to EINTR.

Note: the signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending
SIGKILL signal.

Signal will fail if one or more of the following are true:

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 505 of 798

SIGNAL (2) SIGNAL (2)

Sig is an illegal signal number, including SIGKILL.
[EINVAL|

Func points to an illegal address. [EFAULT]

SIGWIND and SIGPHONE are ignored by default and are
reset to SIG.IGN upon an ezec(2) system call.
RETURN VALUE
Upon successful completion, signal returns the previous value of
func for the specified signal sfg. Otherwise, a value of ~1 is
returned and errno is set to indicate the error.
SEE ALSO
kill(1), kill(2), pause(2), ptrace(2), wait(2), setjmp(3C).
WARNING

Two other signals that behave differently than the signals
described above exist in this release of the system; they are:

SIGCLD 18 death of a child (reset when
caught)
SIGPWR 19 power fail (not reset when caught)

There is no guarantee that, in future releases of UNIX, these sig-
nals will continue to behave as described below; they are included
only for compatibility with other versions of UNIX. Their use in
new programs is strongly discouraged.

For these signals, func is assigned one of three values: SIG_DFL,
SIG_IGN, or a function address. The actions prescribed by these
values of are as follows:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD,
the calling process’'s child processes will not create
zombie processes when they terminate; see exzit(2).

function address - catch signal

If the signal is SIGPWR, the action to be taken is the
same as that described above for func equal to func-
tion address. The same is true if the signal is SIGCLD
except, that while the process is executing the signal-
catching function any received SIGCLD signals will be
queued and the signal-catching function will be con-
tinually reentered until the queue is empty.

The SIGCLD affects two other system calls (wait(2), and
ezit(2)) in the following ways:

wait If the func value of SIGCLD is set to SIG_IGN and a
wait is executed, the wait will block until all of the
calling process’s child processes terminate; it will then
return a value of -1 with errno set to ECHILD.

exit If in the exiting process’s parent process the func value
of SIGCLD is set to SIG_IGN, the exiting process will
not create a zombie process.

DELL INC., EMC CORP:,sHPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 506 of 798

SIGNAL (2) SIGNAL (2)

When processing a pipeline, the shell makes the last process in
the pipeline the parent of the proceeding processes. A process
that may be piped into in this manner (and thus become the
parent of other processes) should take care not to set SIGCLD
to be caught.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 507 of 798

STAT(2)

NAME
stat, fstat — get file status
SYNOPSIS
#tinclude <sys/types.h>
#tinclude <sys/stat.h>
int stat (path, buf)
char *path;
struct stat *buf}
int fstat (fildes, buf)
int fildes;
struct stat *buf;
DESCRIPTION
Path points to a path name

STAT (2)

naming a file. Read, write or execute

permission of the named file is not required, but all directories
listed in the path name leading to the file must be searchable.
Stat obtains information about the named file.

Similarly, fstat obtains information about an open file known by

the file descriptor fildes, ob

tained from a successful open, creat,

dup, fentl, or pitpe system call.

Buf is a pointer to a stat
placed concerning the file.

structure into which information is

The contents of the structure pointed to by duf include the follow-

ing members:

dev_t st_dev;
ino_t st_ino;
ushort st_mode;
short st_nlink;
ushort st_uid;
ushort st_gid;
dev_t st_rdev;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;
st_atime

the following

/* ID of device containing */

/* a directory entry for this file */
/* Inode number */

/* File mode; see mknod(2) */

/* Number of links */

/* User ID of the file’s owner */

/* Group ID of the file’s group */
/* ID of device */ '

/* This entry is defined only for */
/* character special or block */

/* special files */

/* File size in bytes */

/* Time of last access */

/* Time of last data modification */
/* Time of last file status change */
/* Times measured in seconds */

/#* since 00:00:00 GMT, */

/* Jan. 1, 1970 */

Time when file data was last accessed. Changed by

system calls: creat(2), mknod(2),

pipe(2), utime(2), and read(2).

st_mtime

Time when data was last modified. Changed by the

following system calls: creat(2), mknod(2), pipe(2),

utime(2), and write(2).

DELL INC., EMC CORP;
IPR2017-00176- Ex. 1

HPE CO., HPES, LLC
028, p. 508 of 798

STAT (2) STAT (2)

st_ctime Time when file status was last changed. Changed by
the following system calls: chmod(2), chown(2),
creat(2), Unk(2), mknod(2), pipe(2), unlink(2),
utime(2), and write(2).

Stat will fail if one or more of the following are true:

A component of the path prefix is not a directory.
[ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied for a component of the path
prefix. [EACCES]

Buf or path points to an invalid address. [EFAULT]

Fstat will fail if one or more of the following are true:
Fildes is not a valid open file descriptor. [EBADF]
Buf points to an invalid address. [EFAULT)

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a
value of ~1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), chown(2), creat{2), link(2), mknod(2), time(2), unlink(2).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 509 of 798

STIME (2) STIME (2)

NAME
stime — set time

SYNOPSIS
int stime (tp)
long *tp;

DESCRIPTION
Stime sets the system’s idea of the time and date. Tp points to
the value of time as measured in seconds from 00:00:00 GMT Janu-
ary 1, 1970.
Stime will fail if the effective user ID of the calling process is not
super-user. [EPERM]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
time(2).

DELL INC., EMC CORP:,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 510 of 798

SYNC(2) SYNC (2)

NAME
sync — update super-block

SYNOPSIS
void syne ()

DESCRIPTION
Sync causes all information in memory that should be on disk to
be written out. This includes modified super blocks, modified i-
nodes, and delayed block I/0O.

It should be used by programs which examine a file system, for
example fsck, df, etc. It is mandatory before a boot.

The writing, although scheduled, is not necessarily complete upon
return from sync.

DELL INC., EMC CORP:,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 511 of 798

SYSLOCAL (2)

NAME

SYSLOCAL (2)

Syslocal — local system calls

SYNOPSIS

#include <sys/syslocal.h>

int syslocal (cmd [, arg] ...)

DESCRIPTION

Syslocal executes special AT&T UNIX PC system calls. Cmd is the
name of one of the system calls described below.

SYSL_REBOOT

SYSL_KADDR

SYSL_LED

Reboots the system. You must be superuser
to execute. No additional arguments are
required.

Returns certain kernel addresses or values.
This call is used by programs like ps(1) so
that they don’t have to read the kernel sym-
bol table. The second argument is one of the
following:

SLA_V returns address of V

SLA_PROC returns address of proc
table

SLA_TIME returns address of system
time

SLA_USRSTK returns top of user stack

SLA_USIGN returns signature, unique #
for each version

SLA_BLDDATE returns address of build
date string

SLA_BLDPWD returns address of build
directory string

SLA_MEM returns size of physical
memory

SLA_BDEVCNT returns maximum number
of block devices

SLA_CDEVCNT returns maximum number
of character devices

Turns on/off user LED. The second argument
is either O for off or 1 for on.

The following two calls support the hardware real-time clock.
Their use requires the additional include file:

#include <sys/rtc.h>

SYSL_RDRTC

Reads the real-time clock. The second argu-
ment is a struct ric * .

SYSL_WRTRTC Writes the real-time clock. The second argu-

ment is a struct rtc * .

The following two calls support loadable device drivers. Their use
requires the additional include file:

#include <sys/drv.h>

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 512 of 798

SYSLOCAL(2) SYSLOCAL (2)

SYSL_ALLOCDRYV Allocates/deallocates space for a loadable
driver and returns driver status. The second
argument is one of the following:

DRVALLOC allocates space
DRVUNALLOC releases allocated space
DRVSTAT returns driver status

The third argument is a struct drvalloc *
You must be superuser to execute DRVAL-
LOC and DRVUNALLOC.

SYSL_BINDDRV Loads/unloads a loadable driver. The second
argument is either DRVBIND for loading or
DRVUNBIND for unloading. The third argu-
ment is a struct drvbind * . You must be
superuser to execute.

The following two calls support installable fonts.
SYSL_LFONT Installs a font.
SYSL_UFONT Deinstalls a font.

In both cases, two arguments are required: the font file pathname
(dummy pointer for SYSL_UFONT) and the font slot number (0
to 15). Again, you must be superuser to execute. See window(7)
for additional font information.

Supplying a font slot number between 0 and 7 causes the font to
be inherited at that slot number by all subsequent windows. Pre-
loading fonts into slots 8-15 allows these fonts to be installed
without going to the file system so they can be loaded rapidly.
This is useful for applications which refer to more than 8 fonts
because the font activity is more efficient.

If you attempt to load a font into a slot which is currently occu-
pied, you will not get an error condition, but rather, the old font
will be swapped out and the new one loaded in. You can also
deinstall a font from slots 0 through 7, if the font to be deinstalled
is not being accessed. If it is being accessed ERRNO is set to
EBUSY.

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 513 of 798

TIME (2) TIME (2)

NAME
time — get time
SYNOPSIS
long time ((long %) 0)
long time (tloc)
long *tloc;

DESCRIPTION
Time returns the value of time in seconds since 00:00:00 GMT,
January 1, 1970.

If tloc {taken as an integer) is non-zero, the return value is also
stored in the location to which tloc points.

Time will fail if tloc points to an illegal address. [EFAULT]

RETURN VALUE
Upon successful completion, fime returns the value of time. Oth-
erwise, a value of —1 is returned and errno is set to indicate the
error.

SEE ALSO
stime(2).

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 514 of 798

TIMES (2) TIMES (2)

NAME
times ~ get process and child process times

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>

long times (buffer)
struct tms *buffer;

DESCRIPTION
Times fills the structure pointed to by buffer with time-
accounting information. The following is this contents of the
structure:

struct tms {

time_t tms_utime;

time_t tms_stime;

time_t tms_cutime;

time_t tms_cstime;
|5
This information comes from the calling process and each of its
terminated child processes for which it has executed a wait. All
times are in 60ths of a second on DEC processors, 100ths of a
second on WECo processors.

Tms_utime is the CPU time used while executing instructions in
the user space of the calling process.

T'ms_stime is the CPU time used by the system on behalf of the
calling process.

Tms_cutime is the sum of the tms_utimes and tms_cutimes of
the child processes.

Tms_cstime is the sum of the tms_stimes and tms_cstimes of the
child processes.

Times will fail if buffer points to an illegal address. [EFAULT)

RETURN VALUE
Upon successful completion, times returns the elapsed real time,
in 60ths (100ths) of a second, since an arbitrary point in the past
(e.g., system start-up time). This point does not change from one
invocation of times to another. If times fails, a —1 is returned
and errno is set to indicate the error.

SEE ALSO
exec(2), fork(2), time(2), wait(2).

DELL INC., EMC CORP-,iHPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 515 of 798

ULIMIT (2) ULIMIT (2)

NAME

ulimit — get and set user limits
SYNOPSIS

long ulimit (ecmd, newlimit)

int cmd;

long newlimit;
DESCRIPTION

This function provides for control over process limits. The emd
values available are:

1 Get the process’s file size limit. The limit is in units of 512-
byte blocks and is inherited by child processes. Files of any
size can be read.

2 Set the process’s file size limit to the value of newlimit. Any
process may decrease this limit, but only a process with an
effective user ID of super-user may increase the limit. Ulimit
will fail and the limit will be unchanged if a process with an
effective user ID other than super-user attempts to increase
its file size limit. [EPERM]

3 Get the maximum possible break value. See brk(2).

RETURN VALUE
Upon successful completion, a non-negative value is returned.
Otherwise, a value of —1 is returned and errno is set to indicate
the error.

SEE ALSO
brk(2), write(2).

DELL INC., EMC CORP:,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 516 of 798

UMASK (2) UMASK (2)

NAME

umask — set and get file creation mask
SYNOPSIS

int umask (cmask)

int cmask;
DESCRIPTION

Umask sets the process’s file mode creation mask to c¢mask and
returns the previous value of the mask. Only the low-order 9 bits
of emask and the file mode creation mask are used.

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
mkdir(1), sh(1), chmod(2), creat(2), mknod(2), open(2).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 517 of 798

UMOUNT (2) UMOUNT (2)

NAME
umount — unmount a file system

SYNOPSIS
int umount (spec)
char #*spec;

DESCRIPTION

Umount requests that a previously mounted file system contained
on the block special device identified by spec be unmounted.
Spec is a pointer to a path name. After unmounting the file sys-
tem, the directory upon which the file system was mounted reverts
to its ordinary interpretation.

Umount may be invoked only by the super-user.
Umount will fail if one or more of the following are true:
The process’s effective user ID is not super-user. [EPERM]
Spec does not exist. [ENXIO|
Spec is not a block special device. [ENOTBLK]
Spec is not mounted. {EINVAL}
A file on spec is busy. [EBUSY]

Spec points outside the process’s allocated address space.
[EFAULT]

RETURN VALUE

Upon successful completion a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

SEE ALSO
mount(2).

DELL INC., EMC CORP:,'HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 518 of 798

UNAME(2)

NAME

UNAME (2)

uname — get name of current UNIX system

SYNOPSIS

#include <sys/utsname.h>

int uname (name)
struct utsname *name;

DESCRIPTION

Uname stores information identifying the current UNIX system in
the structure pointed to by name.

Uname uses the structure defined in <sys/utsname.h> whose

members are:

char
char
char
char
char

sysname|9};
nodename|9};
release[9];
version[9];
machine([9];

Uname returns a null-terminated character string naming the
current UNIX system in the character array sysname. Similarly,
nodename contains the name that the system is known by on a
communications network. Release and wversion further identify
the operating system. Machine contains a standard name that
identifies the hardware that UNIX is running on.

Uname will fail if name points to an invalid address. [EFAULT]

RETURN VALUE

Upon successful completion, a non-negative value is returned.
Otherwise, —1 is returned and errno is set to indicate the error.

SEE ALSO
uname(1).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 519 of 798

UNLINK (2) UNLINK (2)

NAME
unlink — remove directory entry

SYNOPSIS
int unlink (path)
char #path;
DESCRIPTION
Unlink removes the directory entry named by the path name
pointed to be path.

The named file is unlinked unless one or more of the following are
true:

A component of the path prefix is not a directory.
[ENOTDIR|

The named file does not exist. [ENOENT]

Search permission is denied for a component of the path
prefix. [EACCES]

Write permission is denied on the directory containing the
link to be removed. [EACCES]

The named file is a directory and the effective user ID of
the process is not super-user. [EPERM]

The entry to be unlinked is the mount point for a
mounted file system. [EBUSY]

The entry to be unlinked is the last link to a pure pro-
cedure (shared text) file that is being executed.
[ETXTBSY]

The directory entry to be unlinked is part of a read-only
file system. [EROFS]

Path points outside the process’s allocated address space.
[EFAULT]

When all links to a file have been removed and no process has the
file open, the space occupied by the file is freed and the file ceases
to exist. If one or more processes have the file open when the last
link is removed, the removal is postponed until all references to
the file have been closed.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
rm(1), close(2), link(2), open(2).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 520 of 798

USTAT (2) USTAT (2)

NAME
ustat — get file system statistics

SYNOPSIS
#include <sys/types.h>
#include <ustat.h>

int ustat (dev, buf)
int dev;
struct ustat *buf;

DESCRIPTION
Ustat returns information about a mounted file system. Dev is a
device number identifying a device containing a mounted file sys-
tem. Buf is a pointer to a ustat structure that includes to follow-
ing elements:

daddr_t {_tfree; /* Total free blocks */
ino_t f_tinode; /* Number of free inodes */
char f_fname[6]; /* Filsys name */

char f_fpack(s]; /* Filsys pack name */

Ustat will fail if one or more of the following are true:

Dev is not the device number of a device containing a
mounted file system. [EINVAL]

Buf points outside the process’s allocated address space.
[EFAULT)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

SEE ALSO
stat(2), fs(4).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 521 of 798

UTIME (2) UTIME (2)

NAME
utime — set file access and modification times

SYNOPSIS
#include <sys/types.h>
int utime (path, times)
char #*path;
struct utimbuf *times;

DESCRIPTION

Path points to a path name naming a file. Utime sets the access
and modification times of the named file.

If tifmes is NULL, the access and modification times of the file are
set to the current time. A process must be the owner of the file or
have write permission to use utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utim-
buf structure and the access and modification times are set to the
values contained in the designated structure. Only the owner of
the file or the super-user may use ufime this way.

The times in the following structure are measured in seconds since
00:00:00 GMT, Jan. 1, 1970.

struct utimbuf {
time_t actime; /* access time */
time_t modtime; /* modification time */

%
Utime will fail if one or more of the following are true:
The named file does not exist. [ENOENT]

A component of the path prefix is not a directory.
[ENOTDIR|

Search permission is denied by a component of the path
prefix. [EACCES]

The effective user ID is not super-user and not the owner
of the file and times is not NULL. [EPERM]

The effective user ID is not super-user and not the owner
of the file and tfmes is NULL and write access is denied.
[EACCES]

The file system containing the file is mounted read-only.
[EROFS]

Times is not NULL and points outside the process’s allo-
cated address space. [EFAULT)

Path points outside the process’s allocated address space.
[EFAULT)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

SEE ALSO
stat(2).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 522 of 798

WAIT (2) WAIT (2)

NAME
wait — wait for child process to stop or terminate

SYNOPSIS
int wait (stat_loc)
int *stat_loc;

int wait {(int *)0)

DESCRIPTION
Wait suspends the calling process until it receives a signal that is
to be caught (see signal(2)), or until any one of the calling
process’s child processes stops in a trace mode (see ptrace(2)) or
terminates. If a child process stopped or terminated prior to the
call on wait, return is immediate.

If stat_loc (taken as an integer) is non-zero, 16 bits of information
called status are stored in the low order 16 bits of the location
pointed to by stat_loc. Status can be used to differentiate
between stopped and terminated child processes and if the child
process terminated, status identifies the cause of termination and
passes useful information to the parent. This is accomplished in
the following manner:

If the child process stopped, the high order 8 bits of status
will contain the number of the signal that caused the pro-
cess to stop and the low order 8 bits will be set equal to
0177.

If the child process terminated due to an ezit call, the low
order 8 bits of status will be zero and the high order & bits
will contain the low order 8 bits of the argument that the
child process passed to ezit; see exit(2).

If the child process terminated due to a signal, the high
order 8 bits of status will be zero and the low order & bits
will contain the number of the signal that caused the ter-
mination. In addition, if the low order seventh bit (i.e., bit
200) is set, a “core image” will have been produced; see
signal (2).
If a parent process terminates without waiting for its child
processes to terminate, the parent process ID of each child process
is set to 1. This means the initialization process inherits the child
processes; see intro{2).

Wait will fail and return immediately if one or more of the follow-
ing are true:

The calling process has no existing unwaited-for child
processes. [ECHILD]

Stat_loc points to an illegal address. [EFAULT]

RETURN VALUE
If wast returns due to the receipt of a signal, a value of —1 is
returned to the calling process and errno is set to EINTR. If wast
returns due to a stopped or terminated child process, the process
ID of the child is returned to the calling process. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

DELL INC., EMC CORP.,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 523 of 798

WAIT (2) WAIT (2)

SEE ALSO
exec(2), exit(2), fork(2), pause(2), signal(2).

WARNING
See WARNING in signal(2).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 524 of 798

WRITE (2) WRITE (2)

NAME

write — write on a file

SYNOPSIS

int write (fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

DESCRIPTION

Fildes 1s a file descriptor obtained from a creat, open, dup, fentl,
or pipe system call.

Write attempts to write nbyte bytes from the buffer pointed to by
buf to the file associated with the fildes.

On devices capable of seeking, the actual writing of data proceeds
from the position in the file indicated by the file pointer. Upon
return from write, the file pointer is incremented by the number
of bytes actually written.

On devices incapable of seeking, writing always takes place start-
ing at the current position. The value of a file pointer associated
with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer
will be set to the end of the file prior to each write.

Write will fail and the file pointer will remain unchanged if one or
more of the following are true:

Fildes is not a valid file descriptor open for writing.
[EBADF|

An attempt is made to write to a pipe that is not open for
reading by any process. [EPIPE and SIGPIPE signal|

An attempt was made to write a file that exceeds the
process’s file size limit or the maximum file size. See
ulimit(2). [EFBIG]

Buf points outside the process’s allocated address space.
[EFAULT]

If a write requests that more bytes be written than there is room
for (e.g., the ulimit (see ulimit(2)) or the physical end of a
medium), only as many bytes as there is room for will be written.
For example, suppose there is space for 20 bytes more in a file
before reaching a limit. A write of 512 bytes will return 20. The
next write of a non-zero number of bytes will give a failure return
(except as noted below).

If the file being written is a pipe (or FIFO), no partial writes will
be permitted. Thus, the write will fail if a write of nbyte bytes
would exceed a limit.

If the file being written is a pipe (or FIFO) and the O_NDELAY flag
of the file flag word is set, then write to a full pipe (or FIFO) will
return a count of 0. Otherwise (O_NDELAY clear), writes to a full
pipe (or FIFO) will block until space becomes available.

DELL INC., EMC CORP., HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 525 of 798

WRITE (2) WRITE (2)

RETURN VALUE
Upon successful completion the number of bytes actually written
is returned. Otherwise, —1 is returned and errno is set to indicate
the error.

SEE ALSO
creat(2), dup(2), Iseek(2), open(2), pipe(2), ulimit(2).

DELL INC., EMC CORR., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 526 of 798

INTRO (3) INTRO (3)

NAME

intro — introduction to subroutines and libraries
SYNOPSIS

#include <stdio.h>

#include <math.h>
DESCRIPTION

This section describes functions found in various libraries, other

than those functions that directly invoke UNIX system primitives,

which are described in Section 2 of this volume. Certain major
collections are identified by a letter after the section number:

(3C) These functions, together with those of Section 2 and
those marked (3S), constitute the Standard C Library
Ithe, which is automatically loaded by the C compiler,
cc(1). The link editor ld(1) searches this library under
the —lc option. Declarations for some of these functions
may be obtained from #include files indicated on the
appropriate pages.

(3M) These functions constitute the Math Library, libm. They
are automatically loaded as needed by the FORTRAN com-
piler. They are not automatically loaded by the C com-
piler, cc(1); however, the link editor searches this library
under -the —Im option. Declarations for these functions
may be obtained from the #include file <math.h>.

{8T) These functions constitute the UNIX PC ‘“terminal access
method” (tam) library.

(8S) These functions constitute the “standard I/O package”
(see stdio(3S)). These functions are in the library libc,
already mentioned. Declarations for these functions may
be obtained from the #include file <stdio.h>.

(8X) Various specialized libraries. The files in which these
libraries are found are given on the appropriate pages.

DEFINITIONS

FILES

A character is any bit pattern able to fit into a byte on the
machine. The null character is a character with value O,
represented in the C language as '\O'. A character array is a
sequence of characters. A null-terminated character array is a
sequence of characters, the last of which is the null character. A
string is a designation for a null-terminated character array. The
null string is a character array containing only the null character.
A NULL pointer is the value that is obtained by casting 0 into a
pointer. The C language guarantees that this value will not
match that of any legitimate pointer, so many functions that
return pointers return it to indicate an error. NULL is defined as
0 in <stdio.h>; the user can include his own definition if he is
not using <stdio.h>.

/lib/libc.a
/lib/libm.a

DELL INC., EMC CORP.,iHPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 527 of 798

INTRO (3) INTRO (3)

SEE ALSO
ar(1), cc(1), 1d(1), nm(1), intro(2), stdio(3S).

DIAGNOSTICS
Functions in the Math Library (3M) may return the conventional
values 0 or HUGE (the largest single-precision floating-point
number) when the function is undefined for the given arguments
or when the value is not representable. In these cases, the exter-
nal variable errno (see intro(2)) is set to the value EDOM or
ERANGE. As many of the FORTRAN intrinsic functions use the
routines found in the Math Library, the same conventions apply.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 528 of 798

AB4L (3C) A64L (3C)

NAME

aB4l, 164a — convert between long integer and base-64 ASCII string

SYNOPSIS

long aB4l (s)
char *s;

char #*184a (1)
long I;

DESCRIPTION

BUGS

These functions are used to maintain numbers stored in base-64
ASCII characters. This is a notation by which long integers can be
represented by up to six characters; each character represents a
“digit” in a radix-64 notation.

The characters used to represent “digits’” are . for 0, / for 1, 0

through 9 for 2-11, A through Z for 12-37, and a through z for
38-63.

A64l takes a pointer to a null-terminated base-64 representation
and returns a corresponding long value. If the string pointed to
by s contains more than six characters, a64! will use the first six.

L64a takes a long argument and returns a pointer to the
corresponding base-64 representation. If the argument is 0, [64a
returns a pointer to a null string.

The value returned by [64a is a pointer into a static buffer, the
contents of which are overwritten by each call.

DELL INC., EMC CORP., HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 529 of 798

ABORT (3C) ABORT (3C)

NAME
abort — generate an 10T fault
SYNOPSIS
int abort ()
DESCRIPTION
Abort causes an IOT signal to be sent to the process. This usually
results in termination with a core dump.

It is possible for abort to return control if SIGIOT is caught or
ignored, in which case the value returned is that of the kill(2) sys-
tem call.

SEE ALSO
adb(1), exit(2), kill(2), signal(2).

DIAGNOSTICS
If SIGIOT is neither caught nor ignored, and the current directory

is writable, a core dump is produced and the message ‘‘abort —
core dumped” is written by the shell.

DELL INC., EMC CORP.;HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 530 of 798

ABS (3C) ABS (3C)

NAME
abs — return integer absolute value
SYNOPSIS
int abs (i)
int i;
DESCRIPTION
Abs returns the absolute value of its integer operand.
BUGS

In two's-complement representation, the absolute value of the
negative integer with largest magnitude is undefined. Some imple-
mentations trap this error, but others simply ignore it.

SEE ALSO
floor(3M).

DELL INC., EMC CORP.,,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 531 of 798

ASSERT (3X) ASSERT (3X)

NAME
assert — verify program assertion

SYNOPSIS
#include <assert.h>

assert (expression)
int expression;

DESCRIPTION
This macro is useful for putting diagnostics into programs. When
it is executed, if ezpression is false (zero), assert prints

“Assertion failed: expression, file zyz, line nnn”

on the standard error output and aborts. In the error message,
zyz is the name of the source file and nnn the source line number
of the assert statement.

Compiling with the preprocessor option ~-DNDEBUG (see cpp (1)),
or with the preprocessor control statement ‘“#define NDEBUG”
ahead of the “#include <assert.h>" statement, will stop asser-
tions from being compiled into the program.

SEE ALSO
cpp(1), abort(3C).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 532 of 798

ATOF (3C) ATOF (3C)

NAME
atof — convert ASCII string to floating-point number

SYNOPSIS
double atof (nptr)
char *nptr;

DESCRIPTION

Atof converts a character string pointed to by nptr to a double-
precision floating-point number. The first unrecognized character
ends the conversion. Atof recognizes an optional string of white-
space characters, then an optional sign, then a string of digits
optionally containing a decimal point, then an optional e or E fol-
lowed by an optionally signed integer. If the string begins with an
unrecognized character, atof returns the value zero.

DIAGNOSTICS
When the correct value would overflow, atof returns HUGE, and
sets errno to ERANGE. Zero is returned on underflow.

SEE ALSO
scanf(3S).

DELL INC., EMC CORP:,IFIPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 533 of 798

BESSEL (3M) BESSEL (3M)

NAME

j0, i1, in, y0, y1, yn — Bessel functions
SYNOPSIS

#include <math.h>

double jO (x)

double x;

double j1 (x)

double x;

double jn (n, x)

int n;

double x;

double y0 (x)

double x;

double y1 (x)

double x;

double yn (n, x)

int nj

double x;
DESCRIPTION

J0 and jI return Bessel functions of z of the first kind of orders 0

and 1 respectively. Jn returns the Bessel function of £ of the first
kind of order n.

Y0 and yi return the Bessel functions of z of the second kind of
orders 0 and 1 respectively. Yn returns the Bessel function of z
of the second kind of order n. The value of z must be positive.

DIAGNOSTICS
Non-positive arguments cause y0, yf and yn to return the value
HUGE and to set errno to EDOM. They also cause a message
indicating DOMAIN error to be printed on the standard error out-
put; the process will continue.

These error-handling procedures may be changed with the func-
tion matherr(3M).

SEE ALSO
matherr(3M).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 534 of 798

BSEARCH (3C) BSEARCH (3C)

NAME
bsearch — binary search

SYNOPSIS
char #*bsearch ({char #*) key, (char *) base, nel, sizeof
(*key), compar)
unsigned nel;
int (*compar)();

DESCRIPTION
Bsearch is a binary search routine generalized from Knuth (6.2.1)
Algorithm B. It returns a pointer into a table indicating where a
datum may be found. The table must be previously sorted in
increasing order according to a provided comparison function.
Key points to the datum to be sought in the table. Base points
to the element at the base of the table. Nel is the number of ele-
ments in the table. Compar is the name of the comparison func-
tion, which is called with two arguments that point to the ele-
ments being compared. The function must return an integer less
than, equal to, or greater than zero according as the first argu-
ment is to be considered less than, equal to, or greater than the
second.

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in the
table.

NOTES
The pointers to the key and the element at the base of the table
should be of type pointer-to-element, and cast to type pointer-to-
character.
The comparison function need not compare every byte, so arbi-
trary data may be contained in the elements in addition to the
values being compared.
Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

SEE ALSO
Isearch(3C), hsearch(3C), gsort(3C), tsearch(3C).

DELL INC., EMC CORP:,'HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 535 of 798

CLOCK (3C) CLOCK (3C)

NAME
clock — report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION
Clock returns the amount of CPU time (in microseconds) used
since the first call to clock. The time reported is the sum of the
user and system times of the calling process and its terminated
child processes for which it has executed wait(2) or system(3S).

The resolution of the clock is 16.667 milliseconds.
SEE ALSO ‘
times(2), wait(2), system(3S).
BUGS
The value returned by clock is defined in microseconds for compa-
tibility with systems that have CPU clocks with much higher reso-

lution. Because of this, the value returned will wrap around after
accumulating only 2147 seconds of CPU time (about 36 minutes).

DELL INC., EMC CORP:,IHPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 536 of 798

CONV (3C) CONV (3C)

NAME
toupper, tolower, _toupper, _tolower, toascii — translate charac-
ters

SYNOPSIS
#include <ctype.h>

int toupper (c)
int c;

int tolower (c)
int c;

int _toupper (c)
int c;

int _tolower (c)

int c;

int toascii (¢)
int c;

DESCRIPTION
Toupper and folower have as domain the range of getc(3S): the
integers from -1 through 255. If the argument of toupper
represents a lower-case letter, the result is the cotresponding
upper-case letter. If the argument of tolower represents an
upper-case letter, the result is the corresponding lower-case letter.
All other arguments in the domain are returned unchanged.

_toupper and _tolower are macros that accomplish the same thing
as toupper and folower but have restricted domains and are fas-
ter. _toupper requires a lower-case letter as its argument; its
result is the corresponding upper-case letter. _tolower requires an
upper-case letter as its argument; its result is the corresponding
lower-case letter. Arguments outside the domain cause undefined
results.

Toascii yields its argument with all bits turned off that are not
part of a standard ASCIHI character; it is intended for compatibility
with other systems.

SEE ALSO
ctype(3C), geto(3S).

DELL INC., EMC CORP,,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 537 of 798

CRYPT (3C) {Domestic Version Only) CRYPT (3C)

NAME

crypt, setkey, encrypt — generate DES encryption

SYNOPSIS

char *crypt (key, salt)
char xkey, *salt;

void setkey (key)
char *key;

void encrypt (block, edflag)
char *block;
int edflag;

DESCRIPTION

This function is available only in the domestic (U.S.) version of
the UNIX PC software.

Crypt is the password encryption function. It is based on the NBS
Data Encryption Standard (DES), with variations intended (among
other things) to frustrate use of hardware implementations of the
DES for key search.

Key is a user’s typed password. Salt is a two-character string
chosen from the set [a-z A-Z 0-9 . /|; this string is used to per-
turb the DES algorithm in one of 4096 different ways, after which
the password is used as the key to encrypt repeatedly a constant
string. The returned value points to the encrypted password.
The first two characters are the salt itself.

The setkey and encrypt entries provide (rather primitive) access
to the actual DES algorithm. The argument of setkey is a charac-
ter array of length 64 containing only the characters with numeri-
cal value 0 and 1. If this string is divided into groups of 8, the
low-order bit in each group is ignored; this gives a 56-bit key
which is set into the machine. This is the key that will be used
with the above mentioned algorithm to encrypt or decrypt the
string block with the function encrypt.

The argument to the encrypt entry is a character array of length
64 containing only the characters with numerical value 0 and 1.
The argument array is modified in place to a similar array
representing the bits of the argument after having been subjected
to the DES algorithm using the key set by setkey. If edflag is
zero, the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO

BUGS

login(1M), passwd(1), getpass(3C), passwd(4).

The return value points to static data that are overwritten by
each call.

DELL INC., EMC CORP-.,HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 538 of 798

CTERMID (35) CTERMID (38)

NAME
ctermid — generate file name for terminal

SYNOPSIS
#include <stdio.h>

char *ctermid(s)
char *s;

DESCRIPTION
Ctermid generates the path name of the controlling terminal for
the current process, and stores it in a string,.

If s is a NULL pointer, the string is stored in an internal static
area, the contents of which are overwritten at the next call to
ctermid, and the address of which is returned. Otherwise, s is
assumed to point to a character array of at least L_ctermid ele-
ments; the path name is placed in this array and the value of s is
returned. The constant L_ctermid is defined in the <stdio.h>
header file.

NOTES
The difference between ctermid and ttyname(3C) is that ttyname
must be handed a file descriptor and returns the actual name of
the terminal associated with that file descriptor, while ctermid
returns a string (/dev/tty) that will refer to the terminal if used
as a file name. Thus ftyname is useful only if the process already
has at least one file open to a terminal.

SEE ALSO
ttyname(3C).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 539 of 798

CTIME (3C) CTIME (3C)

NAME
ctime, localtime, gmtime, asctime, tzset — convert date and time
to string
SYNOPSIS
#include <time.h>
char #ctime (clock)
long *clock;

struct tm *localtime (clock)
long #*clock;

struct tm *gmtime (clock)
long #*clock;

char #*asctime (tm)
struct tm *tm;

extern long timezone;
extern int daylight;
extern char *tzname[2];
void tzset ()

DESCRIPTION
Ctime converts a long integer, pointed to by clock, representing
the time in seconds since 00:00:00 GMT, January 1, 1970, and
returns a pointer to a 26-character string in the following form.
All the fields have constant width.

Sun Sep 16 01:03:52 1973\n\0

Localtime and gmiéime return pointers to ‘“‘tm’’ structures,
described below. Localtime corrects for the time zone and possi-
ble Daylight Savings Time; gmitme converts directly to
Greenwich Mean Time (GMT), which is the time the UNIX system
uses.

Ascttme converts a ‘“tm” structure to a 26-character string, as
shown in the above example, and returns a pointer to the string.

Declarations of all the functions and externals, and the “tm”
structure, are in the < #ifme.h> header file. The structure
declaration is:

struct tm {
int tm_sec; /* seconds (0 - 59) */
int tm_min; /* minutes (0 - 59) */

int tm_hour, /* hours (0 - 23) */

int tm_mday; /* day of month (1 - 31) %/

int tm_mon; /* month of year (0 - 11) */

int tm_year; /* year — 1900 */

int tm_wday; /* day of week (Sunday = 0) */
int tm_yday; /# day of year (0 - 365) */

int tm_isdst;

b

Tm_isdst is non-zero if Daylight Savings Time is in effect.

DELL INC., EMC CORP:;, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 540 of 798

CTIME (3C) CTIME (3C)

The external long variable timezone contains the difference, in
seconds, between GMT and local standard time (in EST, timezone
is 5+60%60); the external variable daglight is non-zero if and only
if the standard U.S.A. Daylight Savings Time conversion should
be applied. The program knows about the peculiarities of this
conversion in 1974 and 1975; if necessary, a table for these years
can be extended.

If an environment variable named TZ is present, asctime uses the
contents of the variable to override the default time zone. The
value of TZ must be a three-letter time zone name, followed by a
number representing the difference between local time and
Greenwich Mean Time in hours, followed by an optional three-
letter name for a daylight time zone. For example, the setting for
New Jersey would be ESTSEDT. The effects of setting TZ are
thus to change the values of the external variables timezone and
daylight; in addition, the time zone names contained in the exter-
nal variable

char #tzname[2] = { "EST”", "EDT" };

are set from the environment variable TZ. The function tzset sets
these external variables from TZ; tzset is called by asctime and
may also be called explicitly by the user.

Note that in most installations, TZ is set by default when the user
logs on, to a value in the local /ete/profile file (see profile(4)).

SEE ALSO
time(2), getenv(3C), profile(4), environ(5).

BUGS
The return values point to static data whose content is overwrit-
ten by each call.

DELL INC., EMC CORP-, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 541 of 798

CTYPE(3C) CTYPE(3C)

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, isascii — classify characters
SYNOPSIS
#include <ctype.h>
int isalpha (c)
int ¢;

DESCRIPTION
These macros classify character-coded integer values by table
lookup. Each is a predicate returning nonzero for true, zero for
false. Isascii is defined on all integer values; the rest are defined
only where isascit is true and on the single non-ASCIH value EOF
(~=1 - see stdio(39)).

isalpha ¢ is a letter.

tsupper ¢ is an upper-case letter.

islower ¢ is a lower-case letter.

tsdigit ¢ is a digit [0-9].

iszdigit ¢ is a hexadecimal digit [0-9], [A-F] or [a-f].

isalnum ¢ is an alphanumeric (letter or digit).

tsspace ¢ is a space, tab, carriage return, new-line, verti-
cal tab, or form-feed.

ispunct ¢ is a punctuation character (neither control nor
alphanumeric).

tsprint ¢ is a printing character, code 040 (space)
through 0176 (tilde).

tsgraph ¢ is a printing character, like ¢sprint except false
for space.

isentrl ¢ is a delete character (0177) or an ordinary con-
trol character (less than 040).

tsascit ¢ is an ASCII character, code less than 0200.

DIAGNOSTICS

If the argument to any of these macros is not in the domain of the
function, the result is undefined.

SEE ALSO
ascii(5).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 542 of 798

CURSES (3) CURSES (3)

NAME
curses — screen functions with “optimal’” cursor motion

SYNOPSIS
cc | flags | files —lcurses —ltermcap | libraries |

DESCRIPTION

These routines give the user a method of updating screens with
reasonable optimization. They keep an image of the current
screen, and the user sets up an image of a new one. Then the
refresh() tells the routines to make the current screen look like the
new one. In order to initialize the routines, the routine initscr()
must be called before any of the other routines that deal with win-
dows and screens are used. The routine endwin() should be called
before exiting,.

SEE ALSO
Screen Updating and Cursor Movement Optimization: A Library

Package, Ken Arnold,
termio(7) termcap(5)

longname(termbuf,name)
move(y,X)
mveur(lasty lastx,newy,newx)

newwin(lines,cols,begin_y,begin_x)

FUNCTIONS
addch(ch) add a character to stdser
addstr(str) add a string to stdscr
box(win,vert,hor) draw a box around a window
crmode() set cbreak mode
clear() clear stdscr
clearok(scr,boolf) set clear flag for scr
clrtobot() clear to bottom on stdscr
clrtoeol() clear to end of line on stdscr
delch() delete a character
deleteln() delete a line
delwin(win) delete win
echo() set echo mode
endwin() end window modes
erase() erase stdscr
getch() get a char through stdscr
getcap(name) get terminal capability name
getstr(str) get a string through stdscr
gettmode() get tty modes
getyx(win,y,x) get (y,x) co-ordinates
inch() get char at current (y,x)

coordinates

initser() initialize screens
insch(c) insert a char
insertin() insert a line
leaveok{win,boolf) set leave flag for win

get long name from termbuf
move to (y,x) on stdscr
actually move cursor

create a new window

nl() set newline mapping
nocrmode() unset cbreak mode
noecho() unset echo mode
‘noni() unset newline mapping

DELL INC., EMC CORP.; HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 543 of 798

CURSES (3) CURSES (3)

noraw() unset raw mode
overlay(winl,win2) overlay winl on win2
overwrite(winl,win2) overwrite winl on top of win2
printw(fmt,argl,arg2,...) printf on sitdscr
raw() set raw mode
refresh() make current screen look like
- stdscr
resetty() reset tty flags to stored value
savetty() stored current tty flags
scanw(fmt,argl,arg2,...) scanf through stdscr
seroll(win) scroll win one line
scrollok(win,boolf) set scroll flag
setterm(name) set term variables for name
standend() end standout mode
standout() start standout mode
subwin(win,lines,cols,begin_y,begin_x) create a subwindow
touchwin(win) change all of win
unctrl{ch) printable version of ch
waddch(win,ch) add char to win
waddstr(win,str) add string to win
welear(win) clear win
welrtobot(win) clear to bottom of win
welrtoeol(win) clear to end of line on win
wdelch(win,c) delete char from win
wdeleteln{win) delete line from win
werase(win) erase win
wgetch(win) get a char through win
wgetstr(win,str) get a string through win
winch(win) get char at current (y,x) in win
winsch(win,c) insert char into win
winsertln(win) insert line into win
wmove(win,y X} set current (y,x) co-ordinates
on win
wprintw(win,fmt,argl,arg2,...) printf on win
wrefresh(win) make screen look like win
wscanw(win,fmt,argl,arg2,...) scanf through win
wstandend(win) end standout mode on win
wstandout(win) start standout mode on win

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 544 of 798

CUSERID (38) CUSERID (3S)

NAME
cuserid — get character login name of the user

SYNOPSIS
#include <stdio.h>

char #cuserid (s)
char *s;

DESCRIPTION

Cuserid generates a character-string representation of the login
name of the owner of the current process. If s is a NULL pointer,
this representation is generated in an internal static area, the
address of which is returned. Otherwise, s i1s assumed to point to
an array of at least L_cuserid characters; the representation is
left in this array. The constant L_cuserid is defined in the
<stdio.h> header file.

DIAGNOSTICS
If the login name cannot be found, cuserid returns a NULL
pointer; if s is not a NULL pointer, a null character (\0) will be
placed at s/0].

SEE ALSO
getlogin(3C), getpwent(3C).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 545 of 798

DIAL(3C) DIAL (3C)

NAME

dial — establish an out-going terminal line connection

SYNOPSIS

#include <dial.h>

int dial (call)
CALL ecall;

void undial (fd)
int fd;

DESCRIPTION

Dial returns a file-descriptor for a terminal line open for
read/write. The argument to dial is a CALL structure (defined in
the <dial.h> header file.

When finished with the terminal line, the calling program must
invoke undial to release the semaphore that has been set during
the allocation of the terminal device.

The CALL typedef in the <dial.h> header file is:
typedef struct {

struct termio *attr; /* pointer to termio */
/¥ attribute struct */
int baud; /* transmission data rate */
int speed,; /* 212A modem: low==300, */
/* high=1200 */
char *line; /* device name for */
/* out-going line */
char *telno; /* pointer to tel-no */
/* digits string */
int modem; /* specify modem control */

/* for direct lines */
} CALL;

The CALL element speed is intended only for use with an outgoing
dialed call, in which case its value should be either 300 or 1200 to
identify the 113A modem, or the high or low speed setting on the
212A modem. The CALL element baud is for the desired transmis-
sion baud rate. For example, one might set baud to 110 and
speed to 300 (or 1200).

If the desired terminal line is a direct line, a string pointer to its
device-name should be placed in the lfne element in the CALL
structure. Legal values for such terminal device names are kept in
the L-devices file. In this case, the value of the baud element
need not be specified as it will be determined from the L-devices
file.

The felno element is for a pointer to a character string represent-
ing the telephone number to be dialed. Such numbers may consist
only of symbols described in phone(7). The termination symbol
will be supplied by the dial function, and should not be included
in the telno string passed to dial in the CALL structure.

The CALL element modem is used to specify modem control for
direct lines. This element should be non-zero if modem control is

DELL INC., EMC CORP.; HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 546 of 798

DIAL(3C) DIAL (3C)

FILES

required. The CALL element af{r is a pointer to a fermio struc-
ture, as defined in the <termio.h> header file. A NULL value
for this pointer element may be passed to the dial function, but if
such a structure is included, the elements specified in it will be set
for the outgoing terminal line before the connection is established.
This is often important for certain attributes such as parity and
baud-rate.

/Jusr/lib/uucp/L-devices
/usr/spool /uucp /LCK..tty-device

SEE ALSO

uucp(1C), alarm(2), read(2), write(2).
phone(7), termio(7) in the UNIX Administrator’s Manual.

DIAGNOSTICS

On failure, a negative value indicating the reason for the failure
will be returned. Mnemonics for these negative indices as listed
here are defined in the <dial.h> header file.

INTRPT -1 /* interrupt occurred */

D_HUNG -2 /* dialer hung (no return from write) */
NO_ANS -3 /* no answer within 10 seconds */
ILL.BD -4 /*illegal baud-rate */

A_PROB -5 /* acu problem {open() failure) */
L_PROB -6 /* line problem (open() failure) */
NO_Ldv -7 /* can't open LDEVS file */

DV_NT_A -8 /* requested device not available */
DV_NT_K -9 /* requested device not known */
NO_BD_A -10 /* no device available at requested baud */
NO_BD_K -11 /* no device known at requested baud */

WARNINGS

BUGS

Including the <dial.h> header file automatically includes the
< termio.h> header file.

The above routine uses <stdio.h>, which causes it to increase
the size of programs, not otherwise using standard I/O, more than
might be expected.

An alarm(2) system call for 3600 seconds is made (and caught)
within the dial module for the purpose of ‘‘touching’ the LCK..
file and constitutes the device allocation semaphore for the termi-
nal device. Otherwise, vucp(1C) may simply delete the LCK..
entry on its 90-minute clean-up rounds. The alarm may go off
while the user program is in a read(2) or write(2) system call,
causing an apparent error return. If the user program expects to
be around for an hour or more, error returns from reads should be
checked for (errno====EINTR), and the read possibly reissued.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 547 of 798

DRAND48(3C) DRANDA48(3C)

NAME
drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand4g,
seed48, lcong48 — generate uniformly distributed pseudo-random
numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3];

long lrand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi[3];

void srand48 (seedval)
long seedval;

unsigned short *seed48 (seed18v)
unsigned short seed16v([3];

void lcong48 (param)
unsigned short param(7];

DESCRIPTION
This family of functions generates pseudo-random numbers using
the well-known linear congruential algorithm and 48-bit integer
arithmetic.

Functions drand48 and erand4{8 return non-negative double-

precision floating-point values uniformly distributed over the
interval [0.0, 1.0).

Functions lrand48 and nrand48 return non-negative long integers
uniformly distributed over the interval [0, 23!).

Functions mrand48 and jrand48 return SIgned long integers uni-
formly distributed over the interval [-25%!, 2%1)

Functions srand48, seed48 and lcong48 are initialization entry
points, one of which should be invoked before either drand4s,
lrand48 or mrand48 is called. (Although it is not recommended
practice, constant default initializer values will be supplied
automatically if drand48, lrand48 or mrand48 is called without a
prior call to an initialization entry point.) Functions erand{s,
nrand48 and jrand48 do not require an initialization entry point
to be called first.

All the routines work by generating a sequence of 48-bit integer
values, X;, according to the linear congruential formula

Xn+l = (aXn + e)mod m n ZO

The parameter m = 2%, hence 48-bit integer arithmetic is per-
formed. Unless lcong48 has been invoked, the multiplier value a
and the addend value ¢ are given by

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 548 of 798

DRAND48(3C) DRANDA48(3C)

¢c =B 16 = 13 8

The value returned by any of the functions drand{8, erand{s,
lrand48, nrand48, mrand48 or jrand4& is computed by first gen-
erating the next 48-bit X; in the sequence. Then the appropriate
number of bits, according to the type of data item to be returned,
are copied from the high-order (leftmost) bits of X; and
transformed into the returned value.

The functions drand48, lrand48 and mrand48 store the last 48-bit
X; generated in an internal buffer; that is why they must be ini-
tialized prior to being invoked. The functions erand48, nrand{8
and jrand48 require the calling program to provide storage for the
successive X; values in the array specified as an argument when
the functions are invoked. That is why these routines do not have
to be initialized; the calling program merely has to place the
desired initial value of X; into the array and pass it as an argu-
ment. By using different arguments, functions erand{8, nrand48
and jrand48 allow separate modules of a large program to gen-
erate several independent streams of pseudo-random numbers, i.e.,
the sequence of numbers in each stream will not depend upon how
many times the routines have been called to generate numbers for
the other streams.

The initializer function srand48 sets the high-order 32 bits of X;
to the 32 bits contained in its argument. The low-order 16 bits of
X; are set to the arbitrary value 330E4.

The initializer function seed48 sets the value of X; to the 48-bit
value specified in the argument array. In addition, the previous
value of X; is copied into a 48-bit internal buffer, used only by
seed48, and a pointer to this buffer is the value returned by
seed48. This returned pointer, which can just be ignored if not
needed, is useful if a program is to be restarted from a given point
at some future time — use the pointer to get at and store the last
X; value, and then use this value to reinitialize via seed48 when
the program is restarted.

The initialization function Ilcong48 allows the user to specify the
initial X;, the multiplier value @, and the addend value ¢. Argu-
ment array elements param/0-2/ specify X;, param/3-5] specify
the multiplier @, and parem[6] specifies the 16-bit addend c.
After lcong48 has been called, a subsequent call to either srand{8
or seed48 will restore the ‘‘standard” multiplier and addend
values, ¢ and c, specified on the previous page.
NOTES

The versions of these routines for the VAX-11 and PDP-11 are
coded in assembly language for maximum speed. It requires
approximately 80 usec on a VAX-11/780 and 130 psec on a PDP-
11/70 to generate one pseudo-random number. On other comput-
ers, the routines are coded in portable C. The source code for the
portable version can even be used on computers which do not

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 549 of 798

DRANDA48(3C) DRAND48(3C)

have floating-point arithmetic. In such a situation, functions
drand48 and erand48 do not exist; instead, they are replaced by
the two new functions below.

long irand48 (m)
unsigned short m;

long krand48 (xsubi, m)
unsigned short xsubi[3], m;

Functions trand48 and krand48 return non-negative long integers
uniformly distributed over the interval [0, m —1].

SEE ALSO
rand(3C).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 550 of 798

ECVT (3C) ECVT(3C)

NAME
ecvt, fevt, gevt — convert floating-point number to string

SYNOPSIS
char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt (value, ndigit, buf)
double value;
char *buf;

DESCRIPTION

Ecvt converts value to a null-terminated string of ndigit digits
and returns a pointer thereto. The low-order digit is rounded.
The position of the decimal point relative to the beginning of the
string is stored indirectly through decpt (negative means to the
left of the returned digits). The decimal point is not included in
the returned string. If the sign of the result is negative, the word
pointed to by stgn is non-zero, otherwise it is zero.

Feut is identical to ecvt, except that the correct digit has been
rounded for FORTRAN F-format output of the number of digits
specified by ndigit.

Gcevt converts the value to a null-terminated string in the array
pointed to by buf and returns buf. It attempts to produce ndigit
significant digits in FORTRAN F-format if possible, otherwise E-
format, ready for printing. A minus sign, if there is one, or a
decimal point will be included as part of the returned string.
Trailing zeros are suppressed.

SEE ALSO
printf(3S).
BUGS

The return values point to static data whose content is overwrit-
ten by each call.

DELL INC., EMC CORP.,'HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 551 of 798

END (3C) END (3C)

NAME
end, etext, edata — last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with
interesting contents. The address of efezt is the first address
above the program text, edata above the initialized data region,
and end above the uninitialized data region.

When execution begins, the program break (the first location
beyond the data) coincides with end, but the program break may
be reset by the routines of brk(2), malloc(3C), standard
input/output (stdio(3S)), the profile (—p) option of cc¢(1), and so
on. Thus, the current value of the program break should be
determined by sbrk(0) (see brk(2)).

SEE ALSO
brk(2), malloc(3C), stdio(3S).

DELL INC., EMC CORP.!HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 552 of 798

EPRINTF (3T) (AT&T UNIX PC only) EPRINTF (3T)

NAME
eprintf — send a message to the status manager

SYNOPSIS
#finclude <status.h>)
int eprintf (mtype, mact, uname, format [, arg] ...)
int mtype, mact;
char *uname, *format;

DESCRIPTION
Eprintf formats the passed message a la printf and writes the mes-
sage to the error device. The status manager wakes up whenever
the error device is written to, queues the message, and displays an
icon to indicate a message is waiting.

Mtype (message type) can have one of the following values:

ST_MAIL Mail messages
ST_CAL Calendar messages
ST_OTHER Miscellaneous messages
ST_SYS Kernel error messages
ST_LOG Log message in log file
ST_POP Popup message

Mact (message action) can have one of the following values:
ST_DISPLAY Just display message

ST_EXEC Execute process (message text is shell
command line in this case)

ST_NOTIFY Notify caller on display (sends caller
SIGUSR1)

ST_CONFIRM Signal caller with confirmation/denial
on display (SIGUSR1 = Yes, SIGUSR2
= No)

ST_OFF Remove messages from queue

ST_LOGFILE Log message in log file

Uname points to the user login name that the message is for. The
status manager will only display the message pending icon when
this user is logged in. If uname is NULL (or if it points to a null
string), then the message is displayed regardless of who is logged
in.

ST_POP will cause the message to be acted on immediately,
rather than displaying an icon and waiting for the user to click.
ST_LOG will take the first word of the formatted message (i.e.,
up to the first space) as a file name, which it will open as a logfile
in /usr/adm. The rest of the méssage will then be inserted in
the file, followed by a time stamp.

DIAGNOSTICS
Eprintf returns —1 if error (open of error device failed).

SEE ALSO
message (3T), tam(3T).

DELL INC., EMC CORP:,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 553 of 798

ERF (3M) ERF (3M)

NAME
erf, erfc — error function and complementary error function

SYNOPSIS
#include <math.h>

double erf (x)
double x;

double erfc {x)
double x;

DESCRIPTION

z
Erf returns the error function of z, defined as i f e "t2dt.
VZS

Erfc, which returns 1.0 - erf(z), is provided because of the
extreme loss of relative accuracy if erf(z) is called for large = and
the result subtracted from 1.0 (e.g. for £ = 5, 12 places are lost).

SEE ALSO
exp(3M).

DELL INC., EMC CORP.,;HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 554 of 798

EXP (3M) EXP (3M)

NAME
exp, log, logl0, pow, sqrt — exponential, logarithm, power, square
root functions

SYNOPSIS
#include <math.h>

double exp (x)
double x;

double log (x)
double x;

double log10 (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
Ezp returns e”,

Log returns the natural logarithm of z. The value of 2 must be
positive.

Log10 returns the logarithm base ten of 2. The value of z must
be positive.

Pow returns z¥. The values of z and y may not both be zero. If
2 is non-positive, ¥y must be an integer.

Sg¢rt returns the square root of z. The value of £ may not be
negative.

DIAGNOSTICS
Ezp returns HUGE when the correct value would overflow, and
sets errno to ERANGE.

Log and log10 return O and set errno to EDOM when z is non-
positive. An error message is printed on the standard error out-
put.

Pow returns O and sets errno to EDOM when z is non-positive
and y is not an integer, or when z and y are both zero. In these
cases a message indicating DOMAIN error is printed on the stan-
dard error output. When the correct value for pow would
overflow, pow returns HUGE and sets errno to ERANGE.

Sgrt returns O and sets errno to EDOM when z is negative. A
message indicating DOMAIN error is printed on the standard error
output.

These error-handling procedures may be changed with the func-
tion matherr(3M).

SEE ALSO
hypot(3M), matherr(3M), sinh(3M).

DELL INC., EMC CORP-,:HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 555 of 798

FCLOSE (3S) FCLOSE (3S)

NAME
fclose, fllush — close or flush a stream

SYNOPSIS
#include <stdio.h>

int fclose (stream)
FILE *stream;

int fllush (stream)
FILE *stream;

DESCRIPTION
Fclose causes any buffered data for the named stream to be writ-
ten out, and the stream to be closed.
Fclose is performed automatically for all open files upon calling
ezit(2).
Fflush causes any buffered data for the named stream to be writ-
ten to that file. The stream remains open.

DIAGNOSTICS
These functions return 0 for success, and EOF if any error (such
as trying to write to a file that has not been opened for writing)
was detected.

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(3S).

DELL INC., EMC CORP-.'HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 556 of 798

FERROR (3S) FERROR (3S)

NAME
ferror, feof, cléarerr, fileno — stream status inquiries

SYNOPSIS)
#include <stdio.h>

int feof (stream)
FILE
*stream;

int ferror (stream)
FILE
*stream;

void clearerr (stream)
FILE
*stream;

int fileno(stream)
FILE
*stream;
DESCRIPTION
Feof returns non-zero when EOF has previously been detected
reading the named input stream, otherwise zero.

Ferror returns non-zero when an /O error has previously
occurred reading from or writing to the named stream, otherwise
Zero.

Clearerr resets the error indicator and EOF indicator to zero on
the named stream.

Fileno returns the integer file descriptor associated with the
named stream; see open(2).

NOTE .
All these functions are implemented as macros; they cannot be
declared or redeclared.

SEE ALSO
open(2), fopen(3S).

DELL INC., EMC CORP.}!HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 557 of 798

FLOOR (3M)

NAME

FLOOR (3M)

floor, ceil, fmod, fabs — floor, ceiling, remainder, absolute value
functions

SYNOPSIS

#include <math.h>

double
double

double
double

double
double

double
double

DESCRIPTION

floor (x)

x;

ceil (x)

X3

fmod (x, y)
X, Yi

fabs (x)

X3

Floor returns the largest integer (as a double-precision number)
not greater than z.

Ceil returns the smallest integer not less than z.

Fmod returns z if y is zero, otherwise the number f with the
same sign as z, such that z = iy + f for some integer ¢, and | f |

<lyl.

Fabs returns | z | .

SEE ALSO
abs(3C).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 558 of 798

FOPEN (35) FOPEN (3S)

NAME
fopen, freopen, fdopen — open a stream
SYNOPSIS
#include <stdio.h>
FILE *fopen (file-name, type)
char #file-name, *type;
FILE #*freopen (file-name, type, stream)
char #file-name, *type;
FILE #*stream;
FILE #*fdopen (fildes, type)
int fildes;
char *type;
DESCRIPTION
Fopen opens the file named by file-name and associates a stream

with it. Fopen returns a pointer to the FILE structure associated
with the stream.

File-name points to a character string that contains the name of
the file to be opened.

Type is a character string having one of the following values:

" open for reading

"w" truncate or create for writing

"' append; open for writing at end of file, or
create for writing

T+ open for update (reading and writing)

"w4" truncate or create for update

"a+" append; open or create for update at end-of-file

Freopen substitutes the named file in place of the open stream.
The original stream is closed, regardless of whether the open ulti-
mately succeeds. Freopen returns a pointer to the FILE structure
associated with stream.

Freopen is typically used to attach the preopened streams associ-
ated with stdin, stdout and stderr to other files.

Fdopen associates a stream with a file descriptor obtained from
open, dup, creat, or pipe(2), which will open files but not return
pointers to a FILE structure stream which are necessary input for
many of the section 3S library routines. The type of stream must
agree with the mode of the open file.

When a file is opened for update, both input and output may be
done on the resulting stream. However, output may not be
directly followed by input without an intervening fseek or rewind,
and input may not be directly followed by output without an
intervening fseek, rewind, or an input operation which encounters
end-of-file.

When a file is opened for append (i.e., when type is "a” or "a+"),
it is impossible to overwrite information already in the file. Fseek

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 559 of 798

FOPEN (3S) FOPEN(3S)

may be used to reposition the file pointer to any position in the
file, but when output is written to the file the current file pointer
is disregarded. All output is written at the end of the file and
causes the file pointer to be repositioned at the end of the output.
If two separate processes open the same file for append, each pro-
cess may write freely to the file without fear of destroying output
being written by the other. The output from the two processes
will be intermixed in the file in the order in which it is written.

SEE ALSO
open(2), fclose(3S).

DIAGNOSTICS
Fopen and freopen return a NULL pointer on failure.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 560 of 798

FORM (3T) (AT&T UNIX PC only) FORM (3T)

NAME
form — display and accept forms

SYNOPSIS
#include <menu.h>
#include <form.h>
int form(form, op)
form_t *form;
int op;

DESCRIPTION
This routine manipulates a form as determined by the operation
code (op). If the op arg is F_BEGIN, the form is initialized and
displayed. If op is F_INPUT, user input is accepted. If op is
F_END, the form is terminated and removed from the display.
These functions may be combined in many ways. By specifying
(F_BEGIN | F_INPUT | F_END), the caller creates a “pop-up”
form which is initialized (displayed), used for input, then removed.
Generally, (F_BEGIN |F_INPUT) is used for the first call,
F_INPUT for each subsequent interaction, and F_END when the
form is to be discarded.

During the F_INPUT function, the user may point to fields with
the mouse or with the keyboard (arrows, Prev, Next, Beg, Home,
End, Tab). The user may may modify fields by typing and edit-
ing (Back Space, Dlete Char, Clear Line, Cancel) or by selecting a
choice from a menu optionally associated with the field.

The form structure has the following form:

typedef struct

char *f_label; /* form label */
char *{_name; /* form name 7
char f_flags; /* form flags *

int f_win; /* form window */
track_t *{_track; /* tracking info */
field_t *f_fields; /* fields */

field_t *f_curfl; /* current field */

} form_t;

F_label is the form label, displayed on the window label line of
the form. If f_label is NULL, no label is displayed.

F_name is the form name, or NULL if the form has no name.

F_flags contains flags. The F_WINNEW flag causes form to use
the “new” algorithm to place the window. Basically, the new algo-
rithm looks for relatively empty screen space to place the window.
F_WINSON causes form to use the “‘son’’ algorithm which causes
the new window to slightly overlap the current window. If neither
F_WINNEW nor F_WINSON is given, the “popup’’ algorithm is
used. This causes the new window to appear near the middle of
the current window, inside it if possible. F_NOMOVE is set if the

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 561 of 798

FORM (3T) (AT&T UNIX PC only) FORM (3T)

Move icon is not to be displayed on the border of the form.
F_NOHELP is set if the Help icon is not to be displayed on the
form border.

F_win holds the window identifier associated with this form. It is
allocated on an F_BEGIN call, used on subsequent calls, and
deleted on an F_END call. F_track is a pointer to the mouse-
tracking information required during form interaction. The space
for this data is allocated on F_BEGIN and freed on F_END.

F_fields points to the array of fields (see below). F_curfl points to
the current field. The caller should point f_curfl to the default
field. Form will modify f_curfl as the user moves the highlighting
around in the form. The list of fields is terminated by a field
whose fi_name is NULL.

Each field in the array pointed to by f_fields and f_curcl has the
following form: :

typedef struct

char *fl_name; /* field name */

char fl_row; /* field row */

char fi_ncol; /* name column */

char fi_fcol; /* field column */

char fl_len; /* field length */

char fl_flags; /* flags */

char *Al_value; /* field values */

menu_t *fi_menu;, /* assoc. menu pointer */
char *fi_prompt; /* field prompt */

} field_t;

FIl_name is the field name. FI_row is the row number on which to
display the field. Row (and column) numbers are form-relative
with 0,0 being the upper-leftmost location in the form. The form
name (f_name) is located above 0,0 so the user needn’t allocate a
row for it.

Fl_ncol and fl_fcol control where the field name (fi_ncol) and
field value (fi_fcol) are displayed. Generally, fi_fcol is greater
than fi_ncol by at least the length of the field name.

Fi_len is the length of the field. See fi_value, below.

Fl_flags contains various flags which describe the field.
F_CLEARIT specifies that any previous value for the field should
be erased when the user tries to enter a new value. This is useful
for fields where user editing makes little sense. F_MONLY means
that the only allowable input to this field is via the associated
menu (see fi_menu, below).

On call, fi_value contains the initial field value. On return, this
string is modified to contain the user-supplied value. If no editing
was performed by the user, the return value is the same as the call
value. Note that the caller must supply a pointer to a character
array at least fl_len + 1 bytes long. In addition, the caller should
place a null byte after the end of the default value. For a 30 byte

DELL INC., EMC CORR., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 562 of 798

FORM(3T) (AT&T UNIX PC only) FORM (3T)

field, a default value might be of the form:

"Default Value\0 ”
1234567890123 45678901234567890
1 2 3

Fi_menu points to an optional “associated menu.” If the caller
supplies a menu pointer, then the user may press the Cmd or Opts
key on that field to invoke menu(3T) to parse the menu. The
selected menu item’s name (mi_name) is placed in the field’s value
(fA_value). 1f the F_MONLY flag is set for the field, then any
attempt to edit the field’s value will force the associated menu to
pop-up. When a field has an associated menu, the SLECT and
MARK keys step through the menu choices without displaying the
menu.

The optional message pointed to by fi_prompt is displayed on the
prompt line whenever the field is selected. As the user moves
from field to field, the prompt changes.

EXAMPLE
The following program illustrates a typical use of form:

#include <tam.h>
#include <menu h>
#include <form.h>
#include <stdio.h>
#include <kcodes.h>

mitem_t printitems| | =

"ASR-33", 0,0,
"Centronix”, 0,1,
"Diablo #1”, 0,2,
"Diablo #2”, 0,3,
"Epson in lab”, 0,4,
"Laser Printer”, 0,5,
"File”, 0,6,
0, 0,0

b
menu_t printmenu =
"Printers”,

"Select a Printer from the list”,
0,1,0,0,

M_SINGLE,

{03,

0,0,0,0,0,

printitems,

printitems,

0

%
mitem_t priitems| | =

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 563 of 798

FORM(3T) (AT&T UNIX PC only) FORM (3T)

{
"Low”, 0,0
"Normal”, 0,1,
"High", 0,2,
"Immediate”, 0,3,
0,0,0,

5

menu_t primenu =

"Printing Priority”,
0)
" At what priority should the document be printed?”,
0,1,0,0,
M_SINGLE,
{0},
0,0,0,0,0,
priitems,
&priitems][1],
0

b

mitem_t yesnoitems| | =
{
IINOII) 0,0,
"Yes”, 0.1,
0,0,0

b
menu_t yesnomenu =

0,

0, "Select Yes (y) or No (n)”,
0,1,0,0,

M_SINGLE,

{0},

0,0,0,0,0,

yesnoitems,

yesnoitems,

0

I3

field_t printfields [| =
{
"Printer Name”, 0,0,15,30,F_CLEARIT,
"System Printer » &printmenu,
"Enter a Printer Name (touch CMD or OPTS to see
choices)”, ‘
“From Page”, 1,0,15,5,0,
Ill ”,0,
"Select the page number of the first page to be printed”,

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 564 of 798

FORM (3T)

b

(AT&T UNIX PC only) FORM (3T)

"To Page”, 1,25,40,5,0,
999 1;,0’
"Select the page number of the last page to be printed”,

"Priority”, 2,0,15,10,F_MONLY,

"Normal ”,&primenu,

"Enter the print priority (Press CMD or OPTS to see
choices)”,

"Delete After Printing?”, 4,0,25,3,0,

"No ", &yesnomenu,

"Do you wish the document to be deleted after it is
printed?”,

0, 0,0,0,0,0,
0,0,
0

form_t printform =

main()

"Print”,

"Printer Options”,
0,

0,

07

printfields,
printfields

int err;
int printop;
char *which;

winit();
keypad(0,1);

printop = M_BEGIN | M_INPUT;

while(1)
which = "printform”;
err = form(&printform, printop);
printop &= "M_BEGIN;
if (err < 0] err == Close)
break;

}

DELL INC., EMC CORP.,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 565 of 798

FORM (3T) (AT&T UNIX PC oaly) FORM (3T)

if (err <0)
{

fprintf(stderr,”fatal err in %s, code =
%d" ,which err);
sleep(5);

wexit(0);

}

Jusr/include/form.h
Jusr/include/menu.h
Jusr/include/kcodes.h

SEE ALSO
' menu(3T), tam(3T).
DIAGNOSTICS
Form returns non-negative keyboard codes (see keodes.h) when
keyboard input terminated the form interaction. Other return
values signal more serious errors and are defined in form.h.

FILES

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 566 of 798

FREAD (35) FREAD (3S)

NAME

fread, fwrite — binary input/output

SYNOPSIS

#include <stdio.h>

int fread (ptr, size, nitems, stream)
char *ptr;

int size, nitems;

FILE #sstream;

int fwrite (ptr, size, nitems, stream)
char *ptr;

int size, nitems;

FILE #stream;

DESCRIPTION

Fread copies, into an array beginning at ptr, nitems items of data
from the named input stream, where an item of data is a sequence
of bytes (not necessarily terminated by a null byte) of length size.
Fread stops appending bytes if an end-of-file or error condition is
encountered while reading stream, or if nitems items have been
read. Fread leaves the file pointer in stream, if defined, pointing
to the byte following the last byte read if there is one. Fread
does not change the contents of stream.

Fuwrite appends at most nitems items of data from the the array
pointed to by pir to the named output stream. Fuwrite stops
appending when it has appended nitems items of data or if an
error condition is encountered on sfiream. Fwrite does not change
the contents of the array pointed to by ptr.

The variable size is typically sizeof(*ptr) where the pseudo-
function sizeof specifies the length of an item pointed to by pir.
If ptr points to a data type other than char it should be cast into
a pointer to char.

SEE ALSO

read(2), write(2), fopen(3S), getc(3S), gets(3S), printf(3S), putc(3S),
puts(3S), scanf(3S).

DIAGNOSTICS

Fread and fwrite return the number of items read or written. If
nitems is non-positive, no characters are read or written and O is
returned by both freed and fwrite.

DELL INC., EMC CORP.; HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 567 of 798

FREXP (3C) FREXP (3C)

NAME
frexp, ldexp, modf — manipulate parts of floating-point numbers

SYNOPSIS
double frexp (value, eptr)
double value;
int *eptr;

double ldexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, *iptr;

DESCRIPTION
Every non-zero number can be written uniquely as z * 2", where
the “mantissa” (fraction) z is in the range 0.5 < |z | < 1.0, and
the ‘“‘exponent’” n is an integer. Frezp returns the mantissa of a
double value, and stores the exponent indirectly in the location
pointed to by eptr.

Ldezp returns the quantity value * 2°°P,

Modf returns the signed fractional part of walue and stores the
integral part indirectly in the location pointed to by iptr.

DIAGNOSTICS

If ldexzp would cause overflow, HUGE is returned and errno is set
to ERANGE.

DELL INC., EMC CORP;, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 568 of 798

FSEEK (3S) FSEEK (3S)

NAME
fseek, rewind, ftell — reposition a file pointer in a stream

SYNOPSIS
- #include <stdio.h>

int fseek (stream, offset, ptrname)
FILE #*stream;

long offset;

int ptrname;

void rewind (stream)
FILE #*stream;

long ftell (stream)
FILE #*stream;

DESCRIPTION
Fseek sets the position of the next input or output operation on
the stream. The new position is at the signed distance offset
bytes from the beginning, from the current position, or from the
end of the file, according as ptrname has the value 0, 1, or 2.

Rewind(stream) is equivalent to fseek(stream, OL, 0), except that
no value is returned.

Fseek and rewind undo any effects of ungete(3S).

After fseek' or rewind, the next operation on a file opened for
ypdate may be either input or output.

Ftell returns the offset of the current byte relative to the begin-
ning of the file associated with the named stream.

SEE ALSO
Iseek(2), fopen(3S).

DIAGNOSTICS

' Fseek rteturns non-zero for improper seeks, otherwise zero. An
improper seek can be, for example, an fseek done on a file that
has not been opened via fopen; in particular, fseek may not be
used on a terminal, or on a file opened via popen(3S). '

WARNING
Although in UNIX an offset returned by ftell is measured in bytes,
and it is permissible to seek to positions relative to that offset,
portability to non-UNIX systems requires that an offset be used
by fseek directly. Arithmetic may not meaningfully be performed
on such a offset, which is not necessarily measured in bytes.

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 569 of 798

FTW (3C) FTW (3C)

NAME

ftw — walk a file tree

SYNOPSIS

#include <ftw.h>

int ftw (path, fn, depth)
char *path;

int (*fn) ();

int depth;

DESCRIPTION

Ftw recursively descends the directory hierarchy rooted in path.
For each object in the hierarchy, ftw calls fn, passing it a pointer
to a null-terminated character string containing the name of the
object, a pointer to a stat structure (see stat(2)) containing infor-
mation about the object, and an integer. Possible values of the
integer, defined in the <ftw.h> header file, are FTW_F for a file,
FTW_D for a directory, FTW_DNR for a directory that cannot be
read, and FTW_NS for an object for which stat could not success-
fully be executed. If the integer is FTW_DNR, descendants of that
directory will not be processed. If the integer is FTW_NS, the stat
structure will contain garbage. An example of an object that
would cause FTW_NS to be passed to fn would be a file in a direc-
tory with read but without execute (search) permission.

Ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invoca-
tion of frn returns a nonzero value, or some error is detected
within ftw (such as an I/O error). If the tree is exhausted, ftw
returns zero. If fmn returns a nonzero value, ftw stops its tree
traversal and returns whatever value was returned by fn. If ftw
detects an error, it returns —1, and sets the error type in errno.

Ftw uses one file descriptor for each level in the tree. The depth
argument limits the number of file descriptors so used. If depth is
zero or negative, the effect is the same as if it were 1. Depth must
not be greater than the number of file descriptors currently avail-
able for use. Ftw will run more quickly if depth is at least as
large as the number of levels in the tree.

SEE ALSO

BUGS

stat(2), malloc(3C).

Because ftw is recursive, it is possible for it to terminate with a
memory fault when applied to very deep file structures.

It could be made to run faster and use less storage on deep struc-
tures at the cost of considerable complexity.

Ftw uses malloc(3C) to allocate dynamic storage during its opera-
tion. If ftw is forcibly terminated, such as by longjmp being exe-
cuted by fn or an interrupt routine, fiw will not have a chance to
free that storage, so it will remain permanently allocated. A safe
way to handle interrupts is to store the fact that an interrupt has
occurred, and arrange to have fn return a nonzero value at its
next invocation.

DELL INC., EMC CORP:,JHPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 570 of 798

GAMMA (3M) GAMMA (3M)

NAME

gamma — log gamma function

SYNOPSIS

#include <math.h>
extern int signgam;

double gamma (x)
double x;

DESCRIPTION

Gamma returns In(|T(z)|), where T'(z) is defined as
fe_t t*'dt. The sign of T'() is returned in the external
0

integer signgam. The argument z may not be a non-negative
integer.

The following C program fragment might be used to calculate I':
if ((y = gamma(x)) > LOGHUGE)
error();
y = signgam * exp(y);

where LOGHUGE is the least value that causes ezp(3M) to return a
range error.

DIAGNOSTICS

For non-negative integer arguments HUGE is returned, and errno
is set to EDOM. A message indicating DOMAIN error is printed on
the standard error output.

If the correct value would overflow, gamma returns HUGE and
sets errno to ERANGE.

These error-handling procedures may be changed with the func-
tion matherr(3M).

SEE ALSO

exp(3M), matherr(3M).

DELL INC., EMC CORP-.JHPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 571 of 798

GETC(3S) GETC(3S)

NAME

getc, getchar, fgetc, getw — get character or word from stream

SYNOPSIS

#include <stdio.h>

int getc (stream)
FILE #*stream;

int getchar ()

int fgetc (stream)
FILE #*stream;

int getw (stream)
FILE #stream;

DESCRIPTION

Getc returns the next character (i.e. byte) from the named input
stream. It also moves the file pointer, if defined, ahead one char-
acter in stream. Gete is a macro and so cannot be used if a func-
tion is necessary; for example one cannot have a function pointer
point to it.

Getchar returns the mnext character from the standard input
stream, stdin. As in the case of geifc, getchar is a macro.

Fgetc performs the same function as getc, but is a genuine func-
tion. Fgetc runs more slowly than gefc, but takes less space per
invocation.

Getw returns the next word (i.e. integer) from the named input
stream. The size of a word varies from machine to machine. It
returns the constant EOF upon end-of-file or error, but as that is
a valid integer value, feof and ferror(3S) should be used to check
the success of getw. Getw increments the associated file pointer,
if defined, to point to the next word. Getw assumes no special
alignment in the file.

SEE ALSO

fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S),
scanf(3S).

DIAGNOSTICS

BUGS

These functions return the integer constant EOF at end-of-file or
upon an error.

Because it is implemented as a macro, gefc treats incorrectly a
stream argument with side effects. In particular, gete(*f++)
doesn’t work sensibly. Fgetc should be used instead.

Because of possible differences in word length and byte ordering,
files written using putw are machine-dependent, and may not be
read using getw on a different processor.

DELL INC., EMC CORP’.,IHPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 572 of 798

GETCWD (3C) GETCWD (3C)

NAME
getcwd — get path-name of current working directory

SYNOPSIS)
char *getcwd (buf, size)
char *buf;
int size;

DESCRIPTION
Getcwd returns a pointer to the current directory path-name.
The value of size must be at least two greater than the length of
the path-name to be returned.

If buf is a NULL pointer, getcwd will obtain stze bytes of space
using malloc(3C). In this case, the pointer returned by getcwd
may be used as the argument in a subsequent call to free.

The function is implemented by using popen(3S) to pipe the out-
put of the pwd(1) command into the specified string space.

EXAMPLE
char *cwd, *getewd();

if ((cwd = getewd((char *)NULL, 64)) == NULL) {
perror(‘‘pwd””);
exit(1);

printi(“%s\n”, cwd);

SEE ALSO
pwd(1), malloe(3C), popen(3S).

DIAGNOSTICS
Returns NULL with errno set if size is not large enough, or if an
error occurs in a lower-level function.

DELL INC., EMC CORP:,'HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 573 of 798

GETENV (3C) GETENV (3C)

NAME
getenv — return value for environment name

SYNOPSIS
char *getenv (name)
char *name;

DESCRIPTION
Getenv searches the environment list (see environ(5)) for a string
of the form name==value, and returns a pointer to the value in
the current environment if such a string is present, otherwise a
NULL pointer.

SEE ALSO
environ(5).

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 574 of 798

GETGRENT (3C) GETGRENT (3C)

NAME

getgrent, getgrgid, getgrnam, setgrent, endgrent — get group file
entry

SYNOPSIS

#include <grp.h>
struct group *getgrent ()

struct group *getgrgid (gid)
int gid;

struct group *getgrnam (name)
char *name;

void setgrent ()
void endgrent ()

DESCRIPTION

FILES

Getgrent, getgrgid and getgrnam each return pointers to an
object with the following structure containing the broken-out
fields of a line in the /ete/group file. Each line contains a
“group’’ structure, defined in the <grp.h> header file.

struct group {
char *gr_name; /* the name of the group */
char *gr_passwd; /* the encrypted group */
/* password */
int gr_gid; /* the numerical group ID */
char **gr_mem; /* vector of pointers to */
/* member names */
b
Getgrent when first called returns a pointer to the first group
structure in the file; thereafter, it returns a pointer to the next
group structure in the file; so, successive calls may be used to
search the entire file. Getgrgid searches from the beginning of the
file until a numerical group ID matching g7d is found and returns a
pointer to the particular structure in which it was found. Get-
grnam searches from the beginning of the file until a group name
matching name is found and returns a pointer to the particular
structure in which it was found. If an end-of-file or an error is
encountered on reading, these functions return a NULL pointer.

A call to setgrent has the effect of rewinding the group file to
allow repeated searches. Endgrent may be called to close the
group file when processing is complete.

/ete/group

SEE ALSO

getlogin(3C), getpwent(3C), group(4).

DIAGNOSTICS

A NULL pointer is returned on EOF or error.

DELL INC., EMC CORP:,IHPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 575 of 798

GETGRENT (3C) CGETGRENT (3C)

WARNING
The above routines use < stdio.h>, which causes them to
increase the size of programs, not otherwise using standard I/O,
more than might be expected.

BUGS
All information is contained in a static area, so it must be copied
if it is to be saved.

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 576 of 798

GETLOGIN (3C) GETLOGIN (3C)

NAME
getlogin — get login name

SYNOPSIS
char sgetlogin ();

DESCRIPTION
Getlogin returns a pointer to the login name as found in
/etc/utmp. It may be used in conjunction with getpwnam to
locate the correct password file entry when the same user ID is
shared by several login names.
If getlogin is called within a process that is not attached to a ter-
minal, it returns a NULL pointer. The correct procedure for
determining the login name is to call cuserid, or to call getlogin
and if it fails to call getpwuid.

FILES
/etc/utmp

SEE ALSO .
cuserid(3S), getgrent(3C), getpwent(3C), utmp(4).

DIAGNOSTICS
Returns the NULL pointer if name not found.

BUGS

The return values point to static data whose content is overwrit-
ten by each call.

DELL INC., EMC CORP_ HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 577 of 798

GETOPT (3C) GETOPT (3C)

NAME
getopt — get option letter from argument vector

SYNOPSIS
int getopt (arge, argv, optstring)
int arge;
char **argv;
char *optstring;

extern char #optarg;
extern int optind;

DESCRIPTION .
Getopt returns the next option letter in argv that matches a letter
in optstring. Optstring is a string of recognized option letters; if a
letter is followed by a colon, the option is expected to have an
argument that may or may not be separated from it by white
space. Optarg is set to point to the start of the option argument
on return from getopt.

Getopt places in optind the argv index of the next argument to be
processed. Because optind is external, it is normally initialized to
zero automatically before the first call to getopt.

When all options have been processed (i.e., up to the first non-
option argument), getopt returns EOF. The special option —-—
may be used to delimit the end of the options; EOF will be
returned, and —— will be skipped.

DIAGNOSTICS ,
Getopt prints an error message on stderr and returns a question
mark (?) when it encounters an option letter not included in opt-
string.

WARNING
The above routine uses <stdio.h>, which causes it to increase
the size of programs, not otherwise using standard I/O, more than
might be expected.

EXAMPLE
The following code fragment shows how one might process the
arguments for a command that can take the mutually exclusive
options a and b, and the options f and o, both of which require
arguments:

main (arge, argv)

int arge;

char **argv;

t
it c;
extern int optind;
extern char *optarg;

while ((¢ = getopt (arge, argv, "abf:o:")) = EOF)
switch (c) {
case ‘al:
it (big)

DELL INC., EMC CORP-,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 578 of 798

GETOPT (3C) GETOPT (3C)

errflg++;
else
aflg++;
break;
case b’
if (aflg)
errflg++;
else
hnrao! V-
OproCy
break;
case 'f':
ifille = optarg;
break;
case ‘o
ofile = optarg;
bufsiza = 512;
break;
case ?:
errflg++;

}

if (errflg) {
fprintf (stderr, "usage: . . . ”);
exit (2);

for (; optind < arge; optind++) {
if (access (argv[optind], 4)) {

}
SEE ALSO
getopt(1).

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 579 of 798

GETPASS (3C) GETPASS (3C)

NAME
getpass — read a password

SYNOPSIS
char *getpass (prompt)
char *prompt;

DESCRIPTION

Getpass reads up to a newline or EOF from the file /dev/tty,
after prompting on the standard error output with the null-
terminated string prompt and disabling echoing. A pointer is
returned to a null-terminated string of at most 8 characters. If
/dev/tty cannot be opened, a NULL pointer is returned. An
interrupt will terminate input and send an interrupt signal to the
calling program before returning.

FILES
/dev/tty
SEE ALSO
crypt(3C).
WARNING
The above routine uses <stdio.h>, which causes it to increase

the size of programs, not otherwise using standard 1/0O, more than
might be expected.

BUGS
The return value points to static data whose content is overwrit-
ten by each call.

DELL INC., EMC CORP:,'HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 580 of 798

GETPENT (3) (AT&T UNIX PC only) GETPENT (3)

NAME

getpent, endpent — get and clean up printer status file entries

SYNOPSIS

#include <lp.h>

int getpent(p)
struct pstat *p;
int endpent()

DESCRIPTION

FILES

Getpent returns a structure describing a printer that is installed in
the lp spooler subsystem. EOF is returned when no more printers
are available.

Endpent is used to clean up after the last call to getpent.

?[truct pstat /* printer status entry */
char p_destDESTMAX+1]; /* destination name of printer */
int p_bpid; /* if busy, process id that is */
/* printing, otherwise 0 */
char p_rdestDESTMAX+1]; /* if busy, the destination */
/* requested by user at time of */
/* request, otherwise ”-" */

int pP_seqno; /* if busy, sequence # of */
/* printing request */
time_t p_date; /* date last enabled/disabled */

char p_reason[P_RSIZE]; /*if enabled, then "enabled” */
/* otherwise the reason the */
/* printer has been disabled. */

short p_flags; /* See below for flag values. */
b
/* Value interpretation for p_flags: */
#define P_ENAB 1 /* printer enabled */
#define P_AUTO 2 /* disable printer automatically */
#tdefine P_BUSY 4 /* printer now printing a request */

These subroutines are located in the libdev library
(/usr/lib/libdev).

DELL INC., EMC CORP:, HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 581 of 798

GETPW (3C) GETPW (3C)

NAME
getpw — get name from UID

SYNOPSIS
int getpw (uid, buf)
int uid;
char *buf;

DESCRIPTION
Getpw searches the password file for a user ID number that equals
uid, copies the line of the password file in which uid was found
into the array pointed to by buf, and returns 0. Gefpw returns
non-zero if utd cannot be found.

This routine is included only for compatibility with prior systems
and should not be used; see getpwent(3C) for routines to use
instead.

FILES
/etc/passwd
SEE ALSO
getpwent(3C), passwd(4).

DIAGNOSTICS
Getpw returns non-zero on error.

WARNING
The above routine uses <stdio.h>, which causes it to increase
the size of programs, not otherwise using standard I/0O, more than
might be expected.

DELL INC., EMC CORP, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 582 of 798

GETPWENT (3C) GETPWENT (3C)

NAME

getpwent, getpwuid, getpwnam, setpwent, endpwent — get pass-
word file entry

SYNOPSIS

#include <pwd.h>
struct passwd *getpwent ()

struct passwd *getpwuid (uid)
int uid;

struct passwd *getpwnam (name)
char *name;

void setpwent ()
void endpwent ()

DESCRIPTION

Getpwent, getpwuid and getpwnam each returns a pointer to an
object with the following structure containing the broken-out
fields of a line in the /etc/passwd file. Each line in the file con-
tains a ‘“passwd’ structure, declared in the <pwd.h> header
file:

struct passwd {
char *pw_name;
char *pw_passwd;
int pw_uid;
int pw_gid;
char *pw_age;
char *pw_comment;
char *pw_gecos;
char *pw_dir;
char *pw_shell;

b

struct comment {
char *c_dept;
char *c_name;
char *c_acct;
char *c_bin;
%
This structure is declared in <pwd.h> so it is not necessary to
redeclare it.

The pw_comment field is unused; the others have meanings
described in passwd(4).

Getpwent when first called returns a pointer to the first passwd
structure in the file; thereafter, it returns a pointer to the next
passwd structure in the file; so successive calls can be used to
search the entire file. Getpwuid searches from the beginning of
the file until a numerical user ID matching uid is found and
returns a pointer to the particular structure in which it was found.
Getpwnam searches from the beginning of the file until a login
name matching name is found, and returns a pointer to the

DELL INC., EMC CORP; HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 583 of 798

GETPWENT (3C) GETPWENT (3C)

FILES

particular structure in which it was found. If an end-of-file or an
error is encountered on reading, these functions return a NULL
pointer.

A call to sefpwent has the effect of rewinding the password file to
allow repeated searches. Endpwent may be called to close the
password file when processing is complete.

/etc/passwd

SEE ALSO

getlogin(3C), getgrent(3C), passwd(4).

DIAGNOSTICS

A NULL pointer is returned on EOF or error.

WARNING

BUGS

The above routines use < stdio.h>, which causes them to
increase the size of programs, not otherwise using standard I/O,
more than might be expected.

All information is contained in a static area, so it must be copied
if it is to be saved.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 584 of 798

GETS (3S) GETS (3S)

NAME
gets, fgets — get a string from a stream

SYNOPSIS
#include <stdio.h>

char #*gets (s)
char #s;

char *fgets (s, n, stream)
char #*s;

int n;

FILE #stream;

DESCRIPTION
Gets reads characters from the standard input stream, stdin, into
the array pointed to by s, until a new-line character is read or an
end-of-file condition is encountered. The new-line character is dis-
carded and the string is terminated with a null character.

Fgets reads characters from the stream into the array pointed to
by s, until n-1 characters are read, or a new-line character is
read and transferred to s, or an end-of-file condition is encoun-
tered. The string is then terminated with a null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), gete(3S), scanf(3S).

DIAGNOSTICS
If end-of-file is encountered and no characters have been read, no
characters are transferred to s and a NULL pointer is returned. If
a read error occurs, such as trying to use these functions on a file
that has not been opened for reading, a NULL pointer is returned.
Otherwise s is returned.

DELL INC., EMC CORP:,IHPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 585 of 798

GETUT (3C) GETUT (3C)

NAME
getutent, getutid, getutline, pututline, setutent, endutent, utmp-
name — access utmp file entry

SYNOPSIS
#include <utmp.h>

struct utmp *getutent ()

struct utmp *getutid (id)
struct utmp *id;

struct utmp #*getutline (line)
struct utmp *line;

void pututline (utmp)
struct utmp *utmp;

void setutent ()
void endutent ()

void utmpname (file)
char #*file;

DESCRIPTION
Getutent, getutid and getutline each return a pointer to a struc-
ture of the following type:

struct utmp {

char ut_user[8]; /* User login name */
char ut_id[4]; /* [etc/inittab id (usually line #) */
char ut_line[12]; /* device name (console, Inxx) */
short ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status {

short e_termination; /* Process termination status */

short e_exit; /* Process exit status */
} ut_exit; /* The exit status of a process

* marked as DEAD_PROCESS. */

time_t ut_time; /* time entry was made */

h

Getutent reads in the next entry from a utmp-like file. If the file
is not already open, it opens it. If it reaches the end of the file, it
fails.

Getutid searches forward from the current point in the utmp file
until it finds an entry with a uf_type matching id->ut_type if
the type specified is RUN_LVL, BOOT_TIME, OLD_TIME or
NEW_TIME. If the type specified in id is INIT_PROCESS,
LOGIN_PROCESS, USER_PROCESS or DEAD_PROCESS, then getu-
tid will return a pointer to the first entry whose type is one of
these four and whose ui_¢d field matches td—>ut_id. If the end
of file is reached without a match, it fails.

Getutline searches forward from the current point in the utmp file
until it finds an entry of the type LOGIN_PROCESS or
USER_PROCESS which also has a wuf_line string matching the

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 586 of 798

GETUT (3C) GETUT (3C)

FILES

line— > ut_line string. If the end of file is reached without a
match, it fails.

Pututline writes out the supplied utmp structure into the utmp
file. It uses getutid to search forward for the proper place if it
finds that it is not already at the proper place. It is expected that
normally the user of pututiine will have searched for the proper
entry using one of the getut routines. If so, pututline will not
search. If pututline does not find a matching slot for the new
entry, it wiii add a new entry to the end of the file. '

Setutent resets the input stream to the beginning of the file. This
should be done before each search for a new entry if it is desired
that the entire file be examined.

Endutent closes the currently open file.

Utmpname- allows the user to change the name of the file exam-
ined, from /ete/utmp to any other file. It is most often expected
that this other file will be /ete/wtmp. If the file doesn't exist,
this will not be apparent until the first attempt to reference the
file is made. Utmpname does not open the file. It just closes the
old file if it is currently open and saves the new file name.

/etc/utmp
/ete/wtmp

SEE ALSO

ttyslot(3C), utmp(4).

DIAGNOSTICS

A NULL pointer is returned upon failure to read, whether for per-
missions or having reached the end of file, or upon failure to write.

COMMENTS

The most current entry is saved in a static structure. Multiple
accesses require that it be copied before further accesses are made.
Each call to either getutid or getutline sees the routine examine
the static structure before performing more I/O. If the contents of
the static structure match what it is searching for, it looks no
further. For this reason to use getutline to search for multiple
occurrences, it would be necessary to zero out the static after each
success, or getutline would just return the same pointer over and
over again. There is one exception to the rule about removing the
structure before further reads are done. The implicit read done by
pututltne if it finds that it isn’t already at the correct place in the
file will not hurt the contents of the static structure returned by
the getutent, getutid or getutline routines, if the user has just
modified those contents and passed the pointer back to pututline.

These routines use buffered standard I/O for input, but pututiine
uses an unbuffered non-standard write to avoid race conditions
between processes trying to modify the utmp and wimp files.

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 587 of 798

HSEARCH (3C) HSEARCH (3C)

NAME

hsearch, hcreate, hdestroy — manage hash search tables

SYNOPSIS

#include <search.h>

ENTRY #hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION

NOTES

Hsearch is a hash-table search routine generalized from: Knuth
(6.4) Algorithm D. It returns a pointer into a hash table indicat-
ing the location at which an entry can be found. Item is a struc-
ture of type ENTRY (defined in the <search.h> header file) con-
taining two pointers: ttem.key points to the comparison key, and
item.data points to any other data to be associated with that key.
(Pointers to types other than character should be cast to pointer-
to-character.) Action is a member of an enumeration type
ACTION indicating the disposition of the entry if it cannot be
found in the table. ENTER indicates that the item should be
inserted in the table at an appropriate point. FIND indicates that
no entry should be made. Unsuccessful resolution is indicated by
the return of a NULL pointer.

Hereate allocates sufficient space for the table, and must be called
before hsearch is used. Nel is an estimate of the maximum
number of entries that the table will contain. This number may
be adjusted upward by the algorithm in order to obtain certain
mathematically favorable circumstances.

Hdestroy destroys the search table, and may be followed by
another call to hcreate.

Hsearch uses open addressing with a multiplicative hash function.
However, its source code has many other options available which
the user may select by compiling the hsearch source with the fol-
lowing symbols defined to the preprocessor:

DIV Use the remainder modulo table size as the
hash function instead of the multiplicative
algorithm.

USCR Use a User Supplied Comparison Routine for

ascertaining table membership. The routine
should be named hcomper and should
behave in a manner similar to stremp (see
string (3C)).

CHAINED Use a linked list to resolve collisions. If this
option is selected, the following other options
become available.

DELL INC., EMC CORP:;, HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 588 of 798

HSEARCH (3C) HSEARCH (3C)

START Place new entries at the
beginning of the linked list
(default is at the end).
SORTUP Keep the linked list sorted
by key in ascending order.
SORTDOWN Keep the linked list sorted
by key in descending order.
Additionally, there are preprocessor flags [or obtaining debugging
printout (~-DDEBUG) and for including a test driver in the calling
routine (~DDRIVER). The source code should be consulted for
further details.
SEE ALSO
bsearch(3C), Isearch(3C), string(3C), tsearch(3C).
DIAGNOSTICS
Hsearch returns a NULL pointer if either the action is FIND and
the item could not be found or the action is ENTER and the table
is full.

Hcreate returns zero if it cannot allocate sufficient space for the
table.

BUGS
Only one hash search table may be active at any given time.

DELL INC., EMC CORP-, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 589 of 798

HYPOT (3M) HYPOT (3M)

NAME
hypot — Euclidean distance function

SYNOPSIS
#include <math.h>

double hypot (x, y)
double x, y;

DESCRIPTION
Hypot returns

sqrt(x * X + ¥ * y),
taking precautions against unwarranted overflows.

DIAGNOSTICS

‘When the correct value would overflow, hypot returns HUGE and
sets errno to ERANGE.)

These error-handling procedures may be changed with the func-
tion matherr(3M).

SEE ALSO
matherr(3M).

DELL INC., EMC CORP; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 590 of 798

L3TOL (3C) L3TOL (3C)

NAME
13tol, 1tol3 — convert between 3-byte integers and long integers
SYNOPSIS
void 13tol (lp, ¢p, n)
long *Ip;
char *cp;
int n;
void ltol3 (cp, lp, n)
char *cp;
long *lp;
int n;
DESCRIPTION
L3tol converts a list of n three-byte integers packed into a charac-
ter string pointed to by ¢p into a list of long integers pointed to
by Ip.
Ltols performs the reverse conversion from long integers (Ip) to
three-byte integers (cp).

These functions are useful for file-system maintenance where the
block numbers are three bytes long.

SEE ALSO
fs(4).

BUGS

Because of possible differences in byte ordering, the numerical
values of the long integers are machine-dependent.

DELL INC., EMC CORP:,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 591 of 798

LDAHREAD (3X) LDAHREAD (3X)

NAME
ldahread — read the archive header of a member of an archive file

SYNOPSIS
#include <stdio.h>
#include <ar.h>
#include <filehdr.h>
#include <ldfen.h>

int ldahread (ldptr, arhead)
LDFILE =ldptr;
ARCHDR *arhead;

DESCRIPTION
If TYPE(ldptr) is the archive file magic number, ldahread reads
the archive header of the common object file currently associated
with ldptr into the area of memory beginning at arhead.
Ldahread returns SUCCESS or FAILURE. Ldahread will fail if
TYPE(ldptr) does not represent an archive file, or if it cannot
read the archive header.

The program must be loaded with the object file access routine
library libld.s.

SEE ALSO
ldclose(3X), 1dopen(3X), ldfen(4).

DELL INC., EMC CORP:,IHPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 592 of 798

LDCLOSE (3X) LDCLOSE (3X)

NAME
ldclose, 1daclose — close a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfecn.h>

int ldclose (ldptr)
LDFILE *ldptr;

int ldaclose (ldptr)
LDFILE *ldptr;

DESCRIPTION
Ldopen(3X) and ldclose are designed to provide uniform access to
both simple object files and object files that are members of
archive files. Thus an archive of common object files can be pro-
cessed as if it were a series of simple common object files.

If TYPE(ldptr) does not represent an archive file, ldclose will close
the file and free the memory allocated to the LDFILE structure
associated with ldptr. If TYPE(ldptr) is the magic number of an
archive file, and if there are any more files in the archive, ldclose
will reinitialize OFFSET(ldptr) to the file address of the next
archive member and return FAILURE. The LDFILE structure is
prepared for a subsequent ldopen(3X). In all other cases, ldclose
returns SUCCESS.

Ldaclose closes the file and frees the memory allocated to the
LDFILE structure associated with ldptr regardless of the value of
TYPE(ldptr). Ldaclose always returns SUCCESS. The function
is often used in conjunction with ldeopen.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
fclose(3S), ldopen(3X), 1dfcn(4).

DELL INC., EMC CORP:,'HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 593 of 798

LDFHREAD (3X) LDFHREAD (3X)

NAME
ldfhread — read the file header of a commion object file

SYNOPSIS
#inclide <stdio.h>
#include <filehdr.h>
#include <ldfen.h>

int ldfhread (ldptr, filehead)
LDFILE *ldptr;
FILHDR #*filehead;

DESCRIPTION

Ldfhread reads the file header of the common object file currently
associated with Idptr into the area of memory beginning at

filehead.

Ldfhread returns SUCCESS or FAILURE. Ldfhread will fail if it

cannot read the file header.

In most cases the use of ldfhread can be avoided by using the
macro HEADER(ldptr) defined in ldfen.h (see ldfcn(4)). The
information in any field, fieldname, of the file header may be

accessed using HEADER(ldptr). fieldname.

The program must be loaded with the object file access routine

library libld.a.

SEE ALSO
ldclose(3X), 1dopen(3X), 1dfcn(4).

DELL INC., EMC CORP;,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 594 of 798

LDLREAD (3X) LDLREAD (3X)

NAME
ldlread, 1dlinit, ldlitem — manipulate line number entries of a com-
mon object file function

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <linenum.h>
#include <ldfen.h>

int ldlread(ldptr, fenindx, linenum, linent)
LDFILE *ldptr;

long fenindx;

unsigned short linenum;

LINENO linent;

int ldlinit(ldptr, fenindx)
LDFILE #ldptr;
long fenindx;

int ldlitem(ldptr, linenum, linent)
LDFILE #ldptr;

unsigned short linenum;

LINENO linent;

DESCRIPTION

Ldlread searches the line number entries of the common object file
currently associated with ldptr. Ldlread begins its search with the
line number entry for the beginning of a function and confines its
search to the line numbers associated with a single function. The
function is identified by fenindz, the index of its entry in the
object file symbol table. Ldlread reads the entry with the smallest
line number equal to or greater than linenum into linent.

Ldlinit and ldlitem together perform exactly the same function as
ldiread. After an initial call to Idiread or ldlinit, ldlitem may be
used to retrieve a series of line number entries associated with a
single function. Ldlinit simply locates the line number entries for
the function identified by fenindz. Ldlitem finds and reads the
entry with the smallest line number equal to or greater than line-
num into linent.

Ldiread, ldlinit, and ldlitem each return either SUCCESS or
FAILURE. Ldlread will fail if there are no line number entries in
the object file, if fenindz does not index a function entry in the
symbol table, or if it finds no line number equal to or greater than
linenum. Ldlinit will fail if there are no line number entries in the
object file or if fenindz does not index a function entry in the sym-
bol table. Ldlitem will fail if it finds no line number equal to or
greater than linenum.

The programs must be loaded with the object file access routine
library libld.a. ‘

SEE ALSO
ldclose(3X), ldopen(3X), ldtbindex(3X), Idfcn(4).

DELL INC., EMC CORP:,IHPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 595 of 798

LDLSEEK (3X) LDLSEEK (3X)

NAME

ldlseek,ldnlseek — seek to line number entries of a section of a
common object file

SYNOPSIS

#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int 1dlseek (ldptr, sectindx)
LDFILE #ldptr;
unsigned short sectindx;

int ldnlseek (ldptr, sectname)
LDFILE *ldptr;
char *sectname;

DESCRIPTION

Ldlseek seeks to the line number entries of the section specified by
sectindz of the common object file currently associated with ldpir.

Ldnlseek seeks to the line number entries of the section specified
by sectname.

Ldlseek and ldnlseek return SUCCESS or FAILURE. Ldiseck will
fail if sectindz is greater than the number of sections in the object
file; ldnlseek will fail if there is no section name corresponding
with *sectname. Either function will fail if the specified section
has no line number entries or if it cannot seek to the specified line
number entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO

ldclose(3X), 1dopen(3X), ldshread(3X), ldfcn(4).

DELL INC., EMC CORP.!HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 596 of 798

LDOHSEEK (3X) (not on PDP-11) LDOHSEEK (3X)

NAME
ldohseek — seek to the optional file header of a common object file
SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfen.h>
int ldohseek (ldptr)
LDFILE *ldptr;
DESCRIPTION
Ldohseek seeks to the optional file header of the common object
file currently associated with ldptr.

Ldokseek returns SUCCESS or FAILURE. Ldohseek will fail if
the object file has no optional header or if it cannot seek to the
optional header.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
ldclose(3X), 1dopen(3X), Idfhread(3X), ldfen(4).

DELL INC., EMC CORP:,HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 597 of 798

LDOPEN (3X) LDOPEN (3X)

NAME
ldopen, ldacpen — open a common object file for reading

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfen.h>

LDFILE #*ldopen (filename, 1dptr)
char #filename;
LDFILE #*ldptr;

LDFILE #ldaopen (filename, oidptr)
char *filename;
LDFILE #oldptr;

DESCRIPTION
Ldopen and ldclose(3X) are designed to provide uniform access to
both simple object files and object files that are members of
archive files. Thus an archive of common object files can be pro-
cessed as if it were a series of simple common object files.

If ldptr has the value NULL, then ldopen will open filename and
allocate and initialize the LDFILE structure, and return a pointer
to the structure to the calling program.

If ldptr is valid and if TYPE(ldptr) is the archive magic number,
ldopen will reinitialize the LDFILE structure for the next archive
member of filename.

Ldopen and ldclose are designed to work in concert. Ldclose will
return FAILURE only whén TYPE(ldpir) is the archive magic
number and there is another file in the archive to be processed.
Only then should ldopen be called with the current value of ldptr.
In all other cases, in particular whenever a new filename is
opened, ldopen shotild be called with a NULL ldptr argument.

The following is a prototype for the use of {dopen and ldclose.
/* for each filename to be processed */
ldptr = NULL;

do
if ((ldptr = ldopen(filename, ldptr)) !== NULL)

{

/* check magic number */
/* process the file */

} while (ldclose(ldptr) ==== FAILURE);
If the value of oldptr is not NULL, ldaopen will open filename
anew and allocate and initialize a new LDFILE structure, copying
the TYPE, OFFSET, and HEADER fields from oldptr. Ldaopen
returns a pointer to the new LDFILE structure. This new pointer
is independent of the old pointer, oldptr. The two pointers may
be used concurrently to read separate parts of the object file. For

DELL INC., EMC CORP.,1HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 598 of 798

LDOPEN (3X) LDOPEN (3X)

example, one pointer may be used to step sequentially through the
relocation information, while the other is used to read indexed
symbol table entries.

Both Ildopen and ldaopen open filename for reading. Both func-
tions return NULL if filename cannot be opened, or if memory for
the LDFILE structure cannot be allocated. A successful open does
not insure that the given file is a common object file or an
archived object file.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
fopen(3S), ldclose(3X), 1dfen(4).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 599 of 798

LDRSEEK (3X) LDRSEEK (3X)

NAME
ldrseek, ldnrseek — seek to relocation entries of a section of a com-
mon object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfen.h>

int ldrseek (ldptr, sectindx)

LDFILE *ldptr;

unsigned short sectindx;

int ldnrseek (ldptr, sectname)

LDFILE *ldptr;

char #sectname;
DESCRIPTION

Ldrseek seeks to the relocation entries of the section specified by
sectindz of the common object file currently associated with ldptr.

Ldnrseek seeks to the relocation entries of the section specified by
sectname .

Ldrseek and ldnrseek return SUCCESS or FAILURE. Ldrseek
will fail if sectindz is greater than the number of sections in the
object file; ldnrseek will fail if there is no section name correspond-
ing with sectname. Either function will fail if the specified section
has no relocation entries or if it cannot seek to the specified relo-
cation entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
ldclose(3X), 1dopen(3X), Idshread(3X), 1dfcn(4).

DELL INC., EMC CORP:,IHPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 600 of 798

LDSHREAD (3X) LDSHREAD (3X)

NAME
ldshread, ldnshread — read an indexed/named section header of a
common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <senhdr.h>
#include <ldfen.h>

int ldshread (ldptr, sectindx, secthead)
LDFILE #ldptr;

unsigned short sectindx;

SCNHDR *secthead;

int ldnshread (ldptr, sectname, secthead)
LDFILE *ldptr;

char sectname;

SCNHDR *secthead;

DESCRIPTION
Ldshread reads the section header specified by sectindz of the
common object file currently associated with ldptr into the area of
memory beginning at secthead.

Ldnshread reads the section header specified by sectname into the
area of memory beginning at secthead.

Ldshread and ldnshread return SUCCESS or FAILURE. Ldshread
will fail if sectindz is greater than the number of sections in the
object file; ldnshread will fail if there is no section name
corresponding with sectname. Either function will fail if it cannot
read the specified section header.

Note that the first section header has an index of one.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
ldclose(3X), Idopen(3X), 1dfen(4).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 601 of 798

LDSSEEK (3X) LDSSEEK (3X)

NAME

Idsseek, ldnsseek — seek to an indexed/named section of a com-
mon object file

SYNOPSIS

#include <stdio.h>
#include <filehdr.h>
#include <ldfen.h>

int ldsseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;

int ldnsseek (ldptr, sectname)
LDFILE #ldptr;
char #sectname;

DESCRIPTION

Ldsseek seeks to the section specified by sectindz of the common
object file currently associated with ldptr.

Ldnsseek seeks to the section specified by sectname.

Ldsseek and ldnsseek return SUCCESS or FAILURE. Ldsseek
will fail if sectindz is greater than the number of sections in the
object file; ldnsseek will fail if there is no section name correspond-
ing with sectname. Either function will fail if there is no section
data for the specified section or if it cannot seek to the specified
section.

Note that the first section has an index of one.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO

ldclose(3X), 1dopen(3X), ldshread(3X), 1dfcn(4).

DELL INC., EMC CORP.,iHPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 602 of 798

LDTBINDEX (3X) LDTBINDEX (3X)

NAME

ldtbindex — compute the index of a symbol table entry of a com-
mon object file

SYNOPSIS

#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfen.h>

long ldtbindex (ldptr)
LDFILE *ldptr;

DESCRIPTION

Ldtbindez returns the (long) index of the symbol table entry at
the current position of the common object file associated with
ldptr.

The index returned by ldtbindex may be used in subsequent calls
to ldtbread(3X). However, since ldtbindes returns the index of the
symbol table entry that begins at the current position of the
object file, if Idthindez is called immediately after a particular
symbol table entry has been read, it will return the the index of
the next entry.

Ldthindex will fail if there are no symbols in the object file, or if
the object file is not positioned at the beginning of a symbol table
entry.

Note that the first symbol in the symbol table has an index of
zero.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO

ldclose(3X), 1dopen(3X), 1dtbread(3X), ldtbseek(3X), ldfcn(4).

DELL INC., EMC CORP:,'HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 603 of 798

LDTBREAD (3X) LDTBREAD (3X)

NAME
ldtbread — read an indexed symbol table entry of a common
object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfecn.h>
int ldtbread (ldptr, symindex, symbol)
LDFILE *ldptr;
long symindex;
SYMENT *symbol;
DESCRIPTION
Ldtbread reads the symbol table entry specified by symindez of
the common object file currently associated with ldptr into the
area of memory beginning at symbol.
Ldtbread returns SUCCESS or FAILURE. Ldtbread will fail if
symindez is greater than the number of symbols in the object file,
or if it cannot read the specified symbol table entry.

Note that the first symbol in the symbol table has an index of
zero.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
1dclose(3X), 1dopen(3X), ldtbseek(3X), ldfen(4).

DELL INC., EMC CORP:, HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 604 of 798

LDTBSEEK (3X) LDTBSEEK (3X)

NAME
ldtbseek — seek to the symbol table of a common object file
SYNOPSIS
ffinclude <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>
int ldtbseek (ldptr)
LDFILE #ldptr;
DESCRIPTION
Ldtbseek seeks to the symbol table of the object file currently
associated with ldptr.

Ldtbseek return SUCCESS or FAILURE. Ldtbseek will fail if the
symbol table has been stripped from the object file, or if it cannot
seek to the symbol table.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
ldclose(3X), 1dopen(3X), ldtbread(3X), ldfcn(4).

DELL INC., EMC CORP., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 605 of 798

LOCKF (3C) LOCKF (3C)

NAME

lockf — record locking on files

SYNOPSIS

#include <unistd.h>

int lockf (fildes, function, size)
long size;
int fildes, function;

DESCRIPTION

The lockf command will allow sections of a file to be locked;
advisory or mandatory write locks depending on the mode bits of
the file [see chmod(2)]. Locking calls from other processes which
attempt to lock the locked file section will either return an error
value or be put to sleep until the resource becomes unlocked. All
the locks for a process are removed when the process terminates.
[See fentl(2) for more information about record locking,|

Fildes is an open file descriptor. The file descriptor must have
O_WRONLY or O_RDWR permission in order in order to estab-
lish lock with this function call.

Function is a control value which specifies the action to be taken.
The permissible values for function are defined in <unistd.h>
as follows:

#tdefine F_ULOCK 0 /* Unlock a previously locked section */
#define F_.LOCK 1 /* Lock a section for exclusive use */
#define F_TLOCK 2 /* Test and lock a section for exclusive use */
ftdefine F_TEST 3 /* Test section for other process’ locks */

All other values of function are reserved for future extensions and
will result in an error return if not implemented.

F_TEST is used to detect if a lock by another process is present
on the specified section. F_LOCK and F_TLOCK both lock a
section of a file if the section is available. F_ULOCK removes
locks from a section of the file.

Size is the number of contiguous bytes to be locked or unlocked.
The resource to be locked starts at the current offset in the file
and extends forward for a positive size and backward for a nega-
tive size (the preceding bytes up to but not including the current
offset). If size is zero, the section from the current offset through
the largest file offset is locked (that is, from the current offset
through the present or any future end-of-file). An area need not
be allocated to the file in order to be locked as such locks may
exist past the end-of-file.

The sections locked with F_LOCK or F_TLOCK may, in whole or
in part, contain or be contained by a previously locked section for
the same process. When this occurs, or if adjacent sections occur,
the sections are combined into a single section. If the request
requires that a new element be added to the table of active locks
and this table is already full, an error is returned, and the new
section is not locked.

DELL INC., EMC CORP:;, HPE CO., HPES, LLC

IPR2017-00176- Ex. 1028, p. 606 of 798

LOCKF (3C) LOCKF (3C)

F_LOCK and F_TLOCK requests differ only by the action taken
if the resource is not available. F_LOCK will cause the calling
process to sleep until the resource is available. F_TLOCK will
cause the function to return a —1 and set errno to [EACCES]
error if the section is already locked by another process.

F_ULOCK requests may, in whole or in part, release one or more
locked sections controlled by the process. When sections are not
fully released, the remaining sections are still locked by the pro-
cess. Releasing the center section of a locked section requires an
additional element in the table of active locks. If this table is full,
an [EDEADLK] error is returned and the requested section is not
released.

A potential for deadlock occurs if a process controlling a locked
resource is put to sleep by accessing another process’s locked
resource. Thus calls to lockf or fentl scan for a deadlock prior to
sleeping on a locked resource. An error return is made if sleeping
on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The
alarm(2) command may be used to provide a timeout facility in
applications which require this facility.

The lockf utility will fail if one or more of the following are true:

[EBADF]
Fildes is not a valid open descriptor.
[EACCES]
Cmd is F_TLOCK or F_TEST and the section is already
locked by another process.
[EDEADLK]
Cmd is F_LOCK and a deadlock would occur. Also the
emd is either F_LOCK, F_TLOCK, or F_ULOCK and the
number of entries in the lock table would exceed the
number allocated on the system.
SEE ALSO
chmod(2), close(2), creat(2), fentl(2), intro(2), read(2), write(2)
DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.
WARNINGS
Unexpected results may occur in processes that do buffering in the
user address space. The process may later read/write data which

is/was locked. The standard I/O pacakage is the most common
source of unexpected buffering.

Because in the future the variable errno will be set to EAGAIN
rather than EACCES when a section of a file is already locked by
another process, portable application programs should expect and
test for either value.

DELL INC., EMC CORR., HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 607 of 798

LOGNAME (3X) LOGNAME (3X)

NAME

logname — return login name of user
SYNOPSIS '
' char *logname()
DESCRIPTION

Logname returns a pointer to the null-terminated login name; it
extracts the SLOGNAME variable from the user’s environment.

This routine is kept in /lib/libPW.a.

FILES
/ete/profile

SEE ALSO
env(1), login(1M), profile(4), environ(5).

BUGS
The return values point to static data whose content is overwrit-
ten by each call.

This method of determining a login name is subject to forgery.

DELL INC., EMC CORP.; HPE CO., HPES, LLC
IPR2017-00176- Ex. 1028, p. 608 of 798

