
Apple 1007
U.S. Pat. 8,504,746

lil!

I

© 1995 Addison-Weslev Publishers Ltd .
./

© 1995 Addison-Wesley Publishing Company L"'1c.

Translated from the German edition SCSI-Bus und IDE-Schnittstelle
published Addison-VVesley (Deutschland) GmbH.

rights reserved. of this publication reproduced, stored a retrieval
or transmitted or by means, electronic, mechanical,

not
respect to the programs.

designations by
.....,,._._._._.._,~'-'are claL1TI.ed as trademarks.

manufacturers

Cover designed Designers & PartHers,
prirded by Riverside PrL"tting Co. (Reading)

V ..A~P Group, Kidlington, Ox on.
Great Britain at T.J.

0-201-42284-0

sellers to disf_c_n_guish
has made every attempt to

their products rrtentioned L""l

1. SCSI
TK7895.B87S36

6·2--dc20

I. Title

94-23813
CIP

b

Preface

The SCSI bus and IDE interface are without question the two rnost important
interfaces for computer peripherals in use today. The IDE hard disk i.nterface is
found almost exclusively in the world of IBM PC compatibles. The SCSI bus, on
the other ha_nd, is designed not only for hard drives but also for tape drives, CD­
ROM, sca_nners, and printers. Almost all modern computers, from PCs to work­
stations to mainframes, are equipped with a SCSI interface.

Both SCSI and IDE are Ai'JSI standards. Hovvever, aside from the actual
ANSI documentation, there exists almost no additional reference material to
either specification. The purpose of this book is to fill that void 'With a clear, con­
cise description of both i.Ylterfaces. The essential terminology is introduced,
while the commands and protocols are broken dovvn in full. In the interest of
economy the less important details and options have been omitted in certain
cases. Often a specific section in the ANSI documentation -vvill be cited for easy
cross-referencing. After reading this book you should be in the position to easily
understand relevant technical docw~entation, includi.ng the ANSI specifications
themselves.

First and foremost, a thorough introduction to the terminology is h"'l.
order. Especially with respect to SCSI, there is a deluge of terms and defirtitions
that are used nowhere else or are used differently than in other cornputer
domains. Tnese keywords, which ircdude signal names and interface corn­
mands, are t~ypeset in small capital letters,. for example FOK\1AT D"NIT.

This book is intended for readers vvith a broad rat"Lge of tecbJ:lical back­
grounds and interests. Those vvorking on the design of mass storage devices, for
example, will find the protocol descriptions extremely useful. Readers ·writing soft­
ware or device drivers may have other interests. They will :End the hardw-are
descriptions, such as that of the physical organization of a disk drive, very helpful.

This book is not mea..nt to replace the ANSI docu__,_-rnentation. On the other
ha_nd,. those specifications are not meat"tt to explain the technology, rather to
define it. It is very difficult to find your way around in the origin.al documenta­
tion without an u..Ttderstandi.."'l.g of the subject matter. The book's thorough, in­
depth descriptions" along with index and glossary; rrtake it the perfect tutor for
IDE and SCSt as -vvell as a helpful guide to the Ai'\JSI literatu.re.

Friedheim Schmidt
February 1993

v

vi

Contents

Preface

I Introduction

1 Computers and peripherals
1.1 Mass storage
1.2 Peripheral interfaces

2 Traditional peripheral interfaces
2.1 The RS-232 serial irtterface
2.2 Tne Centronics printer mterface
2.3 Hard disks and their mterfaces
2.4 ST506
2.5 ESDI

3 Computer buses
3.1 Characteristics of buses
3.2 Specialized buses

interface

4
4.1 The origin of IDE

4.2 Overview
4.3 Outlook
4.4 Docum_entation

'"" The physical IDE interface
5.1 The electrical mterface
5.2 Timing specifications

6 IDE protocol
6.1 The register model of the IDE controller
6.2 Command execution
6.3 Power-up or hardware reset

v

1

3

4
5

7
7

10
13
19
23

29
30
32

35

37
37
38
40
41

44
44
47

50
50
55
58

7 The model of an IDE disk drive
7.1 Orgru.lization of the medium
7.2 Defect management
7.3 The sector buffer
7.4 Power conditions

8 IDE commands

9

10

11

12

8.1 Mandatory commands
8.2 Optional commru."'"1ds

9.1 The evolution of SCSI
9.2 Overview
9.3 Outlook
9.4 Documentation

SCSI hardware
10.1 SCSI configurations
10.2 SCSI signals
10.3 Cables and con..rtectors
10.4 Single-ended SCSI
10.5 Differential SCSI
10.6 SCSI bus phases
10.7 Synchronous transfers and Fast SCSI
10.8 Wide SCSI

SCSI bus protocol
11.1 The rrtessage system
11.2 I/0 processes
11.3 SCSI pointers
11.4 Disconnect-reconnect: freeing the bus
11.5 Transfer options
11.6 Tagged queues
11.7 Termination of I/ 0 processes
11.8 Error handling in the message system
11.9 Async:hronous event notification

SCSI commands
12.1 The SCSI target model
12.2 Command descriptor blocks
12.3 Commands for all SCSI devices
12.4 Mode parameter pages for all device classes

Contents vii

60
60
62
63
64

66
66
70

77
77
79
84
85

89
89
92
96
96

100
102
113
116

117
117
119
122
123
124
126
127
129
129

131
131
133
138
155

viii SCSI Bus and IDE Interface

13 Direct access devices
13.1 Tne model of a SCSI disk drive
13.2 Hard disk commands
13.3 Mode parameter pages for disk drives

14 Tape drives
14.1 The model of a SCSI tape drive
14.2 Commands for tape devices
14.3 Mode parameters for tape devices

15 Printers
15.1 The model of a SCSI printer
15.2 Printer commands
15.3 Mode parameters for printers

16 Scanners
16.1 Tne rrtadel of a SCSI scanner
16.2 Scanner corrnnands
16.3 Mode parameters for scan_ners

17 Processor devices
17.1 The model of a SCSI processor device
17.2 Conunands for processor devices

18 Communications devices
18.1 The model of a SCSI corru-nunications device
18.2 Co:m__mands for SCSI commu1tications devices
18.3 Mode parameter pages for communications devices

19 Optical storage and WORM drives
19.1 The SCSI model of optical storage
19.2 Commru"'tds for optical storage and "VVOR1v1 drives
19.3 Mode parameters for optical storage

20 CD-ROIVI
20.1 Tile model of a SCSI CD-ROM drive
20.2 Commands for CD-ROM
20.3 Audio co:mrnands for CD-ROM
20.4 Mode parameters for CD-ROrv1s

21 Medium-changer devices
21.1 The model of a SCSI medium-changer device
21.2 Commands for medium-changers
21.3 Mode parameter pages for medium-changers

22 The SCSI monitor program

158
158
165
173

180
180
184
190

193
193
194
197

200
200
202
204

206
206
207

210
210
211
213

214
214
215
220

222
222
224
227
229'

233
233
235
237

240

23 Software interfaces
23.1 The concept of ASPI
23.2 SCSI request blocks
23.3 ASPI initialization and function calls

24 Test equipment
24.1 SCSI analyzers
24.2 SCSI emulators
24.3 Examples from industry

25 SCSI -.-.-..r~+,n,,~r.

25.1 The NCR 5385
25.2 Target applications: EI'vfULEX ESP200
25.3 PC host adapters: FUTUF--E DOM""L\IN Tiv1C-950

Glossary
Index

Contents ix

247
248
248
253

257
257
258
259

262
263
264
266

269

273

276

281

283

290
295

1
2
3

A
blocks.
rnernory,
liotrtlctions

be loaded ir1to main mentory hom mass
prograrn comes either from

"-''-'''-'--"- The CPU accesses u.n..

mat'1

must reside in
ca..n be run it rnust

such as the
step in order

machi.ne i11structions. In accesses are
data. For this reason the CPU and mernory

above fast.

Terminai Pr1nter

-, .
aev1ces.

L.1. contrast to .,....,_,,,...,.,.,..,,.,, ... T

from the

SCSI Bus and IDE Interface

is slovver and more

disks

rnediurn

cont-rast
onto

devices Under the

devices

Con~wtunication

such as SCSI or IDE. On
the is

the
cornmLlnicates 'vvith the CPU and rnemory,

\lideo cassettes

or a
function as and

5

devices are interfaces. The
abstract the

u ,_,. It is also
true that sorne In this book I

the P~merican J'J a tional the first tirne
for SCSI-3.

data

cle'llce model~ Here tl-le
heha~;Tior of devices to be connected to the ir1terface is described. Th_ese

and so on are
def:lited~

model

rnakes
there are

6 SCS/Busand/OE

page

• • r
lit terrace
difference

Command set

Device model

Protocol

if you
then frte iilterface

to co:Il.J.~ect
vvould be a matter of luck

PostScript

Printer

Centronics

of

ii1 tb._at it conta_irts 1011r

it rrtakes rto
tlle irtterface

still
v~lhetller it vvou_ld ~J:nctiort

The IDE htterface a.rtd the SCSI bus are like~/vise interface
defirJtions. Before

definitions contain

crtd the IDE and_ SCSI TI-tterfac-es the other~

like to int;oduce in

vvill
()fl€ llaltd

·lhis

Tnese

interfaces are
face cl1aracteristics that are

to a certain rl ' 0 r'-'"'"'"

IDE and SCSI bus

the

in the rnore
rrtake it rrtucr!_ easier to e"raluate and_ ur1dersta.rtd tl-teir rnoClern

PS-232C is tf1,e m._ost
,.
rJin.e

for tile

IneasurerrLent h~strtwlents

RS-232C and

used serial i11terface. 'Serial' rneans that the da_ta is
across a conilection. FS-232C is used

and

ruid hardvvare
a fevv build

This leads to an uncorru~on situation 'Nith

cables are used that conduct
v.rould be 11nthirtkable

fbree rrrirj-RS-232~

8 SCSI Bus and JOE Interface

The Mi_rti-RS-232 establishes a bidirectional cor,.nection
Each direction has its ovvn data sigHal a_rtd a sin.gle

shared. The data signals are TD (transmit and RD
W-:h_en rwo devices are to each these signals are crossed such that
the TD of one device collll_ects to the RD of the other

+15 v

0

-15

Start bit
0)

8 Data bits Stop bit

~~~----~~--~--------/'--------------------------~;~·~: 
1 t0 25 Receive data Receive data 25 U 1 

ittterface: rnitti-RS-232. 

the ELA.. sta_ndard is the 25-piil DB25. Other con­
such as the DB9 for the IB1vi AT or 

coru:_ector used it:_ various 
On the signal a logical 1 is betvveen +5 V 

and + 15 and the receiver recognizes ai"lytrting above +3 V as such. 
logical 0 is represented a signal behveen -5 V and -15 V. 
receiver recogDizes any signal belovv -3 V as such. 

Data tra..nsfer takes character character. The characters 
are further broken down into one. On 
the other the receiver then assernbles th_e bits back L"'l.to characters. The 
nlli'llber bits per character lies bet-ween five and 
is needed to transfer one The data bits are "'"'o,~oru::.r~ a start bit ill'ld fol-

a a bit rnay be sent for error detection. The 
transfer rate can range berNeen 75 and 115 000 bits 
cable alone cannot compensate for 

2..r1d a 
the devices rnust be 

set at the same othenvise no c.x~f~JTJir._;;;.,.._ of data ccul take place. 
Novv comes a rather confusing this method of trillLSfer over the 

serial interface is called asynchronous even though the data is sent and received 
relative to a dock serial interfaces the terrn 
vvhenever a clock is For RS-232C, the t:rar1sfer is to 

r..,~,_..,..,.,..,.,.,..,~,,"' because the clocks are not tied to each Tne RS-232C spec-
LL.>.UU.A.'--0 J.l-F-,.l.H.<.Lv that 

\Alhen the data 



Traditional interfaces 9 

referred to as uses signals to 
.,....,.""""'''""'....,. '-''-J.!.'L..!.LJ, -vvill be made clear in Section 2.2. 
vvhen thinking about data throughput can con-

a byte or character to be 10 bits stop; one start and eight data bits). 
When t.lte fastest tfansfer rate possible is 115 000 bits per sec-

the maximurr1 is approximately 11.5 per second. 

MirJ-RS-232 has no .,..,.,..,"·"r·r:d 

used with the ITltE?r:tace 
the 

.,....,~ .. ,...,.,..,--. .. ,,; that is often 

It v1orks h"'l. 

- characters are some­
cat"GTlot be used for bidirectional transfer of 

a subset 

the data is not restricted to certain 
may occur. In this situation there is no roorrt for 
XON monitors and hovv-

PC 

Printer __________ __,:---s :-----------;'.·o ~' ----------
, \ 

XOFF XON 

2.2 XON 

of a n,-n_,.,...," data 

can be used at no cost for non-
cornrnercial rrta..nufacttlrers have also ,devel-

of RS-232. 

There are no As P.S-232 'Nas 
frorn the it-"tterface. 

ll_,_'liversal corr1rnand sets for whole 

for use ·with RS-



1 0 SCSI Bus and IDE Interface 

As can see,. an interface that builds on top of RS-232 many possible vari­
ations. The complete description of my printer-PC interface would be: RS-232 at 
9600 baud, 1 stop bit, no parity, XON /XOFF protocot PostScript. If I were to 
change a parameter for only the printer or only the PC, for example by not send­
ing PostScript or starting to use a parity bit, nothing print. Although 
mi_ni-RS-232 appears to be simple (only three wires), there are almost an 
uncountable number of ways in which the connection ca.,_~ fail. Wnat is missing 

that allows the devices to agree the available 
.LLU.n .. nu.<::...~L RS-232 has a of 

vvho has 1fvorked with it nonetheless has tfte decided '"'r-1..,.,.~,.,..., 1"" that it exists 
on every and is also device 

The Centronics interface is a interface for printers. It is an 
standard to my knowledge,. has never been officially As 

a result there are rr~.any variations. This is especially so ·with respect to the status 
signals that reflect the printer's current state. Centronics defh1.es Lhe physical 
interface and the protocol. As a comma,_'l.d set, either PostScript or another print­
er language is used. 

Origi.11.ally as a unidirectional interface, the parallel printer 
link PCs can be used bidirectionally. 111is extension is not our concern 
here. vVe are interested in Centronics mostly as ru.1.other example of the various 

h1.terfaces. it is also a good idea to knovv this interface in 
order to understand the difference from_ SCSI printers (see Figure 2.3). 

The Centronics uses a shielded t-wisted-pair cable vvith 36 signals, of rnaximum 
_._,__.._""-~~- 5 meters (about 16 feet). A 36-pin amphenol connector is used on the 
"'""'nihor end, vv-hich most people have corne to refer to as a Centronics connector. 
Tb.e end of the cable has either a feinale Centronics or 
a female DB25. 

Electrical The signal to those for transistor-transistor A 0 
is recognized from 0 V to +0.8 a 1 from +2.4 V to +5.0 V. Table 2.1lists the sig­
nals of Lhe Centronics interface. Note that I have described Lhe data signals start-
ing with 0; that is7 using the logical names. The actual signal names/' however? 
are DATAl to DJl,:TAS. 

Data transfer takes place in parallel across signals DATAl to DATAS. Tne 
signals STROBE, BUSY and ACKNLG control the sequencing, 1fvhidl is shown in 
Figure 2.3. The term 'protocoY does not apply here. Relative to our 
layer modet this timing belongs to the definition of the interface. 

h 



Traditional peripheral interfaces 

Table 2.1 The signals of the Centronics i..nterface. 

Pin Pin Signal 
(Cen) (DB25) 

1 1 STROBE 

2 2 DATAl 

3 3 DATA2 

4 4 DATA3 

5 5 DATA4 

6 6 DATAS 

7 7 DATA6 

7 8 DATA7 

9 9 DATA8 

10 10 ACK:'JLG 

11 11 BUSY 

12 12 PE 

13 13 SELECT 

14 14 AUTO FEED 

16 SIGNAL 

GROUND 

17 CP.cASSIS 

GROUNu 

18 +5V 
19-30 18-25 SIGNAL 

GROUND 

31 16 INTI 

32 15 ERl?.OR 

36 17 SLCT II'~ 

DATA1-8 

STROBE 

BUSY 

ACKNLG 

Source Description 

Host 
Host 
Host 
Host 
Host 
Host 
Host 
Host 
Host 

Printer 
Printer 
Pri..nter 
Printer 
Host 

Pri_nter 

Host 
Prit1.ter 
Host 

Indicates valid data on DATAl-8 

Data bit 0 
Data bit 1 
Data bit 2 
Data bit 3 
Data bit 
Data bit 5 
Data bit 6 
Data bit 7 
Indicates pr1."1ter has DATAl-8 

Indicates is not for new data 
Paper error 
Printer is onli..."1e 
The pr.u"'tter should add a ca_,_"'"fiage rehLrn to eacl1 line feed 

+5 Vpower mA maximum) 

Initialize pri..nter 
General error 
Select printer 

I I 
____ !_!_ 

ll 
! ' 

LJ 
··n 

------------~' ~I ----------------~ 
I __ 

I i 
i i u 

2.3 Centronics interface timing. 

sets the 8 bits on signals DATAl 

to DATA8. for at least a it then activates a pulse across 
STROBE, which L.idicates that is valid data on the data lLDes. In fb_e 
printer sets BUSY and reads the data As soon as the has been success-

read and the printer is to receive the next byte, it dears the BUSY sig-
nal and sends a across the ACKl."'-JLG N oTw the the 



12 SCSI Bus and IDE Interface 

data a..'td send the next STROBE tl1e next This method of data 
transfer, -vvhere a signal is used to i..ndicate a request STROBE) and another to 
acknowledge that request (here ACKL'\"LG), is called asynchronous. The mecha­
nism itself is termed 

arnount of data trap.sferred per 
ho-vv leaves its BUSY signal active for each 
it"'lvolved i__n the handshake need at least 4 rrJcroseconds 

upon 
Tne other signals 

in total. If a C"Yr'11'"l -j-,c;r 

in arou_j_-td 10 ps. This ·would cor­
second. The hru1.dbook for my laser 

100 ps for the of BUSY, wrdch 
second. 

the 

active. lhere are, of status signals that 
reflect the pri__nter/s status. L~ese fall under of rrcessage exchange, 
\llibJch places them in the 
In addition to these are the AL10FEED, INTI/ and SLCT I\L All of 

TI·le Centronics printer h1.terface is our first li-tter-
face. Th_e method of data i:-ra_j_"lsfer is very sirrJlar to 

the for end of and carriage return pertain 
that 

use as a general purpose h1.terface sin-tply ignoring the 
specific signals. Exarrtples of these h1.dude network adapters a..r1d disk 

drives. 

the t"fruLSfer rate. TrJs characteristic of 
1 vvnen look at the SCSI bus. 

.~..~s in the case of tl12 Centronics iilterfa_ce itself contair1-s neither a 
device model nor a corrLITtal'.d set. As shov•ln in 
necessary in_ order to defL.rte a tl1e 
L.rtterface as it sta..nds is flexible. There are even devices that take 
advantage of tl"'Js very interface. 

CentrorJcs, like RS-232, establishes a ""'''' 1
".,_ __ .,-r,_-.-..n.,.,..,,.,_ COlli'lection bet>Neen 

devices. This rr~.eans that a sirtgle used for each interface 
because the to address different devices is This nevv feature 

to the next -vve will discuss. 



A little 

The disk drive 
model 

Traditional peripheral interfaces 13 

Hard disks and their interfaces 

This section and the follo-vving two sections on ST506 and ESDI delve more 
deeply into details thru_~ previous sections? because it is here that the foundation 
for understanding IDE and SCSI is laid. If you are not well acquainted -vvith the 
internals and workings of hard disks}' you will find this section especially inter­
esting. Here, you will learn L~e terminology of the disk drive domain. 

Disk drive -vvere statl.dardized on. in drives with 
a diameter of 14 inches and then 8 inches were with the SMD interface. 
The na:rne comes from the Storage 1v1odule Drives of the CDC. CDC 
has since sold its drive to as a result 

per­
had a transfer rate of 24 ]\,ffiz or 

about 3 per second. The could not survive the t-ran-
sition to 5% inch drives, because of the very wide cable. As a result 
SMD died along with 8 itl.ch drives i.n about 1990. 

Five years after the arrival of Seagate i.ntroduced a 5% inch drive 
-vvith a storage capacit-y 5 This economical disk drive}' at the lower end 
of the performance scale, used a nevv interface called ST506. You will often hear 
ST506/ST412 beL.!.g used to refer to the same interface. ST506 was not developed 
from scratch, but evolved from the Hoppy interface. The transfer rate was 
increased to 5 MHz 625 Kbytes per second) but the rnethod moving 
heads sendi.ng step remai_'ied the same. L1. the past few years, 
advances have allowed transfer rate to be doubled once agai.n. the 
demru"'l.ds of modem PCs have finally exceeded the interface's capabilities: ST506 
has been steadily losing ground to IDE atl.d SCSI sliice arou..~d 1991. 

It -vvas apparent early on that 5% inch drives would be capable of perfor­
mance that ST506 could not support. S:iviD have fitted the bill but it vv-as 
too big a_nd too expensive. In 1983 the disk drive manufacturer Maxtor came out 
with the Enhanced Small Device Interface (ESDI) to remedy this situation. The 
ESDI used the same cables as ST506 but allowed transfer rates of up to 20 1vLl-lz 
(2.4 Mbytes per second). In addition, ESDI had commands, for example, seek to 
track. ESDI can occasionally be found h~ the and -vvork­
station domain. it too is quickly being crovvded out by SCSI. Nevv dri-
ves -vvith the ESDI interface are no being developed. 

On our to understa..nding IDE -vve ·will make hvo stops to examine its prede­
cessors, the ST506 and ESDI interfaces. Before '!Ire do we need to 
become acquainted with the basic model of a disk drive. A hard disk drive stores 
information on a set of rotalli""lg disks. The infon:nation ca..n be written and read 
any number of tL.ues and the data remains intact even after the drive is ttJ.rned off. 

The term 'hard disk' most often refers to a drive with -nr.-.-.--·a-rnn;rc::> 

media some media drives do use hard disks. A hard disk 
contrasts ·with the flexible rnedia used i.._~ +~r'r»''""' 7 



14 SCSI Bus and IDE Interface 

of 
the medium 

Sedor format 

This model of a disk drive will say nothing about the exact method of 
writing to the medium. Tills means that it will be valid for magnetic disk drives 
as well as magneto-optical, diskettes, and removable media drives. CD-ROM 
and WORM drives, however, do not fall into this category; these formats lack the 
ability to rewrite information. 

The disk assembly of a drive consists of a number of \Atritable surfaces, 
each of -vvhich stores data on concentric rings called tracks. T'.ne t-racks are further 
divided into sectors, which are the smallest illlit. A sector is 
accessed first the track. The 
drive then waits until the desired sector rotates lli'l.der.r1eath the head and reads 
the data. and the sector is dorte bit bit. 

behveen rNo and eight disks, and 
disk can be storage. Each surface has its uwn 

read/1/>Hite head although one track Cillt be vvritten to or read at a 
lli-ue. The heads are over the tracks. A set of tracks that 
can be accessed by the heads from a single is called a A con-
sequence of this organization is that sector of the drive can be 
addressed its cylinder, head ili"l.d sector numbers. Tnis is referred to as the 
drive geometry (Figure 2.4). 

Seven tracks 
each divided 
into sectors 

2.4 Structure 

Cylinders consisting of 
six vertically aligned tracks 

Three disks 
with a total 
of six surfaces 

disk medium. 

In to identify the beginning of a track there is a_n interface signal called 
Il\JTIEX, which issues a pulse at the precise moment when the heads reach this 
position. This is where the first sector of the track begins. At the start of the other 
sectors another interface signat SECTOR, issues a pvJse. If the sector pulse is gen-
erated by special circuitry that senses the relative of t_he disks, 
the drive is said to be hard sectored. The drive is sectored if the beginning 
of the sector is read the rnedium the heads. 



Traditional peripheral interfaces 15 

A computer uses data in parallel; that is, bytes not bits. disk format-
ter is a chip, which in addition to identifyi..rtg sectors by their sector number also 
takes the serial data from the heads and groups it properly into bytes. The data 
separator sits betvveen the heads and the formatter chip. vVhen data is read from 
the drive it generates an accompanying clock. Finally, the read/write amplifier 
circuitry amplifies the analog signals to and from the heads. The electronics that 
pertain to actual reading and writi..ng of information are collectively referred to 
as the data chan..'lel. 

A sector is made up of a number of different fields -vvhich are -r .. rr,,+ha-.­

.,.o·\-o.,.·...-a,r'l to as the sector format. Sector formats differ from LTtterface to interface 
format CC:Ul be described as follows: first comes a field for "''r.,.-,r•h.-•r._ 

followed by the address field. The address field con­
ac'ld sector numbers. Vvitt~ t:bis information the con-

troller the correct sector. After the address 
"'-'"-.1.'"--J'-"-''-'-~, wl-tich is used to check 

whether the All fields up to this 
referred to as the header. Novv comes the data. Here too a "' 7-.,-,,...h, • .,.,..,,r,...,*-,"'.,..., 

field is used)' the actual data of the sector. L'l the place 
address field has a CRC checksum_, the data has a nillT' .. ber of error correction 
code (ECC) bytes. The ECC alloV'TS the controller to test whether the data has 
been correctly written or read. In addition a certai..'l number of incorrectly read 
bits Crut actu.ally be corrected using this code. 11te sector ends with a gap used 
to even out small differences in motor speed. Tile number of data bytes in a sec­
tor corresponds to its formatted capacity sector sizes are 512, 
1024 and 4096 bytes. The header, ECC and gaps use up space for bet-ween 40 and 
100 bytes, dependL_~_g on the sector format (Figure 2.5). 

_.- ·- .. ·-

VFO 
sync 

!sync I Cyi.inder I Head I Sector I ~~~ I 

5\ 2 Bytes data 

Soft-sector format 

Index puls~'--j _____________________ ___jn __ 
: i ! !s 
! Gf-P I Header !Gap IY 

f l l 2 ~~ 
- . . . 

512 Bytes data 

. . - . 

I 1 1 
IEcci G3apl 
I , 
I 

I Sync I Cy!ir.der I Head I Sector ! CRC ! 
Hard-sector format 

2.5 sector format. 

after the drive's rnedium has been formatted is it for data "'""'_.,..,..,.., ,.,. . .0 

'CAT,.,.,...,.,.,,..,. not the headers but also the data field. Art 
V'uitten 

the entire drive is formatted at one tirrte 



16 SCSI Bus and IDE Interface 

Format 
characteristics 

Interleave 

Track d.l-"Ld 
ske•N 

The readirtg a sector is relatively sirnple. As soon as the head is posi-
tioned at the correct cylinder_, the desired head is chosen and the formatter chip 
reads headers until the proper address comes by. The data directly follov,ring this 
header is the data required. 

a sector is a bit more complicated. A write looks just like a read 
header is found_, then t.~e amplifier circuitry svvitches from readi..Tlg 

to and the new along with ECC, is written. A write-splice is located 
between the header and the data field to allov'~l -Hme to turn on -t."l-te \Vrite current. 

It is not the case that tvvo sectors vvith addresses are adja­
cent to one another on the mediu_,_-rn. Tne li.J.""nited throughput of early drive con-
trollers made it necessary to certain L"fl the for:rrtat design. The 

discussed here are to IDE as well SCSI. 

drive cont-_rollers had a sm_all local buffer which held at most a sec-
of data. This situation forces the cont"_roller to pass the data on to the 

before reading the next sector. If this can_::_n_ot be accorrtplished irt the 
ti1ue it takes the head to pass over the short gap between sectors, the controller 
must vvait for a complete revolution of the disk for the sector to corne around 

of this era/ this rneant -vvaitL.1.g 17 n1s for the next sector. In order 
the format of the track can employ an interleave to L'lSure 

that there is enough time to get ready for the next sector. a interleave of 
for example, the sector with the next adjacent address is rwo physical sec­

tors This makes it possible to read all sectors of a track with only two rota­
tions of the disk vvhile ir~urL.J.g that there is ample time to pass the data to the 
computer. Older devices employed even larger i."'l.terleaves. An interleave of 
three means that tvvo physical sectors lie behveen adjacent sector addresses. 
Modern controllers no longer use interleaving; have data buffers, wl-'J.ch 
acco:rrtm_odate at least rut entire track. 

for r_ransferring large blocks of data the con-
system ·vvill the data on a single track. If the data occu-

r_rack then the track of the next head in this same cylin­
der is and so on, until the is full. Tne reason for this ,.,.,,..,.,"""''"7--:l'i----"''---. 

is that the tin1e needed to change heads is much shorter than the time needed to 
change tracks. after the entire has been used must the heads be 
repositioned to the next cylinder, vvhere the procedure can begin agai..n. 

Even switchLYlg the heads!' vvl"'J.ch is done electronically, can cause 
enough of a to miss a sector. When the last sector of a track is read and the 
heads are S\ATitched to begin a new trackf the resulti__ng lag may prevent the first 
sector the track being read. Waiting for an additional revolution (called /miss-

can be avoided offsetful.g the first sector address by one or sever-
sectors. Tnis featu_re is called track skevv (spiral offset). 1viodern con-

are usually capable a track skew of zero \Nith the help 
data channel ,,,..,__._,._,..'""".,."'' 



Technical 

Traditional peripheral interfaces 17 

The delay a seek from one cylinder to the next 1.-H.A.J<-"-'-... U-

cylinder is of the order 2 ms. hi t.his case as an offset can be employed to 
avoid missing a rev. However, trapsfers of this size, across cylL."'l.der boundaries/ 
rarely occur. Therefore, the implementation of a cylinder skew is forgone 
(see Figure 2.6). 

index !ndex 

Interleave 2 Track skew 

The drive model described above is the basis for t...he tecru-tical '""''-''-·~-'""--'-

rra...r1s-

Two capacities are 

heads. Its value is 
format. The forrnatted capacit-y, on the other 
sector forrrtat Its value is the 
of sectors per and the nurnber of heads. 

Transfer rate refers to the speed at >Nhich bits are read and vvritten to the 
drive "'"""'

1
,..,,.,.. of the nu..-rnber of bits on a track ru.'l.d 

the nurnber of rotations of the disk per second. Tne 111--lits are"'"'-·""".'-"'-"'-'· 
second, but MHz is often vvh.ich to one bit 

the amount of data the 
interface on a sustai..ned 

Divide the rrarsfer rate 
Take tl->..is result and divide it 
as the number of 

headers and so 
drive in second. 

1 ·= $ 1 canoe eswuaten 
eight 

the interleave 
needed to read a 



18 SCSI Bus and IDE Interface 

Average access 
time 

medium can be written to and read, plus formatting factors. A drive's peak 
transfer rate, is an instantaneous rate, be higher. 

The average access time has two components. The average seek time is the mean 
time it takes to position the heads to a specific cylinder. In addition to this is the 
time it takes for the desired sector to rotate under the heads. On average this is 
the time for half a revolution. This second component, called the rotational 
latency; is by no means insignificant. For a disk that rotates at 5400 rotations per 
minute it takes 11 ms for a complete This translates to an average 

5.5 ms. The same may have an average seek time 
c:.-;-.c,nr .. u accounts 30% aver-

age access time. 

to A hard disk is actually a subsystem many corrtponents. First all is the 
interface mechanism,. consislli"Lg the mediurn, the heads, the analog data electronics, 

and the head positioning electronics. This group is called the head disk assem­
bly (HDA). Next comes the data separator to digitize the analog signal data, fol­
lowed by the formatter parallelization data. The controller is h'l. charge 

orchestrating reading and writing, along \vith positioni.ng the heads. Finally,, 
a host adapter is the link between the controller and the host system (Figure 
2.7). 

Control 

l 

ST506 1 

Data 
separator 

1 
I Formatter, I :; II Host I : 
1 data buffer, j , adapter I. 

1 !local 1 1 1 
I, inte!!ige_,nc~ i 1 i I 
I (contro!1ef) 1 

1

l 

1
• I ! 

' ' i! 
l I I l I i l 

I I i ~~ ------~~~ 
l 

ESDI 1 
l 

SCSI 1 

!DE 

Figure 2.7 Various interfaces. 

1:0 
0 

I 

Physically, the interface is t.he cable that connects the unit built by the 
to are a number different possible loca-

tions along the data cha.-rmel where this cable can be placed in the design of a 
drive. The trend, as SCSI's success L."'l.dicates, is to incorporate n:1ore and more 
functionality in drive itself. This moves the cable further the heads, so 
to speak. 

The ST506 interface lies hot""'fATC.)C>rl electronics and the data 
separator. One of this is analog method 



Traditional peripheral interfaces 19 

of writing to the drive. In practice, tvvo techniques are employed- Inodi­
fied frequency modulation (:NIFIVI) and run length limited (RLL) - across fhe 
ST506 interface. The ESDI interface moves one step from ST506 and incorporates 
the data separator into the drive. Next in line, SCSI packs the formatter and con­
troller into the drive as well. Finally, IDE integrates almost entire host 
adapter onto its circuit board. This final step has its disadvantages: by integrat­
L_~g the host adapter, the drive is compatible with only one type host system, 
in this case IDM PC compatibles. i..n 

to 

will be irJ:ro-

ST506 i..rtterface bet-ween amplifier data separa-
separator is the component generates a clock and a data signal 

medi1..h"'TI. 

ST506 can address to anves 2.8). Two cables, named A and B, are 
used to make connections. The A cable, is a single cable,. contai..ns con-
trol signals, and runs from drive to drive it~_ is called a daisy chain. The last 

in must contain ter:r:ninating resistance. B cable carries 
analog data. drive has its own B can recognize a con-

connectors for a s1ngle A ru"'id four 
ST506 is 3 meters. 

con_nector. The two are usmg edge connectors. 
signals are single ended; 7 438/7 414 open collector drivers and receivers are 

used (Figure 2.9). 
For terminaf1ng resistors ir1 art inter­

face. rn.-n-noricorl to +5 v across a 150 

termL"'iators are mount-



SCSI Bus and IDE 

I 
,k, 

26LS3l 

B cable 

ST506 and ESDi A cable 

' i 

--{> ll 

Terminatc1r 

2 3 

~s v 

2SLS32 

·. [>---~ 
rl 
! i ! y 

~------------------------~~----~ 

ST506 ana ESDl 8 cable 



2.2 A 

Pin. Name 

1, 3, 5, 7, 9, GROlJ"Nl) 

11, 13/ 15, 

interfaces 2i 

signals. 

source 

2 Cora.troller Once used to reduce write current! nuvv bit 

In 

3 of head nwuber 
SELECT 3 

HEAD SELECT 2 Bit 2 of head number 
6 WRITE GATE Activates write current 

ContToller 
Conr_coiler 
Drive 
Drive 

Indicates has been reached 
10 
12 WPulE FAD'LT Controller vVrite error 
14 t-rEAD SELECT o Cont-roller Bit 0 of the head nu,.rnber 
16 ER.'ROR RECOVERY Cont-roller 
18 B~AD SELECT 1 Controller Bit 1 of the head nwuber 
20 INDEX Drive hidicates begilli"ling of t-rack 
22 READY Drive The drive is up to and ready for 

24 
,..,,. 
LO 

26 
26 
26 
34 

SltP 

DE1"'VE SELECT 1 

DRI'lE SELECT 2 

DFIVE SELECT 3 

DPIV~ SELECT 4 

DIRECTION IN 

Controller The heads are to be rrwved 
Controller Drive 1 selected 
Controller Driv-e 2 selected 
Controller Drive 3 selected 
Controller Drive 4 selected 

one 

Cont-roller Selects direction for head rnovernent 

DRlVE SELECT 

disl' d_rives 
current, 



22 SCSI Bus and IDE Interface 

2.3 ST506 B cable signals. 

Pin 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Name 

DRIVE SELECTED 

GROUND 

RESERVED 

GROUND 

RESERVED 

GROUND 

.RESERVED 

GROUND 

NOT USED 

NOT USED 

GROUND 

GROUNTI 

GROUNTI 

GROUND 

GROUNTI 

GROUND 

in 

WRITE DATA 

WR.l""TE DATA 

RE .. 4.D DAT_A_ 

P.£l'-.D DATA 

Signal 
source 

Drive 

Controller 
Controller 

Drive 
Drive 

cates tf1e begii111ing sector~ It is 
sectors different heads. 

Clearlyf an ST506 
drive. 

Drive is selected 
Ground 
Reserved 
Ground 
Reserved 
Ground 
Reserved 
Grolli.!.d 
Not used 
Not used 
Grm.1nd 
Ground 
Differential write data 
Differential vvrite data 
Ground 
Grou..nd 
Differential read data 
DL.+ferential read data 
Grm.md 
Grou..nd 



23 

rent. 



24 SCSI Bus and IDE Interface 

2.4 ESDI A cable signals. 

Pin Name 

1, 3, 5, 7, 9, GROUNTI 

11, 13, 15; 
17, 191 211 
23, 25, 27, 

Signal 
source 

31,33 
2 HEAD SELECT 3 Conr.roller 
4 
6 
8 

10 

12 
14 
..,, 
.10 

18 
20 
22 
24 

26 
26 
26 
26 
34 

J-IEAD SELECT 2 Controller 
vVR.TIE GALt Controller 

DATA Drive 
TR/-\NSFER ACK Drive 

ATTENTION 

HEAD SELECT 0 

SECTOR/ ADDRESS 

Mi\RK FOU1\JTI 

HEAD SELECT 1 

INTI EX 

READY 

TRAi"'\JSFER ACK 

DR..T\lE SELECT 1 

DRl\o'E SELECT 2 

DP,_,'.VE SELECT 3 

CO:tv11v:L-'\.i.'\JTI DATA 

DIRECTION IN 

Drive 
Controller 
Drive 

Controller 
Drive 
Drive 
Controller 

Controller 
Controller 
Controller 
Controller 
Controller 

16 command bits plus parity 

TRANSFER 
REO 

COMMAND 
DATA 

-, 

TRANSFER --~ 
ACK 

CON FIG/ 
STATUS DATA 

COMMAND 
COMPLETE _I 

Ground 

Head select bit 3 
Head select bit 2 
T'urns on write head 
Status L.'lformation 
Handshake for serial communication: t.he 
anve com.,_T..and or the sta-
ttlS bit is valid 

Head select bit 0 
Sector 

Head select bit 1 
.. LU.Cl../'-'--'·'-"'- at begi."'Fing of track 
The drive is ready to receive a command 
Handshake for serial cmnmunication: the 
comrna.nd bit is 
ex:v~:::c1:s a status bit 
D.rive select bit 0 
Drive select bit 1 
Drive select bit 2 
Com.mand tra.'lSfer 

or controller 

Direction for head movernent 

16 information bits plus parity 

(for status and conf:g commands) 



Traditional peripheral interfaces 25 

Table 2.5 ESDI B cable signals. 

Pin Name Signal Description 
source 

1 DRNE SELECTED Drive Drive is selected 
2 N.C. No correction 
3 CO:tv:!1'v1AND COMPLETE Drive Command is fL."'lished 
4 ADDRESS MARK ENABLE Controller 
5 RESERVED Reserved 
6 GROUNU Grou..11d 
7 + "VVR.TTE CLOCK Controller \Vrite clock 
8 - WK.llE CLOCK Controller vVrite dock 
9 F-ESER\lED Reserved 

10 + CLOCK Drive Read dock 
11 - READ I REFERENCE CLOCK Drive Read dock 
12 GROUNTI Ground 
13 + NRZ WRllE DATA Controller Write data 
14 - NKZ WRill:. DP.:IA Controller Vvrite data 
15 GROUNU Grolli"ld 
16 GROUNu Ground 
17 + NRZ READ DATA Drive Read data 
18 - NRZ READ DATA Drive Read data 
19 GROUNTI Grmmd 
20 INTI EX Drive Impulse at beginni.ng of track 

reside on the A cable. As before, timing details belong to the phys-
layer of 

At this point vJe tum our attention to a new method data transfer. 
Corru:nan.ds and status I configuration data are sent across the interface using 
asynchronous serial transfers. signals are used to supp0rt a 
request/ ack..rtovvledge ha_ndshake- two for data, and two for control. Figure 2.10 
shovvs t.~ese tra."lSfers. 

are 16 in ail Tne ,.., ..... .,.,..-,,.,.,., 
is to send a COilli"'Tiand 
ft ... s soon as first bit is transferred drive resets co:rvnvt.A.1~v COMPLETE. Not 

after the command has been executed by the drive it again activate frlis 
signaL Some co:rrunands request status or configuration data frorn t.~e drive. 
T.nis is of execution. Figure 2.11 

such a com..mand. 
controller has been in charge initiating across t_1-te 

regardless of If some type drive error 
uses ATIE:NliON signal to controller it 

to say. Lrt response, controller issues a REQUEST STATUS com-
reason for ATTENTION (Figure 2.12). 



SCSI Bus and JOE Interface 

ATTENTION 

COMMAND 
DATA 

STATUS 
DATA 

ATTENTION 

COMr"'1AND 
DATA 

STATUS 
DftTA 

---: 

Command 

Command execution 

l_: __ 

.--~ 

Status 

2.12 error 



2.6 

151 141 131 121 
I 

10 1 9 I 11 I 
I 

Opcode rv1odifier 

Ope ode rv1odifier 

Ope ode 

2.7 ESDI 

Opcode Command 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 

SEEK 

P..£QUEST STATL:S 

SELECT HEAD GROUP 

CO'\ilROL 

D/>JA STROBE OFFSET 

TR">.CK OFFSET 

DJIT'ili.TE DLAGNOSTICS 

1001 SET U:'\?OP~\-1AITED 

1010 
1011 
1100 
1101 
1110 
1111 

SET HIGH ORDER VALUE 

P...ESER\lED 

RESERVED 

RESER\t'ED 

SET CO:'\?IGTJRP.TION 

RESER\ 'ED 

s I 
I 
I 

7 I 
0 

Yes 

Yes 
Yes 
Yes 
Yes 

Yes 

I 

I 

peripheral 

I I 
I I 

! I 

I I 6 5 4 
,.., 

2 I 1 I 0 p I ::; I j_ 

I I 

0 i 0 I I I I 0 I o I 0 I I 0 0 
! 

0 I I 

Extra 
i 
I 
! 
I 

Pararneter 

E~ttra l7 ararneter Stat1ts 

Yes 
Yes 

Yes 
Yes 
Yes 

Yes 

Yes 
Yes 

Yes 

Yes 

Yes 
Yes 
Bits 0-3 

Yes 
Yes 



28 SCSI Bus and IDE Interface 

Data (6) 

..r::::. >, ,__ 
c ro ro 
0 0 ~ 
~ 

=l:!: 

-o 
cu 
Q) 

I 

Defect 
(5) 

c 

2 
111 
0.. 

cu 
111 
0 

Defect 
(5) 

Defect 
(5) 

2.13 ESDI 

etc~ 

Defect 
(5) 

2 

list. 

Defect 
(5) 

i-+-

Defect 
(5) 

10 
i .__ g2 I 
'I m:;::; I ..Ou 

1§~BI 
\z~:Oi 
! 1 I 
I ' 

specific interfaces. It may 
a specific approach. 

per second is a tremendous irnprovement over 
equal to ESDT; it does so at much 

corr1mand set is a large step in 
SCSL 



om ut r 

L."'l contrast to 

CPU 

u 

Main 
memory 

Serial 
interface 

Disk drive 
controller 

Parallel 
interface 

Tape drive 
contro!ier 



~30 SCSI dus and IDE 

to read 



costs 

thar1 
SCSI versions C:I. 



SCSI Bus IDE 

I!O 

a large address space, a maxirnal throughput, 
..__/\.··~~-'--'-'--"-"-real-time capabilities. There vvould be no constraints on its length 

be simple and inexpensive to produce. Unfortunately, such a bus 
is not even +nn..n • .,.o.+1 .-'"' 

is characterized 
possible, as following example shovvs. A real-time 

its reaction time to a particular event This time is 
things, the length system buses. Since electrical 

as the length a i..ncreases so does the reac-
it is impossible to design a bus 

same time gu.arar1.tees an reaction 

differing characteristics 

to mem_orv. The rnain 
.I 

CPU instruction and all 

need not im_plement any real-time or L11tern.1pt capabili-
is defined arnong system components: the CPU 

reads or \-Vrites the information. my definition 
memory bus is not a bus at all sh"1ce 

over one another. 

the I/ 0 devices. Here the requirements are 
rr1ust to support a of It 

as fast devices. In rrtust be a 
rnore than one 

Dependh1g on appli-
"--'-'-!.JU''--'-'-'-- of near real-tirne performance. This cru."l. 

computer controlled systems. One 
a nuclear reactor: it is h-nperative that h~e CPU be 

some event occurs. I/ 0 processes 
suspendable. An allo-;yvs this must employ interrupt and 

event .,..,.,.,rv,.,.,..T7 mechanisrns. 

systems use a universal bus to link together 
goal here is to fL11d the best compromise 



Computer buses 33 

between real-time cost. Examples um-
versal buses include the ECB bus" bus a .. n.d the ISA IBM AT com-
patibles. The older PDP 11/73 v\lith its Q-22 bus is another example. In this light 
Figure 1.1 can be vievved as a simplified block diagram of ar1 IBI'v1 Figure 3.2 
shovvs the structure of a more complex system, 8800, spe-
cialized buses. 

!/0 adapter 

!/0 adapter 

3.2 buses. 



4 
5 
6 
7 
8 



Bac r 

confusing, shice term 'AT bus' is 
IB:NI AT. official nat-ne for IDE Lnterface is AT-

discussing interfaces in 
termATA be 

be referred to as 

group, same 

stimulated by Texan 
.__...,_,,,_,..__""'" the hard disk con-

computer manufacturers recognized the advantage 
Lncrease in the cost of the disk negligible, 

on the hard disk controller. Gradually, more and more 

the X3T9.2 TATr, ... v 1,....,...,. group 
'-'""-~,__,._,....._.._ 1988. As its project, the common 

37 



38 SCSI Bus IDE Interface 

access to the 

IDE 

new na:rne 
version 3.1 

fvlicroprocessor 

Data 
separator 

Drive control electronics 

time 
current 



Host system 

!SA bus 

IDE 

Master 
drive 

0) 

Host 

Host 

interface 

bus 

iDE interface 

Master 
drive 

Slave 
drive 

Slave 
drive 

1) 



SCSI Bus and IDE Interface 

the price, at present is slightly less 
use of IDE in this configuration is rare. 

The above configurations are special in the following way: 
disk drives share a single controller, disk commands go to both controllers 
simultaneously. The disk drive addressing in the drive register determines 

and therefore which disk drive, is bei.n.g accessed at a given 
time. 

Lastly, a ATA standard. In this 

interface 

Controller 

e.g. ESDI 

Drive 0 Drive 

The ATA committee of is working on various extensions current 
draft IDE standard. of extensions includes the possibility of faster 
direct memory access addressing of logical blocks. 

n.o,rn.:•-r or not the extensions be included depend, 
cornpefillg interfaces satisfy needs. 

first is adapter is no longer 



p 

Background 

ed in systems that use SCSI is very strong in boL~ of these areas 
is very often L~e choice over IDE i..n high-end PCs and outside the PC world. 

At the lo-vver of the performa__nce spectrum, serious competition is 
developing the new PC~1CIA standard. This interface, originally devel­
oped for the credit card size semiconductor memory, has been expanded to sup­
port network adapters, modems, and hard disks. There is no end in sight for 
rrtiniaturization of PC components, a,.-ra.d PCMCIA 

at SCSI, it may be correct to assunle 
to SCSI 

addresses and telephone nurn-
-'-'"' ..., . .__,_<'-"-"'-·"·D. 



42 SCSI Bus and IDE Interface 

1. 
1. 1 
2 > 

3. 
3.1 
4. 
4. 1 
4.2 
5. 
5.1 
5.2 
5.3 

5.5 
6. 
6.1 
6.2 
6.3 
7 

Scope 
Description of Clauses 

References 
General Description 

Structure 
Definitions and Conventions 

Definitions 
Conventions 

Interface Cabling Requirements 
Configuration 
Addressing Considerations 
DC Cable and Connector 

/0 Connector 
I/0 Cable 

P sical Interface 
Signal Conventions 
Signal Summary 
Signal Descri ions 

Logical Interface 
7.1 General 
7.2 I/0 Register Descri ions 
8. Programming Requirements 
8.1 Reset Response 
8.2 Translate Mode 
8.3 Power Conditions 
8.4 Error Posting 
9. Command Descriptions 
9.1 Acknowledge Media Change (Removable) 

usw ... 
9.32 Write Verify 
10. Protocol Overview 
10.1 PIO Data In Commands 
10.2 PIO Data Out Commands 
10.3 Non-Data Commands 
10.4 Miscellaneous Commands 
10.5 DMA Data Transfer Commands (Optional) 
11. Timing 
11.1 Deskewing 
11.2 Symbols 
11.3 

.11 a 4 
11.5 

4.6 

Terms 
Data Transfers 
Power On and Hard Reset 

4.5 Contents ATA_. 

j 



Background 43 

I,(' 1 PIO Data In Commands 
1

1 

~ ~ '/"s c l a s s i n c l u d e s : 
- Identify Drive 
- Read Buffer 
- Read long 
- Read Sector(s) 

Execution includes the transfer of one or more 512 byte (512 bytes on Read 
Long) sectors of data from the drive to the host. 
a) The host writes any required rameters to the Features, Sector Count, 

Sector Number. Cylinder and ve/Head 
b) The host writes the code to the nd Register. 
c) The drive sets BSY and prepares for data transfer. 
d) When a sector of data is available, the drive sets clears BSY 

or to asserting INTRQ, 
e) detecting INTRQ. the host reads the Status Register, then reads one 

sector of data via the Data Register. In response to the Status Register 
being read, the drive negates I 

f) The drive clears If transfer of another sector is red, the drive 
so sets BSY and the above sequence is repeated from ) . 

. 1.1 PIO Read Command 
+- a -+-- b) -+ 
1 Setup I Issue I 

1 !Command! 
+------+-------+ 
jBSY-0 I !BSY-1 

I DROY-1 

+- e) -+--------+ +- e) -+--------+ 
I Read !Transfer! 1 Read !Transfer! 
!Status! Data l:::::::jStatusl Data 
+------+--------+ +------+--------+ 
IBSY=O jBSY-1 IBSY-0 I 

loR0-1 loRa-a loR0-1 I 
!Assert Negate I !Assert! 

INTRQ INTRQ INTRQ I 

!BSY-1 
I 
IORQ=O 

f Error Status is , the drive s prepared to transfer data, and it 
s at host's discretion that the data is transferred. 
0.1.2 PIO Read Aborted Command 
+- -+-- b) -+ 

!Setup I Issue I 
i - jcommand! 
+------+-------+ 
!BSY-0 i IBSY-1 

ioRD"=1 t ~ • ,$. 

+- e) -+ 

! Read I 
!Status! 
+------+ 
IBSY-0 I 
I I 
jDRQ,..,l IDR0-0 
jAssertjNegate 
HHRQ HHRQ 

Although ORQ-1, there is no data to be transferred under this condition. 
10.2 PIO Data Out Commands 
This class includes: 

- Format 
- Write Buffer 

te Long 
- Write Sector(s) 

Execut on includes the transfer of one or more 512 byte (512 bytes on Write 
sectors of data from the drive to the host. 

The host writes any required parameters to the Features, Sector Count, 
Sector Number, Cylinder and Drive/Head registers. 

bl The host writes the command to the Command ster. 
c) The drive sets ORO when it is ready to accept the first sector of data. 
d) The host writes one sector of data via the Data ister. 
e) The drive clears ORO and sets BSY. 
f) When the drive has eted 

asserts INTRQ. If trans 
sets DRQ. 

the sector, it 
sector is requ red, 

g) After detecting INTRQ, the host reads the Status ister. 
h) drive clears the interrupt. 

clears BSY and 
the drive also 

If transfer of another sector is required, 
from d). 

above sequence is repeated 



connectors 

44 

~ 

SIC E inter£ 

.Lu ... -...J . .l.V-_,_..__ encompasses 
recent \.\...'.. .. il.JclViVj::;.,..l.\.-t ... U 

into account includh"tg not specifications 
also ne-vv systerrts using a 3.3 V source. 

Tne IDE interface uses a 40-pin ribbon cable. T'11e length of the cable rrtay not 
em Cable connectors/ are on, are 

host end and at the disk t.~e cable. 5.1 gives 
specifications for 5 V and 3.3 V systems. Almost signal lines use TIL 

vers and receivers, except for the signals DASP, PDIAG, Iocs16 SPSYNC:PSEL. 

5.1 Cable parameters for 0.5 m 

Parameter 

Drive sink current at +5 V 
Driver sink current at +3.3 V 

Driver leakage current for logical 1 
Capacitive load 

lvlinin·ru.m 

8ITLA 

lv1aximum 

-400 
200 

to is .AT?,_ 
Provision is made for either the 4-pili AMP connector familiar to users 

drives, or a 3-pin coilll_ector. 3-pin connector 
is also a specification for disk drives 

These drives, must also be capable of error-free operation on a 5 V 
power supply. Disk drives ·which Tlli"t on 3.3 V are becorning more and more 
common, particularly for use in computers. Table 5.2 the spec~ 
ifications for the power supply. 

(~~, 

)...... 



5.2 volages 

Connector Pin Signal 

1 +12 v 
2 Ground 
3 Ground 
4 +5V 

iviolex 3.3 V source 
1 + 3.3 v 
'l +5V £... 

,.., 
Grotmd J 

• 

IDE 

The physical IDE interface 

5 V source 
+5V 
+12 v 
Grow1d 

It is generated 
and is active an 

is bei_ng accessed. 

requires an 
been possible to 

system 
signal to i_ndi-

in 6. In 



SCSI 

Name 

RESET 

DATA BUS BIT 7 

Di\TA BL:S BIT 6 

DATA BL:S BIT 5 

DATA BUS BIT 4 

Di\Ti\ BLS BIT 2 

D/~ .. TA BUS BIT 0 

Grow"'l.d 
D:G!LA. REQUEST 

VVRll.t 

I/O READ 

Source 

I 

0 

I 
CHAN="~EL REi1DY 0 

IN l.t:RRUPT REQlTEST 0 
?:.DDFESS BIT l 

ADDRESS BIT 0 I 
CP.JP SELECT 0 I 
DPI\FE 0 
DFSVE 1 PRESE\iT 

DIOW: 

INTRQ: 

8 RESET: 

tion to occur 

DD7 

DD6 

DD5 

DD4 

DD3 

DD2 

DDl 

DDO 

Ground 

DIOV\~ 

DIOR 

IORDY 

D?vLj,~CK 

INTRQ 

DAl 

CS1FX 

Ground 

Source Name 

DATA BUS BIT 8 

D"~T.c~ BT.JS BIT 9 

DATA BCS BIT 10 

DATA BUS BIT 11 

DATi\ BUS BIT 12 

DATA BUS BIT 

DATA BUS BIT 15 
.r- 1 ~ '--.Oni12CTIOn 

Ground 

SP0~LE SY."JC or 
CABLE SELECT 

0 16 BIT 

PPJ.SSED DL:;.GI\iOSTIC 

1 _ADDRESS BIT 2 

I CHIP SELECT 1 

Ground 

drive 



The physical IDE 

• 

nurnber. If it is 



SCSI Bus and IDE Interface 

DMA 

Address 
valid 

Data 
valid 

!OCS16 
___/ 

DlvLA really begins to 
CPU issue 

accesses. Figure 53 

DMACK 

Data 
valid 

_/ 

-~! 

5.2 

--Cycle time 600 ns (mode 0) --

\ 

\~-

\~ 

\, __ _ 

PIO 

"Without intervention 
~;vhile one 

in a read access is 
asserts the Dlv1ARQ 

'-''""''-'-'-<A.'--''~ data is gated on 
remove its DI\£A.CK 

host cart begin 
on the operating 

nextcvde. 
.I 

used. 

is 

Cyicle time 960 ns (mode 0) 

;-
-~--------------------~ 

I \ 

r-

\ / 

\ 
\ 

~---_J 



p 

The physical IDE interface 

Cycle time 480 ns (mode 0) --

DMARQ 

DMACK 

DIOR 
DIOVI/ 

Data 
valid 

Lrt response 

5.3 

negates DIOR, it asserts it agaL."t, 
DIOR is 

\ I 

\ \\ , ___ _ 

\ \L_ 



The 

50 



IDE protocol 51 

Table 6.1 IDE comrnand and contfol register. 

Addresses 

Command register block 

1 0 
1 0 
1 0 
1 0 

1 1 _j_ 

1 1 
..t 

1 1 1._ 

1 1 

0 
0 
0 
0 
0 
0 
0 
0 

0 
1 
0 
1 

0 

1 

0 

1 

0 
1 
0 
1 
0 
1 
j_ 

0 
1 

N arne and Function 

Read access 

Data register 
Error register 
Sector count rocn<~i-<=>T' 

\Nrite access 

Data ra,rr1c"-l-C>? 

Feature register 
Sector cou...'!t .,..,....n-""+r,.,.. 

Sector nurrtber or block Sector number or block 
address 0-7 address 0----7 

register 0 
>Thc,-,rU~-r' 0--7 or 

Block address 8--15 
register 1 

<T!1nr!or 8-15 or 
Block address 16-23 

register 
Drive/head nuinber or 
block address 24-27 
Sta-b.1s register 

Not used 
Not used 
Not used 
Not used 
Not used 
Not used 
Alternate status register 
Address register 

Block address 8--15 
register 1 

Cylinder 8--15 or 
Block address 16-23 
Drive /head register 

nurr:ber or 
block address 14--31 
Cornmand register 

Not used 
Not used 
Not 1.1sed 
Not used 
Not used 
Not used 
Conr.rol register 
Not used 

power-up, reset or the execution EXECLlE DRIVE DL~GNOS-

TICS, this register contahis a are ir1 
Chapter 7 together 

If ER_l{ bit L'l contairts the 
error code regis-
ter are as 

Table 6.2 IDE error register. 

7 6 J 4 " 2 1 0 J 

BBK lJNC MC ID0JF MCR i\BRT TKO:N""F ~;IN""F 



52 SCSI Bus and IDE Interface 

The feature 
register 

( lFlh, write) 

The sector count 
register (1F2h, 

read/write) 

The address 
registers 

• UNC (uncorrectable data error): Set if an error was detected in the data field of 
the requested sector and this error could not be corrected by the ECC. The 
data is unusable. 

e MC (media change): A replaceable medium was changed since the last access. 
This is not an error but a signal to the host to take appropriate measures (for 
example, to reset the software cache) so that the new medium can be used. 

e IDNF (ID not found): The controller could not find the address field of the 
requested sector. Either it is damaged or a sector was requested that does not 
exist. 

8 MCR (media change requested): Signals to the host that the user has pressed 
the button that initiates a change of medium. It is now up to the host to take 
the necessary steps (such as completing any pending I/0 requests) and then 
to issue a MEDIA EJECT or DOOR UNLOCK command. 

e ABRT (aborted command): The command was interrupted because it was ille­
gal or because of a disk drive error. 

• TKONF (track 0 not found): Track 0 could not be found during the execution of 
a RECALIBRATE command. This is usually a fatal error. 

e AMNF (address mark not found): The data region of the requested sector could 
not be found. 

This register is not used with all disk drives. In accordance with the ATA stan­
dard, it is used to set certain features of the interface using the command SET FEA­

TURES. 

In the case of a normal ST506 controller for the IBM AT, this register con­
tains the cylinder number divided by four, indicating where the write precom­
pensation begins. A few older IDE controllers, which do not conform to the ATA 
standard, expect to find this number here as well. 

This register contains the number of sectors to be read or written. The value 0 is 
interpreted as 256. If an error occurs, this register contains the number of sectors 
yet to be transferred. 

A few commands use this register for other purposes. Refer to the 
description of commands INITIALIZE DRIVE PARALV1ETERS, FORMAT TRACK and WRITE 

SAME in Chapter 8. 

The sector number register, cylinder number register and drive register contain 
the address of the sector to be processed. I refer to this group of registers collec­
tively as the address registers. Their importance varies depending on whether 
the system uses physical or logical addressing (see Chapter 7). 



The sector num­
ber register 

(1F3h, read/write) 

The cylinder 
number register 

(cylinder low 
register, 1F4h, 
cylinder high 
register, lFSh, 

read/write) 

The drive/head 
register (1F6h, 

read/write) 

The status 
register 

(1F7h, read) 

IDE protocol 53 

This register contains the number of the first sector to be transferred. In logical 
block address (LBA) mode it contains byte 0 of the logical block number. 

This pair of registers contains the cylinder number. The ATA standard allows 
65 536 cylinders to be addressed. Earlier IDE controllers use only bits 0 and 1 
from the high byte of the cylinder address (1F5h), which limits the number of 
addressable cylinders to 1024. In LBA mode, the register holds bytes 1 and 2 of 
the logical block number. 

This register contains the drive number, head number and addressing mode. It 
is broken down as follows (Table 6.3): 

Table 6.3 IDE drive/head register. 

7 6 5 4 3 2 1 0 

1 L 1 DRV HS3 HS2 HSl HSO 

8 HSD-HS3 (head select 0-3): Head number. In LBA mode these bits represent the 
low four bits of byte 3 of the logical block address. The high four bits are 
always 0. 

e DRV (drive): Disk drive number. Drive 0 is always the master drive. 

• L (LBA mode): When this bit is set LBA addressing is being used; otherwise 
the usual cylinder/head/sector (CHS) method is being used (see Chapter 7). 

The status register contains the status of the disk drive as of the last command. 
A read access to this register clears pending interrupt requests (see protocol). To 
avoid this, one can read the alternate status register (3F6h, read). Both status reg­
isters consist of the following fields (Table 6.4): 

Table 6.4 IDE status register. 

7 6 5 4 3 2 1 0 

BSY DRDY DWF DSC DRQ CORR IDX ERR 

e BSY (busy): If BSY is set, no other bits in the status register are valid. BSY is 
always set when the controller itself is accessing the command register block. 
During this time the host may not access any of the other registers in the com­
mand register block. 

e DRDY (drive ready): Indicates that the drive is ready to accept a command. 
vVhen the drive is first switched on, DRDY remains clear until the drive is 
ready for operation. 



!::>4 :S(>:JI bUS ana JUL. lnlEH!ClCtJ 

The command 
register 

(1F7h, write) 

The alternate 
status register 

(3F6h, read) 

The device 
control register 

(3F6h, write) 

8 DWF (drive write fault): Indicates a write error on the disk drive. 

8 DSC (drive seek complete): Indicates that the heads are positioned over the 
desired cylinder. 

After a command resulting in an error, BSY, DWF and DSC remain unchanged until 
the status register is read. Afterwards they will reflect the drive's current status. 

8 DRQ (data request): This bit is set when the drive wants to exchange a byte 
with the host via the data register. 

e CORR (corrected data): This bit is set if a correctable read error has occurred. 
The data transfer continues uninterrupted. 

f) IDX (index): This bit is set once per rotation of the medium, when the index 
mark passes under the read/write head. 

S ERR (error): Indicates an error has occurred in the process of executing the pre­
vious command. The error register contains further information. 

This register receives the commands that are sent to the controller. The com­
mands and their parameters are part of the command level of the interface 
model and are described in Chapter 8. 

This register contains the same information as the status register. However, a 
read from this register has no effect on pending interrupt requests. 

Tvvo bits are defined in this register (Table 6.5): 

Table 6.5 IDE control register. 

7 6 5 4 3 2 1 0 

1 SRST lEN 0 

• SRST (software reset): As long as this bit is set, the attached disk drives are in 
the RESET state. When this bit changes to 0, the drives are executing a start-up 
procedure. 

e IEN (interrupt enable): This bit is negative true. A 0 signifies that interrupts 
are allowed; a 1 blocks them. 



The drive 
address register 

(3F7h, read) 

IDE protocol 55 

This register contains constantly updated information about the execution of the 
current command. The head-number information is not always correct for 
drives using caching and mapping. All bits in this register are negative true 
(Table 6.6): 

Table 6.6 IDE address register. 

7 6 5 4 3 2 1 0 

WTG HS3 HS2 HS1 HSO DSl DSO 

8 WTG (write gate): If this bit is clear then a write access is currently taking place 
on the selected drive. 

• HS3-HSO (head select 3-0): Inverted current head number of the selected disk 
drive. 

8 DS1 (drive 1 selected): When this bit is 0 the slave drive is selected. 

• DSO (drive 0 selected) When this bit is 0 the master drive is selected. 

6.2 Command execution 

There are five classes of IDE commands. A different protocol governs the exe­
cution of commands for each class. 

Class 1: PIO Read commands are commands that involve the reading of the sector buffer one 
read commands or more times. A class 1 command is executed in the following way. The host 

first writes any required parameters to the address and feature registers. It then 
writes the opcode to the command register to begin execution (Figure 6.1). 

Host 

Drive 

DRDY 

BSY 

ORO 

INTRO 

Figure 6.1 Timing of a class 1 cornrnand. 



t>o :-:>C:-:>1 Hus ana JUt:. Interrace 

The drive sets the BSY bit in the status register and puts data for the trans­
fer into the sector buffer (see Chapter 7). When the sector buffer is ready, the 
drive sets the DRQ bit and clears the BSY bit. It simultaneously asserts the signal 
INTRQ. 

The host then reads the status register, whereupon the drive negates 
INTRQ. The DRQ bit tells the host that it may now read 512 bytes (or more in the 
case of the READ LONG command) from the sector buffer. This read is then per­
formed according to the timing specifications described in Chapter 5. 

As soon as all the data in the buffer has been read, the drive resets the 
DRQ bit. After all of the requested sectors have been read the command is com­
plete. Otherwise, the drive again sets the BSY bit and prepares the next sector for 
transfer. 

In the event of an error, the drive still attempts to prepare the sector 
buffer for a read but also sets the corresponding error bit in the status register. It 
is then up to the host to decide whether or not to read the sector buffer despite 
the error. 

Things are different when a command is aborted. In this case, the drive 
resets the DRQ bit immediately after the host has read the status register, and no 
data is transferred. 

Class 2: PIO Class 2 commands are write commands. Thus the first thing that must happen 
write commands is that the sector buffer must be filled with 512 bytes of data (or more in the case 

of WRITE LONG). Figure 6.2 shows the sequence of steps involved in executing this 
command. In this example, two sectors are being written. 

First, the host places the necessary parameters in the appropriate regis­
ters of the command register block. It then waits until the DRDY bit is set and 
writes the opcode to the command register. 

At this point, the drive sets the DRQ bit in the status register and thereby 
signals that it is waiting to receive data. The host writes the data via the data reg­
ister to the sector buffer. When the sector buffer is full the disk drive sets the BSY 

bit and clears DRQ. 

Host 

Drive 

DRDY 

BSY 

ORO 

INTRQ 

Figure 6.2 Timing of a class 2 command. 



Class 3: 
Commands 

without data 
transfer 

Class 4: DMA 
commands 

IDE protocol 57 

As soon as the data in the buffer has been processed (for example, been 
written to the medium), the drive clears the BSY bit and sets INTRQ. This signals 
to the host that it should read the status register. Once this has happened, the 
drive resets INTRQ. 

If only one sector is to be written the command is now complete. 
Otherwise, if the write involves multiple sectors, the drive again sets DRQ and 
the next sector is processed. 

In the event of an illegal command the drive does not set DRQ after the 
command has been written, but instead indicates that status is to be read by set­
ting INTRQ. The host can then examine the error bits of the status register. 

Commands not involving data transfer do not use the sector buffer. 
Nevertheless, such commands may involve an exchange of information between 
drive and host. This exchange of information is accomplished by reading and 
writing registers. 

Here the sequence of steps is more simple. The host writes the necessary 
parameters to the controller registers and writes the opcode to the command 
register. The drive sets BSY and executes the command. When it finishes it writes 
status to the status register, resets BSY and sets lLWRQ. The host then reads the sta­
tus, the drive clears INTRQ and the command is complete. 

This class is comprised of only two optional commands, one for reading and the 
other for writing. Although DMA transfers involve more work for the processor 
before and after each transfer, the processor is completely free during the trans­
fer. Also, during the transfer of multiple sectors, an interrupt occurs only at the 
end of the entire transfer, not after each sector. This is especially advantageous 
in multi-tasking systems where the processor can utilize the time it gains 
through DMA. The execution of DMA commands can be broken down into 
three phases (Figure 6.3). 

In the command phase the host first initializes a DMA channel. It then 
writes the parameters and opcode to the controller registers, just as in the PIO 
case. The drive sets BSY and executes the command. 

Host 
Carry out DMA 

Drive 

DRDY Undefined r------
~~----------~------~1 

BSY Undefined 

Figure 6.3 Timing of a class 4 command. 



58 SCSI Bus and IDE Interface 

In the data phase the DMA channel transfers the data using the DMARQ 

handshake sequence. The contents of the controller's registers are not valid dur­
ing the data phase. 

The drive then begins the status phase by triggering an interrupt. In 
response the host resets the DMA channel and reads the status and (if necessary) 
the error register. 

In case of error the status phase may occur before the data phase or inter­
rupt it, since the drive requests an interrupt the moment the error occurs. 

Class 5: Other There are a few commands that do not fit neatly into the above classifications 
commands because their execution protocols differ slightly from those described above. 

These differences are explained together with the commands in Chapter 8. 

6 .. 3 Power-up or hardware reset 

Reset in a 
single-drive 

system 

Reset in a two­
drive system 

The same sequence of steps is executed after both power-up and a hardware 
reset. The procedure varies slightly depending on whether one or two disk 
drives are present. 

The timing diagrams require a few words of explanation. All signals are 
represented as active high even when they are marked as inverted by a bar above 
their names. This makes the diagrams simpler to understand. In reality, that is, on 
an oscilloscope or a logic analyzer, these signals would appear inverted. 

The timing diagrams are not drawn to scale. Thus, it is possible that an 
event lasting 400 ns might appear to be as long as one lasting 450 ms. Important 
times are also included in the diagram. For complete specifications consult the 
most recent ATA standard. 

The host activates the signal RESET for at least 25 ps. It should be noted that the 
host is responsible for a RESET after the system first powers on and all system 
voltages have stabilized. At most 400 ns after RESET goes low again the master 
drive sets the BSY bit in the status register. At most 1 ms after that, the drive 
negates DASP and carries out its self-test. Sirnultaneously, it observes DASP for 
450 ms to see if a slave drive is present. Since a slave vvill not be found the mas­
ter is able to use DASP to indicate drive activity. As soon as the master drive has 
completed its self-test and is ready to accept commands it resets the BSY bit. All 
of this must occur within 31 seconds. 

Before the ATA standard there was no standard way of determining whether a 
slave drive was present or not. Often the master drive was equipped with a spe­
cial jumper for this purpose. Such drives may be incompatible with drives using 
the ATA protocol described here. 



The Conner 
protocol 

I DE protocol 59 

RESET 

BSY Drive 0 I \ 

DASP \ 
BSY 

Drive i I \_ 

PDIAG \ ;--\ 

DASP 

Figure 6.4 Timing at power-up or RESET. 

Both ATA compliant drives negate DASP at most 1 ms after RESET is negat­
ed. The master drive detects the existence of a slave within 400 ms after RESET by 
examining DASP. Prior to this the slave negates PDIAG thereby indicating that it 
has begun its self-test. 

When the self-test is finished and the slave drive is ready to accept com­
mands it asserts PDIAG. This must occur no more than 30 seconds after the reset. 
If the master drive does not recognize the slave within 31 seconds it concludes 
that an error has occurred and sets bit 7 in the error register. 

The slave drive should negate DASP within 30 seconds of receiving the 
first valid command (Figure 6.4). 

Many drive manufacturers use special protocols for detecting a slave drive, 
.. w-hich differ from the ATA protocol sketched above. One such protocot that 
used by Conner Peripherals, is discussed here. 

When the slave powers up it activates the signal PDIAG within 1 ms. (If 
the master does not see PDIAG ~;vithin 4 ms; it assumes that no slave drive is pre­
sent.) PDIAG remains active until the slave clears its BSY bit or until 14 seconds 
have elapsed. If the slave is still not ready it stops asserting PDIAG but continues 
asserting BSY. Before clearing its BSY bit the master waits until the slave clears 
PDIAG, but does not wait longer than 14.5 seconds. 

The same procedure is followed for a software reset; however, here the 
slave must clear the PDIAG signal within 400 ms. 



7 The model of an 

IDE disk drive 

When examined briefly, the model of an IDE disk drive corresponds to that of an 
ST506 drive. This is not at all surprising given that IDE is a direct descendant of 
ST506. However, the IDE model of the ATA standard contains a number of sig­
nificant improvements over its predecessor. 

7.1 Organization of the medium 

Physical 
addressing (CHS 

mode) 

60 

The medium of an IDE drive is organized by head (surface), cylinder and sector. 
An IDE drive can have 16 heads, 1024 cylinders and 256 sectors. The ATA stan­
dard even permits up to 65 636 cylinders. A sector normally contains 512 bytes 
of usable data. These sectors are addressed in one of two ways. 

In CHS mode the cylinder, head and sector number uniquely identify a given 
sector. IDE comes from ST506, which always has 17 sectors of 512 bytes each per 
track. For this reason many IDE drives with more than 17 sectors utilize either a 
natural or translated mode of addressing. In the natural mode the drive geo­
metry is presented as it physically exists to the host. In the translated mode the 
physical geometry is mapped to a logical one. The logical geometry has 17 sec­
tors but with a greater number of logical heads so that the total capacity is the 
same. 

IDE drives use a linear mapping for physical addressing. This means that 
consecutive sectors begin at cylinder 0, head 0, sector 0. This track is used first, 
then head 1 of the same cylinder and so on until the entire cylinder is used. This 
is then repeated for the next cylinder number with head 0. This mapping must 
be known to the host since the IDE interface has commands that transfer as 
many as 256 sectors at one time. 

Another aspect of IDE that perhaps belongs to the drive model is that 
average access time within a given track is shorter than when a head switch 
must occur. A head switch, on the other hand, takes less time than a change of 
cylinders. This is not necessarily true in translation mode. Here a head switch 
may take place within a logical track access. 



Logical 
addressing 

(LBA mode) 

The model of an IDE disk drive 61 

In this mode the drive presents itself as a continuous sequence of blocks which 
are addressed by their logical block number. In this case the drive's physical 
geometry need not be known to the host. 

The ATA standard specifies that the mapping from physical geometry to 
logical block numbers should be accomplished in the following manner: 

LBA := (CylinderNumber * HeadCount + HeadNumber) * 
SectorCount + SectorNumber - 1 

This mapping assures that the time needed to access from LBA n to LBA 
n + 1 is shorter than from LBA n to LBA n + 2. In other words, the logical blocks 
are also in sequential order in terms of access time. This is important for the host 
because it means that large blocks of data will be written and read in the short­
est possible time if the logical blocks are continuous. 

Zone-bit Using such a mapping, be it translated physical or logical addressing, it is now 
recording possible to employ drives that do not have the same number of sectors per cylin­

der for the entire surface of the medium. 
This leads to a recording technique that makes possible an increase of up 

to 50°/o in capacity without special heads or medium. In order to describe this 
technique, known as zone-bit recording, \Ve need to talk a bit about disk record­
ing in general. The composition of the magnetic surface of the disk and the type 
of the heads used determine the maximum recording density in flux changes per 
millimeter. For the purpose of our discussion here, we can think of a flux change 
as corresponding to a bit written to the disk. Using traditional recording meth­
ods, it is the innermost track that determines the maximum number of flux 
changes per track, but since the circumferences of the tracks increase as one 
moves away from the center, the number of flux changes that can be accommo­
dated also increases. Zone-bit recording makes it possible to take advantage of 
this by increasing the number of flux changes in outer tracks. This is done by 
dividing the medium into several regions, in each of which the number of sec­
tors per track is constant. The innermost region has the least number of sectors 
per track while the outermost region has the greatest. The regions in between 
bridge the two extremes. In this way the ideal of maximal flux density is 
approached and the capacity is significantly increased. A side effect of this is 
that the data rate of the medium increases from the inner tracks to the outer 
tracks. This, however, is an aspect that only the drive electronics has to deal 
with, not the IDE interface. The ST506 cannot accommodate zone-bit recording 
since the data comes directly from the heads and would therefore come at vary­
ing rates. 



62 SCS!Busand!DE~~rfuce 

7.2 Defect management 

The definition of the IDE interface and also the ATA standard specify no precise 
rules for dealing with errors. There are, however, hvo basic approaches that may 
be employed. 

Defective sectors may be marked as such during formatting. Exactly 
how this is to be done is left up to the manufacturer. When the sectors are read 
they are recognized as defective and dealt with appropriately. 

The second approach reallocates defective sectors. This is possible with 
translated physical addressing or logical addressing only. Here a specific an;a of 
the drive is reserved for replacement sectors. When a sector is identified as 
defective multiple copies of the replacement sector's address are vvritten in that 
defective sector. This procedure is knovvn as reallocation. In this vvay it is possi­
ble to present the host vvith an apparently defect free medium at all times. 

Care must be taken in order to keep the access time of a reallocated sec­
tor to a minimum. Bear in mind the relevant time relationships: a revolution 
takes 11 ms, a track-to-track seek about 2 ms, the average seek time is 11 ms, and 
a head svvitch takes approximately 1 ms. Since a seek is most costly, it makes 
sense for each cylinder to contain several replacement sectors for that cylinder. 
This approach avoids seeks altogether. 

Better still is the approach where each track has a sector for defect man­
agement. However, if the defective sector is simply reallocated to the reserve 
sector this is still not optimal. Figure 7.1 describes the situation. In order to read 
sectors 0 through 2, one must first read sector 0 and then vvait almost an entire 
revolution until the replaced sector 1 is reached. Afterwards one must vvait until 
sector 2 finally revolves underneath the heads to be read. The entire procedure 
takes 1114 revolutions although only 1/4 of a revolution is needed for reading; in 
other vvords, an entire revolution is lost. 

Before 

~------------------P_o_o_r _____________________ B_e_tt_.e_r _________________ _j 

Figure 7.1 Strategies for sector reallocation. 



The model of an IDE disk drive 63 

The following is an approach that minimizes the access time to reallo­
cated sectors. A replacement sector is reserved for defect management for each 
track. When a defective sector is found it is marked as such, and all subsequent 
sectors of the track are shifted by one. In this way even after the reallocation 
access to a continuous sequence of sectors can take place without losing a revo­
lution. In addition, a number of replacement cylinders are also reserved for real­
location purposes. In the event that a track is found to have more than a single 
defective sector then the entire track can be reallocated. 

7 .. 3 The sector buffer 

The sector buffer is used as a temporary storage for all read and \ATrite opera­
tions. This decouples the rate at which data is exchanged with the host and the 
rate at which data is written and read from the medium. This is necessary since 
a sector must always be written or read as a whole. 

In the simplest case the sector buffer is an area of RAM on the IDE con­
troller. If the buffer can only be used to exchange data with the medium or the 
host, one speaks of a single ported buffer. A buffer that is able to receive data 
from the host and write data to the disk simultaneously is referred to as a dou­
ble ported buffer (Figure 7.2). 

A double ported buffer must be able to hold more than a single sector. 
Only after an entire sector has been received will the controller begin to write the 
data to the medium. If during that time the buffer is able to receive additional 
data from the host the throughput of the system is significantly improved. 

Contains l Points to 

r-----

Sector 
buffer 

1 Processed 

Host 

Register1
1 block I 

L_j 
t Contains 

Sector 
buffer 

Register 
block 

1 Processed 

Host 

Figure 7.2 Single and double ported sectors. 



64 SCSI Bus and IDE Interface 

As a further example, assume that we are reading a number of sequen­
tial sectors. A drive with a single ported buffer is forced to use an interleave, oth­
erwise a subsequent sector will be lost by the time the host reads the first sector. 
This approximately halves the throughput of a double ported buffer, where the 
host can read the first sector during the time the second sector is read from the 
medium. 

A double ported buffer looks like a sector buffer to the host in that it con­
tains the data of the current sector. In a sense the sector buffer is a window 
through which the host and medium exchange data. The window is constantly 
shifted so that the data always corresponds to the current contents of the address 
register. Figure 7.2 makes these relationships clear. 

The communication between the sector buffer and the host takes place 
either byte- or word-wise via the data register of the controller (PIO). Optionally, 
direct memory transfers are possible using DMA. 

7.4 Power conditions 

The ATA model of an IDE disk drive includes various power conditions. An IDE 
drive ca_n be put into energy saving states of differing levels. This is an impor­
tant capability in view of the increasing number of laptop and portable comput­
ers. Table 7.1 shows the possible states and the corresponding status bits. The 
status bits themselves are explained below. In the REST state the drive is either 
turned off or is preparing itself to be turned off. The host is informed of the con­
dition of the drive and the controller so that when the drive is powered up again 
the original states can be restored. 

This mode is useful for hosts that after being turned off and on are capa­
ble of maintaining all running programs precisely where they were before pow­
ering down. This applies to laptops particularly, because they have the battery 
necessary to maintain main memory and the drive status in the powered down 
state. 

A small observation is perhaps in order at this point. This feature seems 
to be designed especially for laptops running MS-DOS, otherwise things would 
work the other way around: that is, a power-fail routine would be included in 
the operating system to save the contents of main memory to disk in the event 
of power loss. There the data would be safe indefinitely without power to the 
system. At power up the original state of the system could then be restored. 

Table 7.1 Power conditions for IDE drives. 

Power condition SRST BSY DRDY Interface Medium 

REST 0 0 0 0 0 
SLEEP * * 0 
STANDBY X 0 1 1 0 
IDLE X 0 1 1 1 
ACTIVE X X X 1 1 



The model of an IDE disk drive 65 

However, the power supply must be capable of delivering power for long 
enough to carry out the procedure even after source power is gone. For a large 
amount of memory this requires several seconds. 

A drive only leaves the REST state as the result of a power-up sequence or 
a reset. 

In the SLEEP state the drive is turned on, but uses as little power as pos­
sible. Only through a RESET can the drive be brought into the active state again. 
Since in this state the motor may be turned off, a medium access may take as 
long as 30 seconds. 

In the STANDBY state the IDE interface is capable of accepting commands. 
Here too the motor may be turned off, so a medium access may take up to 30 sec­
onds. At its own discretion the drive can decide to switch from the IDLE state to 
the STANDBY state. Using CHECK POWER MODE the host can determine in which of 
the two states the drive currently resides. 

In the IDLE state the motor is on and the drive is able to react to com­
mands immediately. However, certain portions of the drive electronics may be 
turned off for power savings if this will cause only minimal delay for a medium 
access. 

Finally, the ACTIVE mode is the normal state of the drive. Commands are 
executed in the shortest possible time in this state. 



66 

8 IDE commands 

8.1 

EXECUTE DRIVE 

DIAGNOSTICS 

(90h) 

In this chapter, all the key IDE commands defined in the ATA standard are intro­
duced briefly. The commands are listed in Table 8.1. Among these twelve are 
mandatory. The others may be optionally implemented, but then only in accor­
dance with the ATA standard. 

The table gives the command name, followed by the opcode. The manda­
tory commands are labeled with Min the M/0 column, and the column labeled 
Class designates the command class. The last five columns show which control 
register is used for parameters. Included are FR (feature register), SC (sector 
count register), SN (sector number register), CN (cylinder number register), and 
DH (drive/head register). D in the DH column means that only the disk drive 
number is used; D* means that disk drive 0 is addressed, but both disk drives 
execute the command. 

Some commands have a second opcode in parentheses. These opcodes 
were established by the industry prior to the ATA standard and are still in use. 
Conner drives use these earlier opcodes. 

In addition, some manufacturers implement optional commands that are 
often very useful. A good example of this would be a command to read the 
defect list. In any case, it is always a good idea to consult the drive handbook 
when planning a large project. 

Mandatory Commands 

This command is always issued to disk drive 0, but initiates the internal diag­
nostics of both disk drives. After the diagnostics have run, the BSY bit is cleared 
and an interrupt given. The results for drive 0 can be retrieved from the error 
register. However, the contents must be interpreted with the aid of the error 
codes listed in Table 8.2. 

If both drives are used and the slave drive has an error, it informs the 
master drive by not activating PDIAG. The master drive then sets the seventh bit 
in the error register. The host can read the error code of the slave drive by setting 
the DRY bit in the drive/head register and subsequently reading the error regis­
ter. 



-

Table 8.1 IDE commands of the ATA standard. 

Command 

Corrunand name 

ACKNOWLEDGE MEDIA CHANGE 

BOOT POST-BOOT 

BOOT PRE-BOOT 

CHECK POWER MODE 

DOOR LOCK 

DOOR UNLOCK 

IDENTIFY DRIVE 

IDLE 

READ BUFFER 

READ DMA (with and without retries) 
READ DRIVE STATE 

READ MULTIPLE 

REST 

RESTORE DRIVE STATE 

SEEK 

SET FEATURES 

SET MULTIPLE MODE 

SET SLEEP MODE 

STANDBY 

STANDBY IMMEDIATE 

WRITE BUFFER 

WRITE DMA (with and without retries) 
WRITE MULTIPLE 

WRITE SAME 

Ope ode 

DBh 
DCh 
DDh 
98h (E5h) 
DEh 
DFh 

C8h, 09h 
E9h 
C4h 

E7h 
EAh 
?'xh 
EFh 
C6h 
99h (E6h) 
96h (E2h) 
94h (EOh) 
E8h 
CAh, CBh 
C5h 
E9h 

0/M 

0 
0 
0 
0 
0 
0 
:M 
M 
0 

0 
0 
0 

0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

Table 8.2 Error codes for EXECUTE DRIVE DIAGNOSTICS. 

Code Defective component 

Olh No error 
02h Formatter 
03h Data buffer 
04h ECC circuitry 
05h Microprocessor 
8xh Slave drive 

IDE commands 

Class 

3 
3 
3 
3 
3 
3 

1 
3 

4 
3 
5 

5 
5 

3 
3 
5 
3 
3 
2 
4 
5 
5 

Registers 

FR SC SN CN 

* 

* 

* * * 
* 

* * * 

* 
* 

* 
* 

* 

* * * 
* * * * 
* * * * 

67 

DH 

D 
D 
D 
D 
D 
D 

D 
D 

* 

* 

D 
D 
D 
D 
D 
D 
* 
* 
* 



68 SCSI Bus and IDE Interface 

FORMAT TRACK 

(SOh) 

INITIALIZE DRIVE 

PARAMETERS 

(91h) 

RECALIBRATE 

(lxh) 

READ SECTORS 

(20h with and 
21h without 

retries) 

A few preliminary remarks are necessary concerning FORMAT TRACK. Although 
the command is mandatory it is left to the manufacturer exactly what will be 
performed. Some drives format the track from scratch, others initialize only the 
data area of the sectors, others do nothing at all. The ATA standard recommends 
that drives should at least write the sector with a data pattern. In this way for­
matting will always erase all data, which is desirable for security reasons. 

The command formats an entire track. The sector count register, the 
cylinder number register, and the drive/head register must be loaded with the 
address of the track, then 256 16-bit words must be transferred to the sector 
buffer. Afterwards, the drive sets BSY and executes the command. 

The codes written to the sector buffer have the meaning shown in Table 
8.3. Whether or not the drive uses these or instead uses its default parameters is 
up to the manufacturer. 

A data word should be written to the sector buffer for each sector, with 
the remainder filled with Os. Each data word contains the sector number in the 
upper byte. If an interleave is called for, it is suppressed. The lower byte holds 
the code that indicates how the sector should be formatted. 

Using this command, the disk drive geometry can be configured. This is accom­
plished by loading the number of sectors in the sector count register and the disk 
drive number and number of heads in the drive/head register. 

This command also allows a drive to be switched from natural to trans­
lated physical addressing. According to the ATA standard, the parameters do 
not have to be checked. If they are incorrect, the next disk access will result in an 
error. However, many drives use the default values when incorrect parameters 
are given for this command. 

All opcodes between lOh and IFh are interpreted as a RELCALIBRATE command, 
whereupon the disk drive seeks track 0. If it is not found, TKONF will be set in the 
error register. 

RECALIBRATE is often used when trying to recover from an error situation. 
For example, when a sector cannot be found, a RECALIBRATE should be tried. If this 
works, a sector access can be tried again. Otherwise, it is fatal disk error. 

This command reads the number of sectors given in the sector count register. A 
value of 0 means 256 sectors. The address of the first sector is given in the 
address register. An interupt follows each sector that is read. If the heads are not 
over the desired track, they are positioned automatically. After the command is 
executed, the address register holds the address of the last sector read. 

In case of error the action taken depends on whether the command was 
issued with or without retries. Without retries the command will be aborted and 
the IDNF bit set in the error register if the correct sector is not found in two revo­
lutions. Otherwise repeated attempts will be made to read the proper sector. The 
number of repeated attempts is manufacturer-specific. 



jiiP 

READ LONG 

(22h with and 
23h without 

retries) 

READ VERIFY 

SECTORS (40h 
with and 41h 

without retries) 

SEEK (7xh) 

WRITE SECTORS 

(30h v.:ith and 
31h without 

retries) 

WRITE LONG 

(32h with and 
33h without 

retries) 

IDE commands 69 

Table 8.3 Codes for FORMAT TRACK. 

Code Format 

OOh Format good sector 
20h Suspend reallocation 
40h Reallocate sector 
SOh Mark sector defective 

When the sector is found, the start of the data field is expected within a 
given number of bits. If it is not found, the command is aborted with an AMNF 

bit in the error register. 
If a correctable ECC error occurs, the corresponding bit is set in the error 

register, but the command is not aborted. Only uncorrectable ECC errors lead to 
a command being aborted. 

After a command is aborted, the address register contains the address of 
the sector in which the error occurred. The sector buffer could contain damaged 
data. 

Unlike the READ SECTORS command, READ LONG always reads only one sector. Not 
only is the data transfered, but also the ECC bytes of the sector. The ECC is not 
checked. In all other respects, including errors, the command executes identical­
ly to the READ SECTORS command. 

This command reads the requested sectors, but no data is transferred. It only 
verifies (hence the name) whether or not the sectors are readable. The response 
to an error is identical to that of the READ SECTORS command. 

This command instructs the drive to position the heads over the cylinder given 
in the address register, and to switch to that head. Since the READ and WRITE com­
mands explicitly position the head, the SEEK command is rarely needed. 

This command behaves exactly like READ SECTORS, except that the data are writ­
ten instead of read. 

This command behaves exactly like the READ LONG command, except that the 
data are written instead of read. Here, the ECC must also be written to the sec­
tor buffer. This is not trivial, since the ATA standard does not specify the sector 
format or how the ECC polynomial is to be computed. This command may be 
used when running system tests in order to produce an ECC error. A sector can 
be read using READ LONG, the data and ECC modified so as to reflect an ECC 
error: and the falsified sector rewritten using WRITE LONG. In this way, the error 
handling can be tested. 



70 SCSI Bus and IDE Interface 

8.2 

ACKNOWLEDGE 

MEDIA CHANGE 

(DB h) 

CHECK POWER 

MODE (98h, ESh) 

DOOR LOCK 

(DEh) and DOOR 

UNLOCK (DFh) 

IDENTIFY DRIVE 

(ECh) 

IDLE (97h, E3h) 
and IDLE 

IMMEDIATE (95h, 
Elh) 

READ BUFFER 

(E4h) 

READ DMA (C8h 
with and C9h 

without retries) 

Optional commands 

This command clears the MC bit in the error register. The operating system uses 
this to acknowledge that the media change has been recognized. 

With this command, the host can determine whether the drive is in an IDLE or 
STANDBY state. This is necessary since the drive can go to STANDBY on its own, 
which, under certain circumstances, can cause a delay of up to 30 seconds for the 
first command. 

If the drive is in STANDBY or transitioning to this state, it replies vvith the 
value OOh in the sector count register. In the IDLE state, the drive replies with FFh 
in the sector count register. 

These commands, which are for removable media drives, close and lock, and 
unlock and open the door. 

The command IDENTIFY DRIVE is of special interest. After receiving this command, 
the drive writes a parameter block with information about the drive in the sec­
tor buffer. This parameter block is then read in the normal -vvay from the sector 
buffer by the host. Table 8.4 shows the structure of the parameter block. 

The parameter block consists of 255 16-bit words. Some of the fields 
require further explanation. First, -vvord 0 is a bitwise-coded word with configu­
ration parameters. Table 8.5 illustrates the meaning of the individual bits. 

The geometry values given in Table 8.4 for words 1 to 6 refer to the 
default mapping, which is usually physical addressing without translation. The 
current geometry of the disk drive is found in words 54 to 58. 

The following values are defined for the buffer type: 0001h stands for a 
one-way buffer implemented for a single sector, 0002h stands for a two-way 
buffer of several sectors, and 0003h indicates a read cache. 

These commands put the drive into the IDLE state. A timeout value can be pro­
vided in the sector count register measured in 5-second increments. If a new 
command is received within this time the drive -vvill not change to the IDLE state. 

This command functions differently to the READ command. It reads 512 bytes 
from the sector buffer without a disk access. The address register is therefore not 
used. Whatever is in the sector buffer will be read. 

This command functions like the other READ commands, except that the contents 
of the sector buffer will be read using DMA. It is therefore neccessary for the 
host to set up the proper DMA channeL 



READ DRIVE STATE 

(E9h) 

READ MULTIPLE 

(C4h) 

Table 8.4 

Word 

0 
1 
2 
3 
4 
5 
6 

7-9 
10-19 

20 
21 
22 

23-26 
27-46 

47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

57-58 
59 

60-61 
62 

63 

64-127 
128-159 
160-255 

Parameter list of the IDENTIFY command. 

Contents 

Configuration 
Number of cylinders 
Reserved 
Number of heads 
Bytes per track unformatted 
Bytes per sector unformatted 
Sectors per track 
Vendor specific 
Serial number (ASCII) 
Buffer type 
Buffer size in 512-byte segments 
Number of ECC bytes for READ and WRITE LONG 

Firmware revision (ASCII) 
Model name (ASCII) 

IDE commands 71 

Bits 7-0: sectors per interrupt for READ and WRITE MULTIPLE 

Bit 0: double word I/0 possible 
Bit 9: LBA; bit 8: DMA supported 
Reserved 
Bit 15-8: timing mode for PIO data transfers 
Bit 15-8: timing mode for DMA data transfers 
Reserved 
Apparent number of cylinders 
Apparent number of heads 
Apparent number of sectors per track 
Apparent capacity in sectors 
Bit 7-0: number of sectors per interrupt 
Total number of addressable sectors (LBA mode) 
Bit 15-8: active mode for single DMA 
Bit 7-0: supported modes for single DMA 
Bit 15-8: active mode for multiple DMA 
Bit 7-0: supported modes for multiple DMA 
Reserved 
Vendor specific 
Reserved 

Using this command the host can read the current status of the drive after a REST 

command. This status can then be sent back to the drive using the RESTORE DRIVE 

STATE command when the REST state is over. 

This command fuctions similiarly to the READ SECTORS command. The difference 
is that instead of a single sector, blocks of several sectors are transferred without 
an interrupt occurring in between. The number of the sector must be given in the 
sector count register. Just how many sectors are to be included in a block is 
determined by the SET MULTIPLE MODE command. If the required sectors do not fit 
into the block size, an additional block (not fully used) will be transferred con­
taining the remaining sectors. 



72 SCSI Bus and JOE Interface 

Table 8.5 Configuration bits for IDENTIFY data. 

Bit Meaning 

0 Reserved 
1 Hard-sectored drive 
2 Soft-sectored drive 
3 Encoding other than MFM 
4 Head switching time 15 J..lS 
5 Spindle motor control implemented 
6 Hard drive 
7 Changeable medium 
8 Data rate to 5 MHz 
9 Data rate between 5 and 10 MHz 

10 Data rate above 10 MHz 
11 Nlotor speed tolerance above 0.5% 
12 Data clock offset available 
13 Track offset available 
14 Speed tolerance gap necessary 
15 Reserved 

REST (E7h) This command puts the disk drive into the REST state. It then waits for a READ 

DRIVE STATE command to be informed of it~ state before the execution of the last 
command. After this command is executed only the READ DRIVE STATE command 
will be accepted; all others will be rejected. If two drives are installed, first the 
slave drive then the master drive will be put into the REST state. 

RESTORE DRIVE 

STATE (EAh) 

SET FEATURES 

(EFh) 

SET MULTIPLE 

MODE (C6h) 

SLEEP (99h, E6h) 

If a drive's status is collected and the drive is put into the rest state before being 
turned off this prior state can be restored at power-up using this command, 
assuming that it is the first command received after turning on. Bear in mind 
that the head position and the staus of the controller are restored but that the 
contents of the sector buffer and cache are lost. 

This command enables the setting of various characteristics of the drive by writ­
ing a specific opcode in the feature register. Opcodes higher than SOh represent 
the default values after booting or a reset. Table 8.61ists the opcodes. 

The block size for the commands READ MULTIPLE and WRITE MULTIPLE are given to 
the disk drive via the sector count register using this command. If the block size 
is not supported, or if it is 0, the multiple commands will be turned off. 

Disk drives that have at least 8 KByte buffer must support at least block 
sizes 2, 4, 8, and 16. 

This command puts the drive in the SLEEP state. The motor will also be switched 
off. Only a hardware or software reset will end the SLEEP state. 



STANDBY (96h, 
E2h)and 
STANDBY 

IMMEDIATE (94h, 
EO h) 

WRITE BUFFER 

(E8h) 

WRITE DMA ( CAh 
with and CBh 

without retries) 

WRITE MULTIPLE 

(C5h) 

WRITE SAME (E9h) 

IDE commands 73 

Table 8.6 Opcodes for SET FEATURES. 

Opcode 

Olh 
02h 
22h 
33h 
44 
54 

55h 
66h 
77h 
81h 
82h 
88h 
99h 

AAh 
ABh 

ACh 
BBh 
CCh 
DDh 

Meaning 

Enable 8-bit data transfers 
Enable write cache 
WRITE SAME write the specified area 
Disable retries 
Vendor specific ECC length for READ LONG and WRITE LONG 

Place number of cache segments in sector number register 
Disable read ahead 
Maintain parameters after software reset 
Disable ECC 
Disable 8-bit data transfers 
Disable write cache 
Enable ECC 
Enable retries 
Enable read ahead 
Use the value in the sector count register as the number of sectors to be 
read ahead 
Allow REST mode 
4 bytes of ECC for READ LONG and WRITE LONG 

Software reset loads default features 
WRITE SAME to write entire medium 

This command puts the drive into STANDBY state. The STANDBY IMMEDIATE com­
mand is executed immediately. If the sector count register has a value other than 
0 when the STANDBY command is issued, the shutdown procedure will begin 
automatically, and the timer will begin as soon as the drive is in the IDLE state 
(see IDLE command, above). 

This command writes the sector buffer of the drive with a data pattern. No writ­
ing to the medium will occur. 

This command functions like the other WRITE commands except that the contents 
of the sector buffer are written using DMA. The host must initialize the proper 
DMA channel beforehand. 

This command functions analogously to the READ MULTIPLE command. 

Depending upon the mode set in the feature register, this command will write 
all or part of the medium with the same data. The feature register must previ­
ously be loaded with either 22h (for part of the medium) or DDh (for the entire 
medium) using the SET FEATURES command. Otherwise, the command will be 
rejected. 



7 4 SCSI Bus and IDE Interface 

WRITE VERIFY 

(3Ch) 
This command functions like the WRITE SECTORS command, with the exception 
that the sectors are subsequently verified. During verification only the ECC is 
checked without a transfer of data. Any read errors are reported. 



Part III 
The SCSI bus 

9 Background 
10 SCSI hardware 
11 SCSI bus protocol 
12 SCSI commands 
13 Direct access devices 
14 Tape drives 
15 Printers 
16 Scanners 
17 Processor devices 
18 Communications devices 
19 Optical storage and WORM drives 
20 CD-ROM 
21 Medium-changer devices 
22 The SCSI monitor program 
23 Software interfaces 
24 Test equipment 
25 SCSI protocol chips 



9 Background 

9.1 The evolution of SCSI 

SCSI, which the entire industry affectionately refers to as 'scuzzy', stands for 
Small Computer Systems Interface. SCSI can trace its beginnings back to 1979, 
when the disk drive manufacturer Shugart began work on a new interface. The 
goal was to develop a drive interface that supported logical addressing of data 
instead of physical addressing. Moreover, the interface would present data byte­
wise instead of serially. Such an interface could end the compatibility problems 
associated with bringing new drive technologies to market. In the past it took a 
long time for computer companies to support the new drives. The interface to 
solve this problem was originally called SASI (Shugart Associates Systems 
Interface), and the specification totaled 20 pages. SASI is the forerunner of the 
modern SCSI. The interface specification, which included some 6-byte com­
mands and defined single-ended drivers and receivers, was made public to 
encourage companies to build SASI controllers. Companies such as OMTI and 
DTC became involved in these early days. In 1980, Shugart's first attempt to 
make SASI an ANSI standard failed. At that time ANSI preferred the more 
sophisticated IPI interface. 

Progress began in 1981, but not before a failed agreement between NCR 
and Shugart to work together on further development of SASI. NCR wanted 10-
byte commands and a differential interface, features Shugart considered unneces­
sary. Most likely Shugart believed that these options would make the interface too 
complicated. At this point the company Optimem came on the scene. A subsidiary 
of Shugart, Optimem manufactured optical disks. They needed to be able to 
address more than 221 logical blocks for their optical drives. Moreover, the 6 meters 
cables then in use were too short. These were precisely the reasons why Shugart 
had declined to work with NCR in the first place. In December 1981, Shugart, 
together with NCR, requested that an ANSI committee be formed for SASI. 

In April 1982 ANSI committee X3T9.2 met for the first time and began 
the work that has evolved into SCSI. In the following years a draft proposal was 
prepared, which was presented to ANSI for approval in 1984. However, even 
before final approval had been given, manufacturers began producing SCSI host 
adapters and device controllers. The first protocol chip, the NCR 5385, came on 

77 



78 SCSI Bus and IDE Interface 

the market in 1983. The interface had becmne an industry standard long before 
it received approval from ANSI. In June 1986, SCSI-1 became official as ANSI 
X3.131-1986. 

The growing number of SCSI products exposed weak points in the defi­
nition. In defining commands, too much room for variation was given for ven­
dor unique options. For example, format parameters for disk drives were not 
standardized. In addition, although a SCSI drive should present a virtual defect 
free medium to the host- by having medium defects managed transparently by 
the device- defect management \Vas left undefined. Consequently each manu­
facturer implemented these things as they saw fit, which basically meant that a 
nevv device driver had to be written for each new SCSI device. The goal of a 
device independent interface was definitely lacking on the software side. At that 
time it was fair to say that SCSI was not necessarily SCSI compatible. 

Looking for a solution to this problem, the drive specialists in the com­
mittee began defining a Common Command Set (CCS) for disk drives in 1985. 
The main purpose of the command set was to nail down some of the many 
options for disk drives. Among the features introduced in the CCS was the 
defect list format, which you will learn more about in Chapter 13. The CCS was 
a big step forward and once again the manufacturers began implementing it 
before it became official. However, CCS was only a solution for disk drives; tape 
drive manufacturers had to make do with SCSI-1 the way it was. 

In 1986, even before SCSI-1 had become an official standard, work on 
SCSI-2 began. In addition to further development of the CCS and the other device 
classes, the committee worked on numerous modifications in protocol and hard­
ware. Many features were developed, only to be discarded in the end. The option 
to support more than eight devices is an example of this. On the other hand, 10 
MHz synchronous transfers were incorporated along with a 32-bit wide data bus. 
Of course, the real challenge in the implementation of these options lay in main­
taining compatibility among the different devices. As a protocol option, a device 
could inform a host 'unsolicited' of change in device status. This is important, for 
example, when a cassette is removed from a tape drive. 

The formal approval procedure for SCSI-2 began in February 1989. As 
usual, there were dozens of devices already equipped with SCSI-2 before it 
became a standard. These early releases, incidentally, were never a problem. 
During the final phases of development the standard had become so stable that 
only minor changes were being discussed. Above alt tape drive manufacturers 
were anxious to implement SCSI-2 for their devices. However, late amendments 
caused the early 1992 delivery date to be postponed. Finally, two years later, at 
the beginning of 1994, SCSI-2 became an official ANSI standard. The event was, 
needless to say, very anticlimactic. 

Dal Allan, a SCSI industry specialist, vvrote in an article for the maga-
zine, Computer Technology Review: 

No technical rationale can be offered as to why SCSI-1 ended and SCSI-2 
began, or as to why SCSI-2 ended and SCSI-3 began. The justification is much 
more simple - you have to stop sometime and get a standard printed. 
Popular interfaces never stop evolving, adapting, and expanding to meet 
more uses than originally envisaged. 





80 SCSI Bus and IDE Interface 

Host 
adapter Initiator 

SCSI ID 7 

I I 
SCSI bus 

SCSI command 

I. rl I I 
SCSI ID 0 SCSI ID 1 

Target Disk Tape 
drive drive 

Figure 9.1 A simple SCSI configuration. 

sent a separate peripheral device. Such a controller must possess a number of 
device specific interfaces, one for each LUN. 

Hardware Up to now we have focused on SCSI devices, not on the bus itself. The SCSI bus 
is from 8 to 32 bits wide, depending on configuration. A simple 50-pin ribbon 
cable can be used for the 8-bit bus, including all other necessary control signals. 
The 16- and 32-bit variations are caUed Wide SCSI and call for an additional 
cable. Naturally, any device that supports Wide SCSI must also have a second 
connector. Wide SCSI is a SCSI-2 feature, which is optional and has been imple-

I SCSI 
I 

I I 
Bridge Printer 

controller LUN 0 

I 
Target nRS~232 
ID 0 

Printer 
LUN 1 

Centronics Printer 
LUN 2 

Figure 9.2 Bridge controller with logical units. 



Background 81 

mented for very few devices. Just what advantages does Wide SCSI offer in view 
of these cable complications? Using the same clock frequency, the bandwidth of 
32-bit SCSI is four times that of 8-bit SCSI. 

Commands, messages and status are sent across the bus exclusively 
using asynchronous transfers. This means that the sender and receiver exchange 
data using a request/acknowledge handshake. This allows devices that do not 
implement Wide SCSI (or Fast, as we shall see) to use the same bus. 
Asynchronous transfers can reach a maximum of approximately 3 MHz. 
Additionally, there exists the option to transfer data synchronously, which under 
SCSI-2 allows devices to exchange data at speeds of up to 10 MHz. Whether or 
not synchronous transfers will be used is negotiated by the two devices before­
hand. This alleviates any problems that might occur between SCSI-1 and SCSI-2 
devices on the same bus. 

The SCSI cable is usually a 50-pin ribbon cable. It runs from device to 
device and can reach a maximum of 6 meters. A small 'stub cable' of up to 0.10 
meter can be used to connect a device to the main cable. Since most SCSI devices 
have only a single SCSI connector, a cable is used that has the appropriate num­
ber of connectors crimped along its length. The devices on the extreme ends of 
the bus- and no other devices- must have terminating resistors. These termi­
nators are usually socketted to allow placement in any position on the bus (see 
Figure 9.3). 

There are two fundamentally different variations on the type of electri­
cal signals used for the bus: single-ended and differential. These variations are 
not compatible with each other. Devices with single-ended and differential inter­
faces cannot be used on the same bus, although they can use the same type of 
cable. Before configuring a system, the decision must be made as to what type 
of interface will be used. This choice is made somewhat easier by the fact that 
most devices are only available with single-ended SCSI. 

Single-ended SCSI uses open-collector drivers to power the bus. One 
advantage of this is that the drivers can usually withstand an improperly insert­
ed connector. There is no reason to panic if you accidentally insert a connector 
the wrong way: I've done this a number of times and haven't damaged a device 

6 meters maximum 

Device 0 

Terminator 

n 

n 
Terminator 

Device 2 

Figure 9.3 SCSI cable. 



82 SCSI Bus and IDE Interface 

Summary of 
hardware 

options 

yet! The pin assignments are such that a ground is opposite every signal. In 
addition to flat cable, twisted-pair cables can also be used. 

Differential drivers allow cable lengths beyond the 6 meters of the sin­
gle-ended drivers, up to 25 meters. Since so few devices come with a differential 
interface, single-ended to differential adapters have appeared on the market. 

Many terms have been introduced in the preceding section. Here they are 
brought together in one place. These are the terms that you will find in SCSI 
product manuals (Figure 9.4): 

• Asynchronous SCSI: This method of data transfer is basic to all SCSI devices. 
The transfer rate is normally around 1.5 MHz although modern chips are 
capable of 3-4 MHz. 

e Synchronous SCSI: This optional method of data transfer makes possible 
rates of 5 MHz with SCSI-1 and 10 MHz with SCSI-2. Since commands and 
other protocol related information are sent asynchronously, devices are able 
to negotiate which method will be used. Devices that use this option and 
those that do not can function side by side on the same bus. The synchronous 
option is found on most high performance devices. 

• Fast SCSI: An improvement to synchronous transfers for SCSI-2 devices 
allowing a data rate up to 10 MHz. Fast SCSI is quickly becoming standard 
for high-performance disk drives. 

e Wide SCSI: 16- or 32-bit transfers are made possible with an additional cable 
(B cable). The resulting data rate is double or quadruple the previous rate. 
This SCSI-2 option also allows a mix of device types on a single bus. The B 
cable is simply omitted for 8-bit devices. Wide SCSI is not often used because 
of the complications of an additional cable. 

e Single-ended/differential: These two variations on the implementation of the 
electrical signals were already part of the original SCSI definition. The vast 
majority of devices employ a single-ended interface. Here the maximum cable 
length is 6 meters. The differential option allows cable lengths up to 25 meters. 
Single-ended and differential devices cannot be used together on the same bus. 

Device classes A well-defined command set is an important element of a device independent 
and commands interface. With respect to the SCSI bus, device independence takes on two 

dimensions. On the one hand, there are the ten SCSI device classes, of which 
hard disks and tape drives are two examples. Each class defines a specific model 
and command set for the devices of that class. On the other hand, a number of 
different physical devices can be supported by a single device class. For exam­
ple, consider the different types of tape drives available. One component of a 
device model is a set of parameters that adequately defines these differences. 

Transactions take place on the SCSI bus in more or less the following 
manner: an initiator sends a command to a target, and the target carries out the 
command and afterwards informs the initiator of the outcome. The nature of 



> 

Background 83 

Mbyte/sec 

40 Wide SCSI-2 

10 Fast SCSI-2 

5 Sync. SCSI-1 

Async. SCSI-1 

2 ClJ ClJ .Y >. .Y 

0 > .2: (f) 
~ 

(f) 

a: ~ -o '5 (U '5 
0 ClJ 

"0 2 ClJ (U .Y 0 0.. 0.. (f) <( 

.8 ~ I '5 a: 

t;: ~ 
0 

< 0 a: 

Figure 9.4 SCSI transfer rates. 

SCSI commands gives a great deal of autonomy to the device carrying out the 
command. In this way an initiator can send a SCSI floppy drive a FORMAT UNIT 

command and relinquish complete control to the drive. When the formatting is 
finished, the initiator is merely informed of success or failure. 

Another example of device autonomy is the READ command for disk 
drives. The initiator instructs the target to fetch a certain number of blocks start­
ing at a particular block number. The target calculates a physical address of 
cylinder, head, and sector number from the logical block number and sends the 
data to the initiator. An important difference with the SCSI interface is that this 
data is strictly usable information - no headers, no ECC, no gaps. All of these 
ancillary fields are managed by the target alone. This is important because dif­
ferent devices use completely different formats to store information on the medi­
um. This also explains how it is possible to produce a very inexpensive host 
adapter capable of controlling up to seven different devices. The intelligence is 
located in the devices, not in the host adapter. 

SCSI makes available a number of commands for general interrogation 
of devices on the SCSI bus. A possible scenario could begin with a host looking 
to see which SCSI IDs are occupied. Afterwards, the host can determine what 
types of devices are located at those IDs. Finally, device specific commands can 
be used to gather detailed information about each device. A device driver can be 
written in just this way without knowing the specific details of the device. 

Evolution of the The SCSI-1 standard originally contained many commands that have remained 
command sets unchanged in SCSI-2. SCSI-1 also left many parameters vendor unique or 

unspecified, which sidestepped the original intent of the standard. The result 
was that practically every device needed its own slightly different device driver. 
This complicated the goal of device independent software. It was at this point 



84 SCSI Bus and IDE Interface 

that many people felt that SCSI simply was not SCSI compatible. These were 
some of the problems that SCSI-2 solved, in addition to its improvements. 

The CCS supplement to SCSI-1, which became an official part of SCSI-2, 
had the aim of further standardizing the hard disk command set. The CCS intro­
duced the concept of mode parameter page for the MODE SELECT command and 
defined a set of defect list formats. Tape drives and other device classes, howev­
er, were not included in the CCS. These had to make do with SCSI-1 as it was 
originally formulated. 

Finally, a very significant step forward was made in the definition of 
SCSI-2. In SCSI-2, a model is defined for every device class. Moreover, the same 
level of detail used in the CCS for disk drives was used in defining the other 
device classes. It is worth noting that the first SCSI implementations were for 
streamer tape devices. It is fair to say that the goal of a device independent soft­
ware interface was reached with SCSI-2. 

Note that new devices are no longer shipped with a SCSI-1 implementa­
tion. Today, both tape devices and disk drives are equipped with SCSI-2. 
However, the CCS of SCSI-1 is still very accurate with respect to disk drives. 

9.3 Outlook 

The popularity of SCSI continues to grow. An increasing number of devices and 
host adapters are supporting more and more SCSI-2 features. Judging by its 
functionality and throughput capabilities, SCSI-2 should be able to meet the 
needs of peripheral devices for many years to come. 

The ANSI SCSI committee has already been working for quite some time 
on SCSI-3. In the tradition of the previous specifications, SCSI-3 will be compat­
ible with SCSI-2. Among more tangible improvements, the documentation for 
SCSI-3 is better organized and more modular. Figure 9.5 depicts this new orga­
nization. The shaded modules are those that already exist in SCSI-2. 

In the physical and protocol area, SCSI-3 defines new interface formats 
such as fiber optics. The idea of communicating with SCSI devices across a reg­
ular serial interface is also very attractive. An additional bus phase will be added 
to the parallel interface SCSI that has been discussed so far. Support for multiple 
hosts will be improved and 16-bit Wide SCSI over a single cable has been includ­
ed and already adopted by the Industry. 

One noteworthy addition to the new specification is a set of commands 
specifically for use in graphics applications. In fact, a number of new device 
classes can be expected. In general, we can expect device classes and models to 
be more strictly defined, along with command set implementation for those 
devices. 

Although it is true that SCSI-3 will offer a number of improvements over 
SCSI-2 in general, in the area of mass storage there is little new. SCSI-3 will offer 
alternatives in areas where at present the physical interface is available but the 
command sets are lacking. 

I 
~ 
{'; 

-------~ 



u 

Fibre 
channel 

IEEE 
P1394 

Figure 9.5 The SCSI-3 architecture. 

9.4 Documentation 

Background 85 

Almost all 
serial 

interfaces 

One goal of this book, in addition to providing a thorough overview of SCSI, is 
to give enough detailed information to make possible the undertaking of simple 
SCSI projects without the need of additional documentation. Naturally, if you 
wish to take advantage of the vendor specific features of a certain device, you 
will need that device's SCSI manual. For example, the optional commands and 
parameter pages can be found there. 

If you are interested in working with SCSI at a professional level, you 
cannot avoid getting a copy of the original ANSI documentation in addition to 
this book A project involving writing firmware for a SCSI target or host adapter 
would be of this magnitude, as would writing a software driver that used more 
than simply READ and WRITE commands. Copies of the standard may be ordered 
from: 

Global Engineering Documents, 
2805 McGaw, 
Irvine, CA 92714, USA 
Telephone: 1-800-854-7179 

The SCSI-2 document is called X3.131-1994. If you only need a copy of the SCSI-
1 standard (which is considerably thinner than SCSI-2), the name is X3.131-1986. 

You can also download the SCSI documentation from the SCSI Bulletin 
Board. The telephone number and the procedure are described in detail in 
Appendix D. 



86 SCS/Busand/OE~~r~ce 

The 
organization of 

the SCSI 
standard 

The SCSI-2 standard is a document of about 600 pages, ·which is organized in the 
following way: 

1 Scope 
2 Reference standards and organizations 
3 Glossary and conventions 
4 Physical characteristics 

4.1 Physical description 
4.2 Cable requirements 
4.3 Connector requirements 
4.4 Electrical description 
4.5 SCSI bus 
4.6 SCSI bus signals 
4.7 SCSI bus timing 
4.8 Fast synchronous transfer option 

5 Logical characteristics 
5.1 SCSI bus phases 
5.2 SCSI bus conditions 
5.3 SCSI phase sequences 
5.4 SCSI pointers 
5.5 Message system description 
5.6 SCSI messages 

6 SCSI commands and status 
6.1 Command implementation requirements 
6.2 Command descriptor block 
6.3 Status 
6.4 Command examples 
6.5 Command processing considerations and exception conditions 
6.6 Contingent allegiance condition 
6.7 Extended contingent allegiance condition 
6.8 Queued I/0 processes 
6.9 Unit attention condition 

Sections 7 to 17 of the standard deal with the individual device classes. They are 
all organized in the same way: first comes a description of the device model of 
the class, followed by a summary of commands, and finally the MODE parame­
ters for the class. 

7 All device types 
8 Direct-access devices 
a Sequential-access devices / 

10 Printers 
11 Processor devices 
12 WORM 
13 CD-ROM 
14 Scanners 
15 Optical memory devices 
16 Medi urn-changer devices 

~ 

.L 



17 Communication devices 
A-J Appendices 

Background 87 

Figure 9.6 shows a page from the actual SCSI documentation. Many drive man­
ufacturers organize their own manuals in a similar manner, including, natural­
ly, only those chapters which are relevant for a given device. The result is that 
once you are familiar with the ANSI specification, it is very easy to find your 
way around in SCSI manuals in general. If you know one- you know them all .. 
This makes it easy to concentrate on important things, namely, implementation 
details. 



88 SCSI Bus and IDE Interface 

A 11 Device Types 

7.2.5 INQUIRY Command 

I Bit I 7 
jBytel 

IO 

6 

3/9/90 

Table 7-14: INQUIRY Command 

5 4 3 2 1 0 

Operation Code (12h) 

j1 1 Logical Unit Number Rserved !EVPDI 
------------ ------------------------------------------------------

12 Page Code 
------------- -----------------------------------------------------

13 Reserved I 
-------------------------------------------------------------------

14 Allocation Length I 
------------------------------------------------------------------

15 Control 

The INQUIRY command (Table 7-14) requests that information re­
garding parameters of the target and its attached peripheral de­
vice(s) be sent to the initiator. An option allows the initiator 
to request additional information about the target or logical unit 
(see 7.2.5.2). 

An enable vital product data (EVPO) bit of one specifies that 
the target shall reiurn the optional vital product data specified 
by the page code field. If the target does not support vital pro­
duct data and this bit is set to one, the target shall return 
CHECK CONDITION status with the sense key set to ILLEGAL REQUEST 
and an additional sense code of INVALID FIELD IN COB. 

An EVPD bit of zero specifies that the target shall return the 
standard INQUIRY data. If the page code field is not zero. the 
target shall return CHECK CONDITION status with the sense key set 
to ILLEGAL REQUEST and an additional sense code of INVALID FIELD 
IN COB. 

The page code field specifies which page of vital product data 
information the target shall return (see 7.3.4). 

The INQUIRY command shall return CHECK CONDITION status only 
when the target cannot return the requested INQUIRY data. 

IMPLEMENTORS NOTE: It is recommended that the INQUIRY data be 
returned even though the peripheral device may not be ready for 
other commands. 

If an INQUIRY command is received from an initiator with a pen­
ding unit attention condition (i.e., before the target reports 
CHECK CONDITION status). the target shall perform the INQUIRY com­
mand and shall not clear the unit attention condition (see 6.9). 

SCSI-2 draft proposed American National Standard Revision 10c 

Figure 9.6 Sample page from the SCSI-2 standard. 



10 SCSI hardware 

10.1 SCSI configurations 

SCSI devices SCSI makes it possible to connect up to eight devices using a single bus. At any 
given time only two of the devices may communicate with one another. The 
device that issues a command is called the initiator, while the device that exe­
cutes it is called the target. SCSI devices are uniquely identified by a SCSI ID, 
which also serves as its address. The ID simultaneously defines the device's pri­
ority for arbitration: ID 0 has the lowest priority, ID 7 the highest. 

Host adapters 
and SCSI 

controllers 

These and other bare essentials are described in the ANSI standard in 
section 4.5; however, some clarification is in order. Whenever two devices com­
municate with each other, no other devices take part in the exchange. The only 
way to affect all devices simultaneously is through a SCSI reset, for which there 
is a special bus signal. Outside of this there is no way for a third-party device to 
interrupt communication across the bus. All devices, regardless of priority, must 
wait until the bus is freed by those devices using it. 

In fact, most devices cooperate as much as possible in keeping the bus 
free. As soon as a command has been received by a target it will release the bus 
for other devices before executing it. After the work is done it reconnects to the 
initiator and delivers any information. The mechanism for this -
disconnect/reconnect - is covered in Chapter 11, where the bus protocol is 
described in greater detail. 

The SCSI ID for each device on the bus is set independently and must be 
unique. The priority associated ·with the ID plays only a secondary role; it is only 
important when two or more devices attempt to use the bus at the same time. 
When a connection has been established between two devices or when there is 
a substantial delay (2.4 ps) between requests for the bus, priority no longer plays 
a role. 

A computer has access to the SCSI bus via a host adapter. This host adapter may 
be implemented as a separate board, as is the case with most PC systems, or it 
may be integrated onto the system motherboard, as is popular with worksta­
tions. It is also possible for a system to have a number of host adapters with 
access to as many SCSI buses (Figure 10.1). In such a case each SCSI bus is 

89 



90 SCSI Bus and IDE Interface 

Initiator and 
target 

Drive 1 Drive 2 

ID 0 ID 1 

Host adapter A 

SCSIID 7 

Host adapter B 

I 

SCSIID 7 

[;] Host computer I 
CD-ROM\ Drive 2 

ID 0 ID 1 
I 

4 

Figure 10.1 Computer with multiple SCSI buses. 

completely separate from the others. For instance, the individual buses are 
allowed to use the same SCSI IDs since there is no chance of confusion. 

For peripherals access to the bus is provided through a SCSI controller. 
The controller itself has the SCSI ID and the peripheral device is seen as a LUN. 
Most commonly the controller is embedded into the peripheral. In this case only 
a single LUN is supported, namely the peripheral itself. However, controllers 
are also implemented separately, in which case they are known as bridge con­
trollers. Figures 9.2 and 10.2 show SCSI controllers with LUNs. 

Almost by convention, the first host adapter of a SCSI bus system usual­
ly receives ID 7. The remaining host adapters are assigned IDs from 6 downward. 
This convention, however, is not laid down anywhere in the SCSI specification. It 
is the responsibility of the software to handle all possible ID assignments. 

Devices on the SCSI bus play either the role of an initiator or that of a target. 
These roles are completely independent of whether a device is a host adapter or 
other component. Originally, most devices assumed one role or the other, then it 
was the case that host adapters were strictly initiators and controllers strictly tar­
gets. However, more and more devices are able to assume either role. Almost all 
tape drives, for example, are capable of becoming an initiator during the course 
of the COPY command, when data is copied between the drive and a third device. 

An initiator begins a transaction on the SCSI bus by selecting a target. 
However, as soon as the selection is complete, the target takes control of the bus 
protocol. The target decides whether or not to free the bus and afterwards when 
to reconnect to the initiator. Michael Schultz, a former colleague of mine, coined 
the phrase, 'The initiator is the master in function and the slave in protocol; the 
target is the slave in function and the master in protocol.' 



-

SCSI configura­
tions 

SCSI 10 

SCSI controller 

LUN 0 

Device 1 
Control electronics 

Physical 
device 1 

SCSI hardware 91 

SCSI 10 

SCSI controller 

L .. ___ P_h_y-si-ca-1 _ _,II~~~ - device 1 r> 

Figure 10.2 Embedded SCSI and bridge controllers. 

SCSI supports any mixture of initiators and targets as long as there is at least one 
of each" The following three base configurations represent the range of com­
plexity to be found in a typical SCSI system (Figure 10.3). 

Single initiator, single target 
This is the most simple and probably the most common configuration. A single 
initiator, a host adapter, communicates with a single target, the peripheral 
device. This configuration is also the most SASI-like. You will often read that dis­
connect/reconnect for this setup is superfluous. This is not exactly true, as we 
will see in Section 11.4. 

Single initiator, multiple targets 
This configuration makes good on one of SCSI's promises: connectivity for mul­
tiple device types using a single I/0 bus. In this case it is important that all 
devices strive to keep the bus as free as possible by using the disconnect/ recon­
nect feature. Although this feature is optional for all versions of SCSI, in practice 
most devices support it. If you install an older device that does not support this 
feature try to limit the number of peripherals on this bus. 

Multiple initiators, multiple targets 
In this configuration it is good practice for an initiator to reserve a target \Nhen 
accessing it. This rule of thumb is naturally dependent on the device class. 
Operating systems do not like it when more than one host has ·write access to a 
single file on a disk drive. For read-only CD-ROMs, on the other hand, this is not 
a problem. I recommend that targets be reserved even in systems with only a 
single initiator. The software overhead is minimal compared with the savings 
when one day an additional host is added to the system. 



92 SCS!Busand/OE~~rfuce 

10.2 

(D 
li 

Computer -g ;:: 
~ =::i 

I 

Single initiator 

0 
li 

Computer ~ ; r 
0 l 

Single initiator 

li 

Computer i; 
I 

"' Q 

Computer i ~ " 
I 

Multiple initiators 

Single target 

Multiple targets 

l Controller --~~~~~~~~~~~~~~~~~~--~~~ 
!0 1 

Multiple targets 

Figure 10.3 Basic SCSI configurations. 

SCSI signals 

The standard 8-bit wide SCSI bus has 18 signals. These are all contained in a single 
50-pin flat-band cable, the so-called A cable. In this book all timing diagrams show 
signals as active-high; in other words, a logic 1 is represented by a high signal. In 
reality, however, signals are either active-low or differential for SCSI. Termination 
resistors hold the signals nonactive until bus drivers drive the signal active. This 
makes it possible to leave devices on the bus whose power has been turned off. 

I 

_ill 



Wide SCSI 

SCSI hardware 93 

+5 v 

Bus 

signal 

I j_ 
Ground 

6 

Signal Signal Signal Terminator 

Device Device 2 Device 3 

Figure 10.4 Wired-or bus signals. 

Three of the SCSI signals BSY, SEL, and RST, must be implemented as 
wired-or. This allows more than one driver to activate the signal at a given time. 
Of course, only one driver is necessary to make it active. All other signals need 
not be wired-or and are usually implemented with tri-state drivers. 

Figure 10.4 shows a wired-or signal implemented with open collector 
transistors. As long as the transistor is inactivate, the terminator assures the 
high, inactive state. When the transistor turns on it pulls the voltage down to the 
active state. Even if more than one transistor becomes active simultaneously the 
result is the same. 

Wide SCSI is a SCSI-2 option, which makes possible 16- or 32-bit wide data trans­
fers. In order to handle the extra width an additional 29 signals are necessary. 

Data 
phase 

A cable B cable A cable B cable A cable 

Figure 10.5 Byte ordering for Wide SCSI. 



94 SCSI Bus and IDE Interface 

Termination 

The data parity 
bit 

32-Bit SCSI 
host adapter 

16-Bit SCSI 
disk drive 

8-Bit SCSI 
tape drive 

II II 
32-Bit SCSI 

disk drive 

Figure 10.6 Mixed configuration with Wide SCSI. 

These signals reside on the 68-pin B cable. Figure 10.5 shows the ordering of 
bytes for 8-, 16- and 32-bit wide transfers. The B cable is always 68-pin, even if 
only 16-bit transfers take place. 

As with synchronous transfers, the devices involved negotiate whether 
or not to use Wide SCSI. This is possible because commands and messages 
always take place across the 8-bit bus. It is even possible to mix devices using 
different data widths on the same bus. Figure 10.6 shows such a configuration. 

Table 10.1 lists all SCSI signals along with their function. A look at the 
SCSI bus phase descriptions in Section 10.6 will make it easier to understand the 
role of each signal. 

Each end of the physical SCSI bus must be terminated with the appropriate 
resistors. Most SCSI devices have sockets for the terminating resistors that facil­
itate easy removal. The resistors in the two devices located at the ends of the bus 
should be left installed; the other devices should have their resistors removed. 
If a cable does not happen to end at a device then this loose end must be termi­
nated with external resistors. 

A SCSI terminator must be supplied with +5 V. A signal on the A cable 
is reserved for this purpose. This makes it possible for a device to provide other 
devices with terminator power. In general, however, this option is not used 
because most devices supply their own terminator power. 

The only way to detect a corrupted data byte sent over the SCSI bus is through 
the parity bit. Parity works as follows: the sender of a data byte counts the num­
ber of 1s contained in the byte. If the total number is odd the parity bit is set to 
0; if it is even, the parity bit is set to 1. In this way the total number of ls should 
always be odd, hence SCSI uses what is called odd parity. The receiver then 
checks to see if the total number of 1s is odd. When this is the case the receiver 



SCSI hardware 95 

Table 10.1 The SCSI signals. 

Abbreviation Name Function 

BSY 

SEL 

C/D 

I/0 

MSG 

REQ 

REQB 

ACK 

ACKB 

ATN 

RST 

DB(7) ... 

DB(O) 

DB(P) 

DB(31) ... 

DB(8) 

DB(P3) ... 

DB(Pl) 

BUSY Wired-or signal indicating that the bus is in use 
SELECT Wired-or signal used during selection and reselection 
COMMAND/DATA Used by the target to indicate the type of data transfer 
INPUT I OUTPUT Used by the target to indicate the direction of the data 

MESSAGE 

REQUEST 

ACKNOWLEDGE 

ATTENTION 

RESET 

DATA BUS 

DATA BUS 

transfer (with respect to the initiator). When active the 
initiator receives data. Also differentiates selection from 
reselection 
Used by the target during the MESSAGE phase 
Used by the target during the handshake sequence. 
This signal exists on both the A cable (REQ) and B cable 
(REQB) 

Used by the initiator during handshake sequence. Also 
exists on both cables 
Used by the initiator to indicate the ATTENTION condi­
tion 
Wired-or signal that causes the RESET condition 
8 data bits and parity bit that comprise the data bus. 
The data bits are also used during the arbitration 
phase. Parity is odd 
24 data bits and 3 parity bits that expand the data bus 

assumes that the data is intact. The implementation of a parity bit went from 
optional in SCSI-1 to mandatory in SCSI-2. There is one parity bit for every eight 
data bits (that is, four for 32-bit Wide SCSI). If a SCSI device detects a parity error 
it will ask that the data be sent again. A detailed example of this can be found 
on page 122. 

One deficiency in the parity bit approach is that only an odd number of 
'bad' bits can be detected. This means that it is possible for corrupted data to go 
unnoticed (Figure 10.7). If an initiator sends a byte where two bits change their 
value on the bus, the parity bit will still be good. The target receives the byte and 

Bit 7 6 5 4 3 2 0 p 

Original 0 I 1 
I jo lo 

I \o io l I 
Parity OK 

1 Error I 11 I 0 1<~1 ° I 0 !o !o l 1 I Parity error 

2 Error I !1 l 1 I o I o jo jo jo I I Parity OK! 

Figure 10.7 Shortcomings of SCSI parity. 



96 SCSI Bus and IDE Interface 

has no way of detecting the corrupted byte. When the target writes this data to 
the drive the error remains. Although this is an obvious shortcoming_, in practice 
it is extremely rare for an even number of bits to change their value. 

Using a single parity bit as the sole method of error detection is not 
uncommon. Almost all memory buses_, from PC to mainframe, share this design. 
Although I/0 buses are generally exposed to noisier environments than inter­
nal buses_, this simple method of insuring data integrity proves to be effective 
here as well. 

10.3 Cables and connectors 

SCSI cables The single-ended and the differential pin assignments for SCSI are designed to 
make it possible to use the same cables. The A cable is a 50-pin cable while the 
B cable is 68-pin. Either implementation may use either ribbon cable or twisted­
pair_, although the latter is recommended for differential buses. Cables should 
have an impedance between 90 and 140 ohms. 

When Fast SCSI is being used- that is_, transfer rates above 5 MHz- the 
cable requirements are somewhat stricter. The cable should be shielded with an 
impedance between 90 and 132 ohms and a signal attenuation of less than 0.095 
dB at 5 MHz. 

Connectors Ribbon cables with crimped-on connectors are the most common choice for 
device intemal SCSI connections. The device electronics typically use a 50-pin 
male header which fits the female ribbon cable connector. Table 10.2 shows the 
pin assignments for different cable types_, including ribbon cable. 

10.4 

For extemal connections between devices shielded twisted-pair cables 
are recommended. Here either high-density connectors (shielded or unshielded) 
or Centronics connectors (unshielded) may be used. For both of these the pin 
assignments are identical_, as can be seen in Table 10.2. 

Finally_, there is a pin assignment that is not described in the SCSI speci­
fication. There are a number of inexpensive host adapters, as well as the 
Macintosh, that use this DB25 connector for the bus. This assignment scheme is 
also shown in Table 10.2. 

Single-ended SCSI 

The vast majority of devices sold today are equipped with single-ended SCSI. 
The main reason for this is the extra cost in implementing differential and the 
cost of twisted-pair cabling. Most SCSI chips have single-ended drivers already 
built in. Single-ended SCSI allows a bus of up to 6 meters. This is adequate for 
most applications within a single enclosure. Also allowed are short extensions 
from the bus, so-called stubs, of 10 em or less. These must be kept at least 30 em 

i 

,~}l 



Signal levels 
and termination 

SCSI hardware 97 

Table 10.2 A cable for single-ended SCSI. 

Signal Centronics 
high 

density 

Ground 1 
Ground 2 
Ground 3 
Ground 4 
Ground 5 
Ground 6 
Ground 7 
Ground 8 
Ground 9 
Ground 10 
Ground 11 

Reserved 12 
Not connected 13 

Reserved 14 
Ground 15 
Ground 31 
Ground 17 
Ground 18 
Ground 19 
Ground 20 
Ground 21 
Ground 22 
Ground 23 
Ground 24 
Ground 25 

Centronics DB25 
high 

density 

26 14 
27 2 
28 15 
29 3 
30 16 
31 4 
32 17 
33 5 
34 18 
35 19 
36 13 
37 9 
38 
39 
40 8 
41 20 
42 6 
43 23 
44 22 
45 10 
46 21 
47 7 
48 11 
49 24 
50 12 

Signal 

DB(O) 

DB(l) 

DB(2) 

DB(3) 

DB(4) 

DB(5) 

DB(6) 

DB(7) 

DB(P) 

Ground 
Ground 
Reserved 

+5 V Terminator 
Reserved 
Ground 

ATN 

Ground 
BSY 

ACK 
RST 

MSG 

SEL 

C/o 
REQ 

170 

apart. Bear in mind that the distance from the protocol chip to the connector 
must be attributed to the stub length. 

Figure 10.8 shows the implementation of a typical single-ended SCSI signal. The 
output driver is a NAND gate. One input is for the signal and the other for 
enabling the output. The driver must meet the following specifications: 
2.5-5.25 V (inactive); 0.0-0.5 V (active). It must be capable of sinking 
48 rnA at 0.5 V, of which 44 rnA come from the termination. The input must rec­
ognize 0.0-0.8 V as active and 2.5-5.25 V as inactive. The input current for an 
active signal of 0.5 V must lie between 0.0 and -0.4 rnA. For an inactive signal 
the current must lie between 0.0 and 0.1 rnA at 5.25 V. The input hysteresis must 
be at least 0.2 V and the input capacitance at most 25 pF. These values must also 
hold for devices without power. 

Also shown in the figure is the signal termination. This consists of a pair 
of resistors for each signal of the SCSI bus. The 220 ohm resistor connects to 
+5 V while the 330 ohm connects to ground. Together the resistors bring the sig­
nal level to 3 V when no drivers are active. The resistors are allowed a tolerance 



98 SCSI Bus and IDE Interface 

.---o +5 v 

0220 ohm 

Signal out Bus 

Enable signal 

~ 
330 

Signal in ohm 

Terminator 

Figure 10.8 Typical single-ended SCSI. 

of± 5°/o although± 1% is recommended. This passive termination scheme was 
introduced in SCSI-1. 

SCSI-2 allows an alternative for terminating a single-ended bus. The 
most important condition here is that the signal impedance lie between 100 and 
132 ohms. This circuit, which is shown in Figure 10.9, is less sensitive to noise 
than the passive termination. 

+5 v 
,-------------------------{)terminator 

I 

l 
T 
I 
I 

1 

4.7 uF 

18 x 110 ohm 

Figure 10.9 Altemative SCSI-2 termination. 



Improper 
termination 

Table 10.3 B cable for single-ended Wide SCSI. 

Signal 

Ground 
Ground 
Ground 
Ground 
Ground 
Ground 
Ground 
Ground 
Ground 
Ground 
Ground 
Ground 
Ground 
Ground 
Ground 
Ground 

Connector 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

+5 V terminator 17 
+5 V terminator 18 

Ground 19 
Ground 20 
Ground 21 
Ground 22 
Ground 23 
Ground 24 
Ground 25 
Ground 26 
Ground 27 
Ground 28 
Ground 29 
Ground 30 
Ground 31 
Ground 32 
Ground 33 
Ground 34 

Connector 

35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 

SCSI hardware 99 

Signal 

Ground 
DB(8) 

DB(9) 

DB(lO) 

DB(ll) 

DB(l2) 

DB(l3) 

DB(14) 

DB(15) 

DB(Pl) 

ACKB 

Ground 
REQB 

DB(16) 

DB(17) 

DB(18) 

+5 V terminator 
+5 V terminator 

DB(19) 

DB(20) 

DB(21) 

DB(22) 

DB(23) 

DB(P2) 

DB(24) 

DB(25) 

DB(26) 

DB(27) 

DB(28) 

DB(29) 

DB(30) 

DB(31) 

DB(P3) 

Ground 

What happens when a single-ended bus is incorrectly terminated? I can give the 
following account from my own experience. If the bus has no termination at 
either end, nothing will work. This rarely happens, however, because usually 
the host adapter has its termination installed. In general a SCSI bus vv-ith termi­
nation at only one end will work without problems. However, if the bus is very 
long or is in a noisy environment then it will be susceptible to intermittent hang­
ing. This is also true for other forms of improper termination. When the termi­
nation is not located at the physical end of the bus the problem will usually go 
unnoticed for quite some time. A bus with three terminators also tends to func­
tion without difficulties, in my experience. 

This tolerant behavior is attractive but can lead to insidious problems. It 
is true that an incorrectly terminated bus will often work quite well. However, if 



1 00 SCSI Bus and IDE Interface 

the system is then moved or an additional device is added to the bus it may sud­
denly hang or show intermittent problems. When this occurs it always makes 
sense to begin looking for the problem by asking whether the bus is properly ter­
minated. 

Pin assignments The various connectors defined in the SCSI standard were described in Section 
10.3. There are at least three different pin layouts for the different connectors. 
The same connectors always use the same assignment. Table 10.2 lists these pin 
assignments. The pin assignments for the B cable for single-ended Wide SCSI are 
given in Table 10.3. 

10.5 Differential SCSI 

Signal levels 
and termination 

Differential SCSI is used mostly in applications that require cable lengths greater 
than 6 meters. The maximum length allowed here is 25 meters (about 80 feet). 
Stub lengths must be less than 20 em. ANSI recommends that only twisted-pair 
cables be used for a differential bus. 

Each differential signal on the SCSI bus uses two wires, named +signal and -sig­
nal. The signal is recognized as active when the voltage of +signal is greater than 
that of -signal and inactive when the converse is true. 

The sensor signal makes it possible to implement a circuit for protecting 
the differential drivers. The corresponding pin on the single-ended cable is con­
nected to ground. In this way if a cable with a single-ended device attached is 

+5 V Terminator 

Output enable 

Signa! out 
- Bus signal 

Signal in + Bus signal 

Input enable 

1/8 SN75176 

Terminator 

Figure 10.10 Differential SCSI drivers. 



SCSI hardware 101 

Table 10.4 A cable for differential SCSI. 

Signal Connector Connector Signal 
assignment assignment 

2 2 

Ground 1 26 Ground 
+DB(O) 2 27 -DB(O) 
+DB(1) 3 28 -DB(1) 
+DB(2) 4 29 -DB(2) 
+DB(3) 5 30 -DB(3) 
+DB(4) 6 31 -DB(4) 
+DB(5) 7 32 -DB(5) 
+DB(6) 8 33 -DB(6) 
+DB(7) 9 34 -DB(7) 
+DB(P) 10 35 -DB(P) 

N.C. 11 36 Ground 
Reserved 12 37 Reserved 

+5 V terminator 13 38 +5 V terminator 
Reserved 14 39 Reserved 

+ATN 15 40 -ATN 
Ground 31 41 Ground 

+BSY 17 42 -BSY 
+ACK 18 43 -ACK 
+RST 19 44 -RAT 
+MSG 20 45 -MSG 
+SEL 21 46 -SEL 
+C/D 22 47 -C/D 
+REQ 23 48 -REQ 
+I/0 24 49 -I/O 

Ground 25 50 Ground 

connected to a differential device the sensor signal becomes grounded, disabling 
the differential drivers. Figure 10.10 shows a differential signal along with its ter­
mination. Tables 10.4 and 10.5 show the A and B cables for differential SCSI, 
respectively. 



1 02 SCSI Bus and IDE Interface 

10.6 

Table 10.5 B cable for differential SCSI. 

Ground 1 35 Ground 
+DB(8) 2 36 -DB(8) 
+DB(9) 3 37 -DB(9) 

+DB(lO) 4 38 -DB(lO) 
+DB(ll) 5 39 -DB(ll) 
+DB(12) 6 40 -DB(12) 
+DB(13) 7 41 -DB(13) 
+DB(14) 8 42 -DB(14) 
+DB(15) 9 43 -DB(15) 
+DB(P1) 10 44 -DB(P1) 
+ACKB 11 45 -ACKB 
Ground 12 46 N.C. 
+REQB 13 47 -REQB 
+DB(16) 14 48 -DB(16) 
+DB(17) 15 49 -DB(17) 
+DB(18) 16 50 -DB(18) 

+5 V terminator 17 51 +5 V terminator 
+5 V terminator 18 52 +5 V terminator 

+DB(19) 19 53 -DB(19) 
+DB(20) 20 54 -DB(20) 
+DB(21) 21 55 -DB(21) 
+DB(22) 22 56 -DB(22) 
+DB(23) 23 57 -DB(23) 
+DB(P2) 24 58 -DB(P2) 
+DB(24) 25 59 -DB(24) 
+DB(25) 26 60 -DB(25) 
+DB(26) 27 61 -DB(26) 
+DB(27) 28 62 -DB(27) 
+DB(28) 29 63 -DB(28) 
+DB(22) 30 64 -DB(28) 
+DB(30) 31 65 -DB(28) 
+DB(31) 32 66 -DB(31) 
+DB(P3) 33 67 -DB(P3) 
Ground 34 68 Ground 

SCSI bus phases 

All transactions on the SCSI bus are composed from eight distinct bus phases. 
Everything begins and ends with the BUS FREE phase. BUS FREE describes the situ­
ation where no device is in control of the SCSI bus. 

Three phases deal exclusively with bus protocoL During the ARBITRATION 

phase one or more initiators will indicate their wish to use the bus. If more than 
a single initiator arbitrates~ the one with the highest SCSI ID wins. The success­
ful initiator then uses the SELECTION phase to choose a target with which to com­
municate. The RESELECTION phase fulfills a similar function: after successfully 
arbitrating~ a target that released the bus to execute a command re-establishes 
the connection to its initiator. 



-
SCSI hardware 1 03 

Figure 10.11 Simplified SCSI phase diagram. 

Finally, there are four phases for exchanging data. The COMMAND phase 
is used for transferring command opcodes, the DATA phase for data bytes. 
During a MESSAGE phase a target sends or receives information concerning the 
protocol itself. Finally, using the STATUS phase the target concludes a SCSI com­
mand and informs the initiator of its success or failure. 

At any given time the SCSI bus can be in only one specific bus phase. The 
succession of phases is restricted; it is not possible for any phase to follow any 
other phase. Figure 10.11 shows a simplified phase diagram of the normal pro­
gression of a command. After BUS FREE follows ARBITRATION, SELECTION and aMES­
SAGE OUT phase. After these come the COMMAND and DATA phases, followed by a 
STATUS phase. The rules governing phase changes have evolved between SCSI-1 
and SCSI-2. While ARBITRATION and the MESSAGE OlJT phase were optional after a 
selection in SCSI-1, these have become mandatory in SCSI-2. 

Figure 10.12 shows the complete SCSI phase diagram for SCSI-2. The 
arrows between the phases indicate that a transition from one phase to another 

SCSI reset 
or protocol error 

SELECTION 

l;:;rP 
I 
t IRESELECTION 
L____j 

i I 

Figure 10.12 Complete SCSI phase diagram. 



104 SCS/Busand!DE~~r~ce 

Seq. Phase 
Nr. Symbol Hex Comment 

0 BUS FREE 
1 ARBITRATION co ID 7 and ID 5, ID 7 wins 
2 SELECT 81 Target- ID 0 
3 MESSAGE OUT 80 IDENTIFY 
4 COMMAND 00 TEST UNIT READY 
5 COMMAND 00 
6 COMMAND 00 
7 COMMAND 00 
8 COMMAND 00 
9 COMMAND 00 
10 STATUS 00 GOOD 
11 MESSAGE IN 00 COMMAND COMPLETE 
12 BUS FREE 00 

Figure 10.13 Phase sequence for TEST UNIT READY. 

is allowed. Thus, for example, in SCSI-2, COMMAND and DATA phases can only 
occur after a MESSAGE phase has taken place. Likewise, a MESSAGE phase must 
also conclude these phases. 

At first glance this phase diagram can be very confusing; much more so 
than the average SCSI command. Figure 10.13 depicts an actual TEST UNIT READY 

command as captured by a SCSI analyzer. It begins with BUS FREE. After the typ­
ical sequence ARBITRATION, SELECTION, MESSAGE (IDENTIFY) comes a COMMAND 

phase of six bytes. Since no data is transferred with this command, the succes­
sion concludes immediately with the STATUS phase and the MESSAGE (coMMAND 

COMPLETE). 

SCSI bus timing When electrical signals change their value, they never do so as cleanly and 
abruptly as is shown in a timing diagram. In reality edges are much rounder, 
and- as is the case with the SCSI bus, where relatively long cables are used­
reflections lead to 'ringing' and other distortions. In order to prevent these phe­
nomena from causing ill effects, a number of delays have been built into the pro­
tocol. These delays allow the signal enough time to settle on the new value. 

Table 10.6 Timing values for Fast SCSI. 

Name Time 

Fast assertion period 30 ns 

Fast cable skew delay 5 ns 

Fast deskew delay 20 ns 

Fast hold time 10 ns 
Fast negation period 30 ns 

Description 

Minimum time that REQ (REQB) and ACK (ACKB) must be 
active for fast synchronous transfers 
Maximum time skew between any two signals for fast 
transfers 
Minimum time required for deskew of certain signals 
for fast synchronous transfers 
For fast synchronous transfers 
Minimum time for fast transfers between the two REQ 

(REQB) pulses of a target. The same holds for the ACK 

(ACKB) pulses of an initiator. 



The BUS FREE 

phase 

SCSI hardware 1 05 

Table 10.7 SCSI timing values. 

Name 

Arbitration delay 
Assertion period 

Bus clear delay 

Bus free delay 

Bus set delay 

Bus settle delay 

Cable skew delay 

Data release delay 

Deskew delay 
Disconnection delay 

Hold time 

Negation period 

Power on to selection 

Reset to selection 

Reset hold time 
Selection abort time 

Selection timeout delay 

Transfer period 

Time 

2.4 ps 
90 ns 

800 ns 

800 ns 

1.8 ps 

400 ns 

10 ns 

400 ns 

45 ns 
200 ps 

45 ns 

90 ns 

10 s 

250 ms 

25 ps 
200 ms 

250ms 

pro gr. 

Description 

During arbitration 
REQ (REQB) and ACK (ACKB) must be active at least this 
amount of time 
A device must release all signals within this amount of 
time after it has detected a BUS FREE phase 
After detecting a BUS FREE phase a device must wait at 
least this long before arbitrating for the bus 
Maximum time a device may activate BSY and its ID 
during arbitration 
Minimum time a device must wait in order that all bus 
signals settle to their new values 
Maximum difference in propogation time for any two 
signals of the SCSI cable 
Maximum time for an initiator to release DB(x) active 
after I/o goes false 
Minimum time neccessary to deskew certain signals 
When a target has freed the bus due to a DISCONNECT 

message it should wait at least this long before taking 
part in arbitration 
For synchronous transfers the data must be set at least 
this long after the activation of REQ (REQB) or ACK (ACKB) 

Minimum time that target must negate REQ (REQB) for 
synchronous transfers. The same holds for ACK (ACKB) 

for the initiator 
Recommended maximum time that a target should 
need after power-up to reply to commands like TEST 

UNIT READY 

Recommended maximum time that a target should 
need after a SCSI reset to reply to commands like TEST 

UNIT READY 

Minimum time that RST must be active 
Maximum time for a device to activate BSY after being 
selected 
Recommended minimum time that device should wait 
for a busy response during a SELECTION 

Minimum time between two REQ or ACK pulses for syn­
chronous transfers 

Tables 10.6 and 10.7list and briefly explain all of the timing values defined in the 
SCSI protocol. More detailed explanations follow in the sections on the individ­
ual bus phases. 

When the SCSI bus is not being used by a device it remains in the BUS FREE phase. 
The bus is defined to be in this phase when the signals BSY and SEL have been 
inactive for longer than a bus settle delay of 400 ns. After power has been turned 
on or a SCSI reset has occurred the bus enters the BUS FREE phase. 



106 SCSI Bus and IDE Interface 

The ARBITRATION 

phase 

The SELECTION 

phase 

In normal operation there are two standard cases in which the BUS FREE 

phase is entered. The first occurs after a command has been executed and the 
message COMMAND COMPLETE has been sent. The other normal case occurs when 
a target releases the bus after first sending a DISCONNECT message. 

In addition to those just mentioned, there are exceptional cases, which 
the initiator can bring about by sending a message to the target. In response to 
these messages the target releases the bus. These messages are ABORT, BUS DEVICE 

RESET, RELEASE RECOVERY, ABORT TAG and CLEAR QUEUE. If an initiator detects a BUS 

FREE during the execution of a command that did not follow from one of these 
messages, it treats this as an error. 

This error is called unexpected disconnect. The initiator then attempts to 
determine the reason for the error by sending a REQUEST SENSE command to the 
target. Another error situation that results in a BUS FREE occurs when a device 
does not respond after selection or reselection. 

The ARBITRATION phase is used to determine which device obtains control of the 
bus after a BUS FREE. If a device wishes to arbitrate for the bus it simultaneously 
activates the BSY signal along with the data bit that corresponds to its SCSI ID. 
All other signals must be left alone. Figure 10.13 shows the data bus with COh 
during an ARBITRATION phase. Since DB(7) and DB(5) are set this means that the 
devices with SCSI IDs 7 and 5 are competing for the bus. 

At this point each device arbitrating for the bus must wait for at least an 
arbitration delay of 2.4 ps. The device then looks at the data bus to see if a SCSI 
ID greater than its o-vvn has been asserted. The device with the higher ID, in this 
example ID 7, wins the arbitration and in response asserts the SEL signal. This 
indicates to all other devices that they should release BSY and remove their ID bit 
from the data bus within a bus clear delay of 800 ns. The delay concludes the 
ARBITRATION phase. The successful device now commences with either a SELEC­

TION or RESELECTION phase. 
As opposed to SCSI-1, arbitration is mandatory in SCSI-2 even when the 

configuration includes only one initiator. In fact, targets also must arbitrate for 
the bus. This occurs after disconnecting from an initiator to execute a command. 
When the target is ready it arbitrates for the bus and reselects the initiator. This 
means that even in a configuration -vvith a single initiator and a single target true 
competition for the bus can take place; for example when a target ·wants to 
reconnect to the initiator at the same time as the initiator wants to send the tar­
get another command. 

A selection phase takes place after an initiator wins the arbitration phase. If a tar­
get wins arbitration then the reselection phase follows. Selection and reselection 
differ in the state of the I/0 signal. For reselection I/0 is asserted; for selection 
it is not. A device can therefore identify itself as an initiator by not asserting I/0 
during the selection phase. 

During the selection phase a connection is established with the desired 
target. BSY, SEL, and the initiator ID are all still active from arbitration. Now the 
initiator asserts the data signal corresponding to the ID of the desired target 

! 
t 

_.J.. 



SCSI hardware 1 07 

along with the ATN signal. The attention signal indicates that a MESSAGE OUT 

phase will follow selection. In the example in Figure 10.13, the value 81h is on 
the data bus during selection. This means that the initiator with ID 7 wishes to 
establish a connection with the target with ID 0. After at least two deskew delays 
the initiator releases BSY. 

At this point all devices look to see whether their SCSI ID bit is asserted 
on the data bus. The selected device identifies the initiator by the other set data 
bit on the bus. Before a select abort time of 200 ms has elapsed the selected 
device must assert BSY and take over control of the SCSI bus. This is an impor­
tant moment. From this point on the target has complete control over the 
sequencing of SCSI bus phases. It decides when to receive messages, command 
bytes or data from the initiator and when to send status. The target also decides 
whether or not to disconnect during a command and when to reconnect. 
Although the initiator controls what commands the target executes, the target 
alone is in charge of the bus protocol. 

No more than two deskew delays after the target's assertion of BSY, the 
initiator must release the SEL signal. With this the selection phase is completed. 
SCSI-2 now calls for a MESSAGE OUT phase. 

A selection phase is unsuccessful if the target device never responds to 
the initiator. In this case the initiator waits at least a selection abort time, after 
which it has two options. The initiator can either assert the RST signal, causing a 
transition to the BUS FREE phase, or it can release first the data signals then SEL 

and ATN in order to get back to BUS FREE. 

An additional word on the effect of SCSI timing on throughput: the 
selection abort time of 200 ms is very long. In 200 ms a disk drive can perform 
around 10 I/0 operations. For this reason it is very important for a target to 
react as quickly as possible to selection. A slow target that requires, for example, 
5 ms to react to a selection not only reduces its own throughput, but also blocks 
the bus for all other devices during this time and degrades the overall through­
put of the SCSI bus. 

Figure 10.14 shows a schematic timing diagram of an ARBITRATION and 
SELECTION phase. Delay times have been omitted in the interest of simplicity. 
Actual timing diagrams that reflect precisely what has taken place on a bus can 
look much different. Figure 10.15 shows such a sequence recorded by a logic 
analyzer. 

Some explanations of the figures sho>Ning logic analyzer output is called 
for. In the line directly above the timing diagram, you see 'Time/Div 5.0 ps.' This 
is the length of time per division shovvn on the upper and lower edge of the dia­
gram. 'Sample period= 10 ns' tells you that measurements are made every 10 ns. 
On the left-hand side you see the names of all of the signals. 

In this example it is easy to see that during the SELECTION phase the BSY 

signal is inactive for about 1 ps; this moment represents the transfer of control 
from the initiator to the target. A glitch can be seen on the data lines during the 
SELECTION phase. This is caused by the toggling of the target's SCSI ID on the 
data bus. Such glitches are the reason why delays are built into the protocol. 



108 SCS!Busand!OE~~rfuce 

The RESELECTION 

phase 

BSY 

SEL 

C/0 

1/0 

MSG 

ATN 

REO 

ACK 

00-7 

Initiator l__j Target 

!Arbitration ID !Initiator and Target ID I 
BUS 
FREE ARBITRATION SELECTION 

Figure 10.14 ARBITRATION and SELECTION. 

The RESELECTION phase allows a target to reconnect to the initiator after having 
disconnected to complete a command. Following a successful arbitration the tar­
get reselects the initiator that sent it a SCSI command. This phase is differentiat­
ed from selection by the active I/0 signal. Otherwise/ these phases are identical. 

lscsr TIMIG 1- Timing Ncveforms 

Markers I Off I 
Accumulate []ICJ 
Time/D i v I 5.000 us I Delay I 12.80 us 1 Semple period ,. 10 ns 

DB 00 n n 
DB 01 : n n 
DB 0 : n n 
DB 0 : n n 
DB o.: : 

)8 0"' : n n 
DB 06 : n n 
D6 07 
BSV 0 u 
SEl 0 : L 
CID 0 : 

I/0 0 : 

MSG 0 : 

ATN 0 : 
REQ 0 : 

ACK 0 : 

- -
Figure 10.15 ARBITRATION and SELECTION as seen on a logic analyzer. 



The MESSAGE 
phase 

SCSI hardware I 09 

The phase following a successful selection is always a MESSAGE OUT phase. A 
message phase is used by the target to either send or receive a message byte. 
Message bytes contain information concerning the SCSI bus protocol, where IN 
and OUT are interpreted with respect to the initiator. A list of messages and their 
meanings is given in Chapter 11. A message can consist of one, two or a variable 
number of bytes. The first byte tells which of these three types of messages is 
being sent. A variable length message is referred to as an extended message, in 
which case the length of the message is contained in the second byte. What fol­
lows is a description of the timing and protocol of the message phase. 

A look at the phase diagram in Figure 10.16 shows that a MESSAGE IN 
phase can take place after each information transfer phase as well as after aRE­
SELECTION. Following the flow of the message phase in Figure 10.16 we see that 
the BSY signal is still set from the SELECTION phase. The target then activates MSG, 
r/o and c/o in order to proceed to the MESSAGE IN phase. 

Now the message byte is put on the data bus. After deskew and cable 
deskew delays the target sets the REQ signal. In response the initiator reads in the 
message byte and sets ACK. The target can now remove the byte from the bus and 
release REQ. Finally, the initiator responds by releasing ACK. Such an exchange is 
known as an asynchronous request/ acknowledge handshake or REQ/ ACK 
sequence. This method of transfer is used for the command, data, and status 
phases as well. 

At this point the bus is still in the MESSAGE IN phase. If additional bytes 
are to be sent, that number of REQ/ ACK sequences take place to transfer them. To 
end the message phase the target releases the MSG signal. 

The target receives a message from the initiator during a MESSAGE OUT 
phase. An extra step is needed here since the initiator must inform the target of 
its message. To do this the initiator activates the ATN signal, which is permitted 

BSY / Target LJ Initiator/ \ 
target Target 

SEL 

C/0 

1/0 

MSG 

ATN 

REO 

ACK L__ 

00-7 Message 

BUS 
FREE ARBITRATION RESELECTION MESSAGE IN 

Figure 10.16 RESELECTION and MESSAGE IN. 



110 SCSI Bus and IDE Interface 

The COMMAND 

phase 

BSY 

SEL 

C/D 

1/0 

MSG __l 

ATN 

REO Targ:et niL_ --~------'nL__ ___ __,nLI ----
ACK Initiator n n n'----
00-7 r;rt;lor ~tor 

MESSAGE OUT COMMAND 

Figure 10.17 MESSAGE OUT and COMMAND. 

during any phase except BUS FREE or ARBITRATION. During data and command 
phases it is up to the target whether to receive the message byte immediately or 
wait until the end of the phase. ATN during a selection, message or status phase 
calls for immediate transfer of the message byte after the current REQ/ ACK 

sequence. 
This transfer unfolds almost identically to the REQ/ ACK sequence 

described above. The target activates REQ. In response to this the initiator places 
the message byte onto the data bus and after the proper delays activates ACK. The 
target then reads the byte and releases REQ. Finally, the initiator releases ACK and 
the transfer is complete. The target knows whether additional bytes will follow by 
examining the first message byte. The initiator releases ATN when it has sent all of 
its message bytes. The target ends the MESSAGE phase by releasing the MSG signal. 

Afterwards, if a command phase takes place the signals I/O and C/D are 
already in the proper state, as Figure 10.17 shows. 

The COMMAND phase is used by the target to receive the actual SCSI commands 
from the initiator. It is important to remember that the target has taken control 
of the bus since the end of the SELECTION phase. First it finishes the MESSAGE our 
phase, which the initiator brought about using ATN. Immediately thereafter is the 
beginning of the COMMAND phase. 

A command phase is characterized by the c/o line being active while I/0 

and MSG are inactive. The command phase proceeds with REQ/ ACK sequences in 
the same manner as a MESSAGE OUT phase until all command bytes have been 
transferred. 

On the leftmost side of the timing diagram (Figure 10.18) you can see the 
target already waiting with active REQ signal. After the first ACK little time is 



> 

SCSI hardware 111 

!scsi TIMIG I - T iaing Ncvef oras 

Morkers I Off I 
Accumulote []II] 
T1me/D1v I 5.000 us I De loy I 790.9 us 1 Somple per1od . 10 ns 

-
00 
01 
0 
0 

B 0.: 
D oc 

IJI 

0 
B' V 0 
s 0 

I 
I 0: 

MS 0 
AT 0 
RE 
ACK 0 ! Jl 1 1 I n 

-

Figure 10.18 COMMAND phase as seen on a logic analyzer. 

needed for the target to read the first byte and release REQ. Almost immediately 
after the initiator releases ACK the target is requesting the second byte. The ini­
tiator needs a relatively long time to prepare the bytes, as indicated by the dis­
tance between REQ/ ACK sequences. This command happens to be an INQUIRY 

command (12 00 00 00 FF 00), which will be covered in greater detail in Chapter 
12. 

By examining the first command byte the target can tell ho-vv many addi­
tional bytes will follo\v. It collects all bytes from the initiator and releases C/D, 

thus ending the COMMAND phase. 

The DATA IN and Almost all command sequences contain a data phase. This is how control infor­
DATA OUT phases mation and user data are exchanged between target and initiator. The target 

begins a data phase by de-asserting C/D and MSG. At this point either asynchro­
nous or synchronous transfers may take place, depending on a previous agree­
ment betw·een the two devices. The asynchronous method will be described 
here, while synchronous transfer is covered in Section 10.7. 

If the target wishes to send data to the initiator it asserts the r/ o signal, 
indicating a DATA IN phase. On the other hand, when the target wishes to receive 
data it de-asserts I/O for a DATA OUT phase. Figure 10.19 depicts a single DATA IN 

and DATA OUT transfer, and Figure 10.20 shows the DATA phase as seen on a logic 
analzyer. The REQ/ ACK sequences proceed as described in the message phases. 



112 SCSI Bus and IDE Interface 

The STATUS 

phase 

BSY 

SEL 

C/D 

1/0 

MSG 

ATN 

REO~~ 

ACK~ 

D0-7~ 
DATA IN DATA OUT 

Figure 10.19 DATA IN and DATA OUT. 

A target uses the status phase to send status information to an initiator. In con­
trast to a message/ which can be sent at any time during a command sequence, 
a status phase only takes place when a command has completed, been inter­
rupted or been refused by the target. In this phase c/D and I/o are asserted 
while MSG remains de-asserted. Status information/ always one byte in length, is 
transferred in a single REQ/ ACK sequence. A list of status bytes and their mean­
ings can be found in Section 12.2. 

lscsr TIMIG I - T~ng waveforms 

Markers I Off I 
Accumulate [[[[] 
Time/Oiv I 5.000 us I Delay I 2.812 ms I Sample period - 10 ns 

DB 00 
lOB 01 
lOB 0 r---
DB 03 
ID8 0«-
108 05 
DB 0 r--
DB 01 
BSY 00 
SEL 0( 
CID 00 
I!O 00 
MSG 0 
ATN 0 
REQ 0 -w--u 
A(K 0 

Figure 10.20 DATA phase as seen on a logic analyzer. 



SCSI i i 3 

BSY 

SEL 

C/D 

1/0 

ATN 

REO 

Initiator 

D0-7 Target Targe: 
----------------------~ 

10.21 STATCS and MESSAGE e,;. 

~ ~ 1 • 

s 1r.fLllar1-

10.8 Various 

Bnrtdcuidth 

8-bit 16-bit 32-bit 

3 



114 SCSI Bus and IDE Interface 

Synchronous 
DATA-IN and 

DATA-OUT phases 

The use of synchronous tranfers is negotiated between the initiator and 
the target using messages. Chapter 11 covers this aspect in greater detail. 

When a target uses the synchronous method of data transfer it is allowed to send 
a certain maximum number of REQ pulses without waiting for ACK pulses. The 
pulses occur at a fixed period, called the synchronous transfer period. The max­
imum number of REQ pulses without receiving an ACK is called the REQ/ ACK off­
set. Another way to look at the offset is this: given that at the end of a transfer 
an equal number of REQ and ACK pulses must occur, the offset is the maximum 
number of outstanding ACK pulses. If the offset is reached then the target must 
wait until the initiator sends an ACK before it sends further REQs. The result of 
this approach is that cable delays the time it takes signals to traverse the length 
of the SCSI cable - are effictively eliminated from the transfer speed. For asyn­
chronous transfers the transfer rate is directly dependent on the cable length. For 
each byte sent there is a delay equal to the following: the time it takes the lead­
ing edge of the REQ to travel from target to initiator, plus the time it takes the 
leading edge of the ACK to travel back to the host, plus the time it takes for the 
trailing edge of the REQ to reach the initiator, plus the time it takes for the trail­
ing edge of the ACK to make it back to the host. The synchronous method elimi­
nates the interlocking handshaking and with it the cable delays. 

Figure 10.22 shows synchronous DATA IN and DATA OUT phases. Here a 
REQ/ ACK offset of five is being used. Let us look first at the DATA OUT phase. The 
target sends five REQ pulses at a fixed frequency determined by the synchronous 
transfer period. It must then wait since the offset of five outstanding ACK pulses 
has been reached. Finally, the ACK pulses come along with the data from the 

--j j- Transfer period 

REO I I I I I I I I I I I I 
ACK Offset = 5 I I I I I I I 
Data 

REO 

ACK 

Data 

nnnn nn,____, 
i . I I I I I I 

Synchronous DATA OUT phase 

I I I I I I I I I I I 

I I I I I I I 

Synchronous DATA IN phase 

Figure 10.22 Synchronous data phases. 



SCSI hardware 115 

lscsr TIMIG I - Tiaing Mcvefor.s 

Morkers I Off I 
Accumul~te lli[J 
T1me/D1v I 1 .000 us I Delay I 460 ns I Somple period "' 10 ns 

-~ 

: 
lDB oc : 
DB 01 
'DB 0 X 
DB 0 : 

I 
B 0.::: J:1 

tB 0" : 

tB Ot : 

tB 0 
BSY 00 
SE 00 

IC I) 00 I IIJ 00 
MSL;J 0 J 
ATN 0 Ill 

b 
REQ 01 ~ ACK 01 

Figure 10.23 Synchronous data phases as seen on a logic analyzer. 

initiator at the same frequency. With the arrival of the first ACK pulse the num­
ber of outstanding pulses has dropped below the offset and the target responds 
by sending data continually at the defined frequency. In this way the transfer 
proceeds with maximum efficiency. 

The synchronous DATA I:'\J phase looks very much the same. Here, how­
ever, the target places a byte on the data bus before the first REQ pulse. The byte 

jscsr TIMIG I - Timing waveforms 

Markers I Off I 
Accumul~te lli[J 
Time/Div I 1 .000 us I Delay I 131 .6 us I Sample period " 10 ns 

!DB ool 
!DB 011 
!DB 021 X 
IDB 031 .JI.._J 

I IDB 041 
DB 05 
DB 06 

!DB oi] 
IBSY ool 
SEL 00 

1#=1 I 
J 
Ill 
b REQ 00 JUlJU1Il 

ACK oc 

-

Figure 10.24 Synchronous data phases as seen on a logic analyzer. 



116 SCSI Bus and IDE Interface 

is held there until the first ACK signal has been read. Afterwards the transfer 
takes place at the rate determined by the transfer period. 

Figures 10.23 and 10.24 show this phase once again, this time as seen by 
a logic analyzer. These are DATA IN phases as they occur in the real world. The 
target sends 15 REQ pulses and the accompanying data bytes, then all is still 
because no ACKs are returned. It is safe to assume that the transfer offset is 15. In 
the second diagram, which occurs approximately 130 ps later, the ACK pulses are 
returned by the initiator. After the second REQ the target proceeds to send the 
remaining five data bytes. The ACK pulses continue until a total of 20 have been 
sent. 

10.8 Wide SCSI 

Wide SCSI uses the same hardware protocol as the 8-bit transfers but with an 
additional cable to carry extra data signals (see Section 10.2). In order to prevent 
signal skewing problems resulting from different cable lengths, an additional 
REQ and ACK are included on the second cable. This allows an independent 
REQ/ ACK sequence for each cable. During all but the DATA IN and DATA OUT phases 
the second cable is unused. 

Just as is the case with Fast SCSI, the use of Wide SCSI is negotiated 
between devices using the message system. 



11 SCSI bus protocol 

In this chapter I go into the essentials of the various SCSI messages. At times I will 
mention things which are not introduced fully until Chapter 12. You may wish to 
jump ahead at such times or simply ignore the details until the next chapter. 

11.1 The message system 

In the previous chapter we went over the workings of the MESSAGE phase in 
detail. We saw that during the course of a normal SCSI command at least two 
MESSAGE phases occur: after SELECTION or RESELECTION and before the final BUS 

FREE phase. SCSI messages represent the lowest level of bidirectional communi­
cation on the SCSI bus. 

We now take a closer look at the SCSI message system. SCSI messages 
are used for a number of different purposes. Messages are the only means by 
which an initiator can inform a target of a problem. As an example, consider a 
parity error on the data bus (Figure 11.1). In general, a message can interrupt the 
normal flow of phases at any time. The initiator simply sets the ATN signal, com­
pletely asynchronously, and the target then collects the message. 

Parity error 

Arb Re- Msg Data I ~sg Data 
sel Out l" 1n 

>­
LL 

t­z 
w 
0 

(/) 

a:: 
w 

wt­
a::Z 
oo 
t-CL 
(f) 
w 
0:: 

Figure 11.1 Parity error. 

117 



118 SCSI Bus and IDE Interface 

The target also uses messages to inform the initiator of events that the 
initiator cannot foresee. An example of this is when the target wishes to free the 
bus during a running command. In this case it tells the initiator to secure certain 
information vital to the I/0 process and also informs it of the imminent release 
of the bus. 

Finally, messages are used to negotiate the parameters of the various 
options such as synchronous or Wide transfers. Here either the target or initia­
tor sends a number of messages indicating the desired option and parameters. 
The other device then returns messages either echoing these parameters or val­
ues corresponding to its capabilities. 

SCSI messages consist of one, two or an arbitrary number of bytes. The 
first byte, known as the message code, determines the format of a message. Table 
11.1 shows the message format. In the case of an extended message the second 
byte gives the length and the third byte contains the extended message code. 
Table 11.2 depicts the general structure of an extended message. 

The following discussions of the individual messages are grouped by 
function. Table 11.3 is an overview of all SCSI messages ordered by message 
code. 

Table 11.1 SCSI message format. 

Value Message format 

OOh One byte message (COMMAND COMPLETE) 

Olh Extended messages 
02h-1Fh One byte messages 
20h-2Fh Two byte messages 
30h-7Fh Reserved 
80h-FFh One byte message (IDENTIFY) 

Table 11.2 Extended message format. 

Byte Value 

0 Olh 
1 n 
2 Ext. Code 

3 -n+l 

Description 

Extended message 
Number of following message bytes 
Extended message code 
Message arguments 



SCSI bus protocol 119 

Table 11.3 SCSI message codes. 

Code Ini Tar Name Page Direction ATN neg. 

OOh COMMAND COMPLETE 152 In 
01,xx,OOh 0 0 MODIFY DATA POINTERS 154 In 
01,xx,Olh 0 0 SYNCHRONOUS DATA TRANSFER REQUEST 156 In/Out Yes 
01,xx,03h 0 0 WIDE DATA TRA"JSFER REQUEST 158 In/Out Yes 

02h 0 0 SAVE DATA POINTERS 153 In 
03h 0 0 RESTORE POINTERS 153 In 
04h 0 0 DISCONNECT 155 In/Out Yes 

05h INITIATOR DETECTED ERROR 153 Out Yes 

06h 0 p ABORT 162 Out Yes 

07h MESSAGE REJECT 163 In/Out Yes 

08h NO OPERATION 152 Out Yes 

09h MESSAGE PARITY ERROR 163 Out Yes 

OAh 0 0 LINKED COMMAND COMPLETE 152 In 
OBh 0 0 LINKED COMMAND COMPLETE (WITH FLAG) 152 In 
OCh 0 BUS DEVICE RESET 161 Out Yes 

ODh 0 0 ABORT TAG 162 Out Yes 

OEh 0 0 CLEAR QUEUE 161 Out Yes 

OFh 0 0 INITIATE RECOVERY Out Yes 

10h 0 0 RELEASE RECOVERY Out Yes 

llh 0 0 TERMINATE I/ 0 PROCESS 162 Out Yes 

20h 0 0 SIMPLE QUEUE TAG 160 In/Out No 
21h 0 0 HEAD OF QUEUE TAG 160 Out No 
22h 0 0 ORDERED QUEUE TAG 160 Out No 
23h 0 IGNORE WIDE RESIDUE 159 In 

80h+ IDENTIFY 151 In/Out No 

11.2 1/0 processes 

I/0 process and The terms 'nexus' and 'I/ 0 process', as described in the SCSI standard, are loose-
nexus ly defined. An l/0 process begins with the initial selection of a target by anini­

tiator and extends through all bus free phases and reselections until a final bus 
free is reached. The I/0 process may consist of a single SCSI command or a series 
of linked commands. The process normally ends with the BUS FREE phase which 
follows the final COMMAND COMPLETE message. A process can be terminated in 
response to a number of different messages, a SCSI reset or a protocol error. 

The initiator maintains an area in memory of the host for each I/0 
process to store COMMAND, DATA, and STATUS information. For each area, or so­
called buffer, there exist two pointers: the current and saved pointers. At the 
start of the process all three current pointers point to the beginning of their 
respective buffers. As the process progresses these pointers advance through 
memory. When a disconnect takes place another process may start up and use 
the bus, so prior to this the active pointers need to be saved. This is actually 
accomplished by the target, which sends a SAVE POINTERS message to the initiator. 
Later when the process becomes active again the saved pointers are copied back 
to the active pointers and the process continues to completion. 



120 SCSI Bus and IDE Interface 

IDENTIFY 

(80h-FFh) 

Nexus is the term used to describe the relationship between an initiator 
and a target during an I/0 process. As soon as the selection of a target takes 
place an initiator-target nexus (I_T nexus) is established. However, an I_T nexus 
alone is not enough to carry out an I/0 process. 

SCSI commands sent by an initiator are not executed by a target itself, 
but rather by one of its LUNs or target routines. As we saw earlier, LUNs are the 
physical devices connected to the target. Target routines are a set of very partic­
ular programs that run on the target. These routines, which are optional and 
only seldom implemented, are used for diagnostic purposes, among other 
things. We will take a closer look at target routines in Section 12.1. 

With the sending of an IDENTIFY message to the target, either a LUN or a 
target routine is addressed. This replaces the existing I_T nexus with an initia­
tor-target-LUN nexus (I_T_L nexus) or an initiator-target-routine nexus (I_T_R 
nexus), respectively. The SCSI standard speaks of an I_T_x nexus when referring 
to either of these. An I_T_x nexus is sufficient to carry out an I/0 process. 

Tagged queues, which are optionally supported by targets, are an 
ordered stack for SCSI commands. They allow a target to store up to 256 com­
mands from various initiators. Tagged queues do not exist for target routines. 
When supported, a QUEUE TAG message follows immediately after the IDENTIFY 

message. The existing I_ T _L nexus is thereby replaced by an 
initiator-target-LUN-queue nexus (I_T_L_Q nexus). The SCSI standard speaks 
of an I_T_x_y nexus when referring to either an I_T_x or an I_T_L_Q nexus 
(Figure 11.2). We will see more on queues later in this chapter. 

Without a tagged queue a target can accept only one command per LUN 
for each initiator on the SCSI bus. In this case only I_T_L nexuses are ever estab­
lished. 

The IDENTIFY message is used to establish a connection, or nexus, between a 
device and a LUN or target routine. For the initial SELECTION of an I/0 process it 
is an initiator that establishes this so-called I_T_x nexus. For any subsequent 

QUEUE-TAG 
message 

+ 
IDENTIFY 
message 

+ 
SELECTION 
phase 

I 

LUNs 

I_T_L_Q 
nexus 

IT L nexus 

IT 

Target 
routines 

IT R nexus 

nexus 

Figure 11.2 Structure of a nexus. 

I Complete I 1/0 process 



COMMAND COM­

PLETE (OOh) 

LINKED COMMAND 

COMPLETE (OAh) 
and LINKED COM­

MAND COMPLETE 

WITH FLA~G (OBh) 

SCSI bus protocol 121 

Table 11.4 IDENTIFY message. 

7 6 5 4 3 2 1 0 

1 DiscPriv LUNTAR Res Res LUNTRN 

RESELECTION the target then uses an IDENTIFY message to identify a particular 
I_T_x nexus and thus which I/0 process to activate. 

The IDENTIFY message itself, which is one byte long, is shown in Table 11.4. 
As you can see IDENTIFY messages have a variable field within this single byte of 
information. Bit 7 is always set. In effect this reserves all messages from SOh to FFh 
as IDENTIFY messages. The remaining seven bits carry the variable information: 

• DiscPriv (disconnect privilege): This bit may only be set by an initiator. It 
allows a target to use its own discretion to disconnect from the initiator and 
thus free the bus for others to use. 

e LUNTAR (LUN I target routine): When this bit is set a target routine is 
addressed, otherwise a LUN is addressed. (Note that the name implies oth­
erwise!) 

e LUNTRN (LUN/target number): The LUN or target routine number. 

Since most SCSI devices have embedded controllers- that is, they rec­
ognize only LUN 0- the most common IDENTIFY message is COh. This means 
IDENTIFY, LUN 0 with disconnect privilege. If the target is not allowed to release 
the bus during command execution the message becomes SOh. 

An initiator is allowed to send multiple IDENTIFY messages during a sin­
gle I/0 process. However, only the disconnect privilege may be modified. 
Should an initiator attempt to change the LUN or target routine number this will 
cause the target to bring about BUS FREE. Such an unexpected disconnect termi­
nates the I/ 0 process. 

There are many ways in which an IDENTIFY message will be considered 
invalid. The simplest case is when either of the two reserved bits is set. Also, a 
message addressing a target routine is invalid when no such routines are imple­
mented. Here the target may respond with either a MESSAGE REJECT message or a 
CHECK CONDITION status. 

A reselection to an I/0 process that does not exist is called an unexpect­
ed reselection. In this situation the proper response is an ABORT message. 

The target uses this message to inform the initiator that the I/0 process has com­
pleted. Afterwards a BUS FREE is brought about by the target. 

These messages are sent instead of COMMAND COMPLETE for linked commands of 
a command chain. LINKED COMMAND COMPLETE (WITH FLAG) is used when the con­
trol byte of the command had its flag bit set. The last command of a chain uses 
the regular COMMAND COMPLETE message. 



122 SCSI Bus and IDE Interface 

NO OPERATION 

(08h) 

INITIATOR 

DETECTED ERROR 

(05h) 

11.3 

SAVE DATA 

POINTERS (02h) 

RESTORE 

POINTERS (03h) 

MODIFY DATA 

POINTER (01h, 
05h, OOh, 

byte 3 ... byte 0) 

This dummy message, as the name implies, does nothing. As an example of when 
it might be useful, consider an initiator that has asked to send a message by set­
ting ATN. In the time it takes the target to switch to the message phase the initia­
tor may eliminate the need for the message. In this case it sends a NO OPERATION 

in order to use up the message phase and allow the command to continue. 

An initiator uses this message when it encounters an internal problem but 
believes it can continue with the process. Since it is possible that the active point­
ers have become defective the target must either send a RESTORE POlt"JTERS message 
or cause BUS FREE (without SAVE DATA POINTERS) and then reselect the initiator. 

SCSI pointers 

As mentioned earlier, each initiator manages a set of three pointers for each I/0 
process. These pointers keep track of the current position in the COMMAND, DATA 

and STATUS buffers. The target can influence these pointers using the message 
system. 

This message causes the initiator to save the active data pointer to the saved data 
pointer. It is sent before every BUS FREE phase change. 

RESTORE POINTERS causes the initiator to copy the saved pointers to the current 
pointers. This mechanism is put to use, for example, when a target detects a par­
ity error in a COMMAND, DATA or STATUS byte. As soon as such an error is discov­
ered the target sends a RESTORE POINTERS message to the initiator. Afterwards the 
next DATA OUT phase starts the transfer at the beginning of the data buffer. 

This message allows the target to directly modify the value of the data pointer 
(Table 11.5). The 4-byte argument is interpreted as a signed integer, which is 
added to the current value of the data pointer. 

Table 11.5 MODIFY DATA POINTERS. 

Byte Value Description 

0 Olh Extended message 
1 05h Length of extended message 
2 OOh MODIFY DATA POINTER 

3 n (MSB) 
4 n Argument 
5 n 
6 n (LSB) 



SCSI bus protocol 123 

11.4 Disconnect-reconnect: Freeing the bus 

DISCONNECT 
(04h) 

One of the most important characteristics of the SCSI bus is the ability to inter­
rupt a running I/ 0 process in order to free the bus for other devices. This oppor­
tunity arises frequently for targets that must access data from a physical medi­
um. Hard drives typically require in the order of 20 ms to access their data, while 
tape drives sometimes need several minutes. 

When and under what conditions a device should free the bus can be 
programmed into the target using the MODE SELECT command. An entire para­
meter page, the disconnect-reconnect page, is dedicated to this purpose. In 
addition, the DiscPriv (disconnect privilege) bit in the IDENTIFY message tells the 
target whether it may disconnect for the current I/0 process. Besides the DIS­
CONNECT message, which will now be introduced, the SAVE DATA POINTERS mes­
sage of the previous section plays an important role in freeing the bus. 

Using the disconnect-reconnect parameters supplied by the initiator the target 
decides when to free the SCSI bus. It then sends the messages SAVE DATA POINT­
ERS and DISCONNECT, and brings about the BUS FREE phase. It is important to 
remember that the DISCONNECT message does not cause the data pointer to be 
saved. DISCONNECT indicates only that the target intends to switch to the BUS FREE 
phase. 

The initiator may also send the DISCONNECT message, which is under­
stood by the target as an ultimatum. In this case the target switches to theMES­
SAGE IN phase and sends the SAVE DATA POINTERS and DISCONNECT messages. The 
target must wait for at least a disconnect delay of 200 ps after BUS FREE before 
arbitrating again for the bus. 

Let us turn now to Figure 11.3. Time runs from left to right in the figure. 
I/0 process 1 frees the bus after only a short time. During this disconnect time 
two other processes take the opportunity to use the bus. The numbers in the 
boxes represent the data (in hex) on the SCSI bus during the various bus phases, 
while the details are explained above. 

At the left-hand side the initiator with SCSI ID 7 arbitrates for the bus. 
We see bit 7 set in the data byte or SOh. It wins the arbitration and starts the first 
I/0 process. During the SELECTION phase it chooses the target with ID 0. The Slh 
on the data bus reflects the addition of bit 0 to the initiator's O"'vvn bit 7. Following 
selection comes a MESSAGE OUT phase, which the initiator uses to send an IDENTI­
FY message with DiscPriv set for LUN 0 (COh). Now comes a READ(6) command 
with the opcode (08h), logical block number (OOOOOh), number of blocks (01h), 
and control byte (OOh). After accepting the command the target decides to 
release the bus. It sends the message SAVE DATA POINTER (02h) and DISCONNECT 
(04h) and frees the bus for other devices. 

A little later, after two other processes have been active, I/0 process 1 
again takes control of the bus. It first arbitrates with ID 0 (Olh) and reselects the 
initiator by adding ID 7 to its own (81h). At this point it could very well be the 
case that the target and initiator have several active I/0 processes. Using an 
IDENTIFY message, the target indicates the specific LUN and therefore I/0 



124 SCSI Bus and IDE Interface 

11.5 

SYNCHRONOUS 

DATA TRANSFER 

REQUEST (Olh, 
03h, Olh, 
mm, nn) 

Bus free Arb Sel Msg Data Sta Msg Bus free 

I o1js1jsoj oo 01 FE F9 00 oo! 

Bus free 

Reselection G:: 
i= 
z 
w 

Arb Sel Msg Command Msg Bus free 9 

jsojs1!cqos oo oo oo 01 oojo2 o4\ · 

G:: 
a: j,-
w 0 

i= j,- w z· z z 6 z w 0 9 (L 
0 

<( (f) 
f- 0 <( 
0 

w 
~ 
(f) 

1/0 process 1 1/0 process 2 l/0 process 3 1/0 process 1 

Figure 11.3 Freeing the bus and reselection. 

0 !-ll 
0 w 
0 _j. 
(J (L 

:2 
0 
0 

0 
z 
<( 

:2 
:2 
0 
0 

process. With this established the target sends the actual data of the requested 
logical blocks. Finally, a GOOD status (00h) and COMMAND COMPLETE message 
(OOh) conclude the I/0 process. 

Transfer options 

The target and initiator negotiate whether to use synchronous transfers using 
the message system. Bear in mind that such transfers apply only to the data 
phases. Commands, messages, and status are always sent asynchronously. 

A SCSI device that wishes to use synchronous transfers sends the mes­
sage SYNCHRONOUS DATA TRANSFER REQUEST to the other device. Contained in this 
extended message are the desired transfer period and offset. The value in byte 3 
times 4 ns equals the transfer period, while byte 4 equals the offset (Table 11.6). 

The other device, either initiator or target, replies immediately with its 
own SYNCHRONOUS DATA TRANSFER REQUEST. This message either echoes the first 
request or contains less demanding parameters, such as longer period, less off­
set. If the device does not support synchronous data transfer at all it can send 

Table 11.6 SYNCHRONOUS DATA TRANSFER REQUEST. 

Byte Value Description 

0 Olh Extended message 
1 03h Number of message bytes after byte 2 
2 Olh SYNCHRONOUS DATA TRANSFER REQUEST 

3 n Transfer period 
4 n REQ/ ACK offset 



WIDE DATA 

TRANSFER 

REQUEST 

(Olh, 02h, 03h, nn) 

SCSI bus protocol 125 

Seq. Phase 
Nr. Symbol Hex Comment 

0 BUS FREE 
1 ARBITRATION co 10 7 and ID 5, ID 7 wins 
2 SELECT 81 Target- ID 0 
3 MESSAGE OUT 80 IDENTIFY 
4 MSG OUT 01 Extended Message 
5 MSG OUT 03 Extended Message Length 
6 MSG OUT 01 SYNCHRONOUS TRANSFER REQUEST 
7 MSG OUT 34 Wants transfer period 136nS 
8 MSG OUT OF Wants REO/ ACK - Offset 15 
9 MSG IN 01 Extended Message 
10 MSG IN 03 Extended Message Length 
11 MSG IN 01 SYNCHRONOUS TRANSFER REQUEST 
1 2 MSG IN 32 Can transfer period 128nS 
13 MSG IN OF Can REO/ ACK - Offset 15 
14 COMMAND 00 
15 COMMAND 00 
16 COMMAND 00 

Figure 11.4 Synchronous transfer request. 

either a MESSAGE REJECT or a SYNCHRONOUS DATA TRANSFER REQUEST with the offset 
set to zero. In both cases the result is asynchronous transfers for the data phases. 
Figure 11.4 shows a relevant sequence taken from a SCSI analyzer. 

In principle, either target or initiator can request synchronous transfers. 
In practice, however, the initiator or in general the host adapter is the one that ini­
tiates this negotiation. Some older host adapters were known to have difficulty 
with a SYNCHRONOUS DATA TRANSFER REQUEST from a target. For this reason most 
target devices allow the synchronous transfer option to be disabled by jumper. 

This negotiation does not take place for every I/0 process. Rather the 
agreement holds between devices until the next SCSI reset or a BUS DEVICE RESET 

message. Of course, either device may decide to negotiate new parameters 
should a reason arise. 

A device that wishes to uses Wide SCSI sends its partner device a WIDE DATA 

TRANSFER REQUEST. This message contains the desired bus width encoded in byte 
3. Here OOh means 8-bit, 01h 16-bit and 02h 32-bit wide transfers (Table 11.7). Just 
as with the synchronous negotiation, the partner device replies immediately 
with its own WIDE DATA TRANSFER REQUEST message here either echoing the width 
or sending a smaller value. If Wide SCSI is not supported then it replies with 
either a width of zero or sends the MESSAGE REJECT message. 

This agreement also holds until a SCSI reset or BUS DEVICE RESET message. 
Likewise, the negotiation does not take place before each I/0 process. Such an 
implementation would increase the overhead of the SCSI protocol unnecessarily. 

Of course, it can also occur that the total number of bytes to be sent is not 
divisible by the transfer width. Here the valid bytes of the final transfer are 
padded with one or more dummy bytes. In this case a message is sent immedi­
ately following the transfer indicating how many bytes to ignore. 



126 SCS/Busand/DE~~rfuce 

IGNORE WIDE 

RESIDUE (23h, nn) 

Table 11.7 WIDE DATA TRANSFER REQUEST. 

Byte Value Description 

0 Olh Extended message 
1 03h Number of message bytes after byte 2 
2 01h WIDE DATA TRANSFER REQUEST 

3 n Transfer width 23+n 

IGNORE WIDE RESIDUE indicates which bytes of a final wide transfer to ignore. 
Table 11.8 shows the structure of the message and the meaning of byte 2. 

Table 11.8 IGNORE WIDE RESIDUE. 

Byte Description 

0 IGNORE WIDE RESIDUE (23h) 
1 Byte mask 

Byte mask Invalid bits 
32-bit transfers 16-bit transfers 

OOh Reserved Reserved 
Olh DB(31-24) DB(15-8) 
02h DB(31-16) Reserved 
03h DB(31-8) Reserved 

04h-FFh Reserved Reserved 

11 .. 6 Tagged queues 

We took a first look at tagged queues during the definition of a nexus. Tagged 
queues are a SCSI-2 option which allows each LUN to queue up to 256 I/0 
processes per initiator. The main advantage to this approach is that it makes 
optimization possible. 

For targets that support tagged queues, implementing the QUEUE TAG 

message is obligatory. An initiator enters a command into the queue by sending 
QUEUE TAG immediately following IDENTIFY. This action sets up an I_T_L_Q nexus 
replacing the I_T_L nexus previously established. 

There are three types of QUEUE TAG messages. All contain a reference 
number for the I/0 process or queue tag in byte 2 (Table 11.9). This same tag is 
sent in a QUEUE TAG message at reselection time to identify which process is 
resuming. 

Using the QUEUE TAG messages, an initiator also has the ability to influ­
ence the position of commands within the queue. 



SIMPLE QUEUE TAG 
(20h) 

HEAD OF QUEUE 

TAG (21h) 

ORDERED QUEUE 

TAG (22h) 

Tagged queues 
and error han­

dling 

SCSI bus protocol 127 

Table 11.9 The QUEUE TAG messages. 

Byte Description 

0 Message (20h, 21h, 22h) 
1 Number 

This message causes the I/0 process to be added to the command queue. It is 
up to the target to decide exactly when to process it (provided no ORDERED QUEUE 

TAGS have been received, which are discussed next). Commands with a SIMPLE 

QUEUE TAG allow, for example, disk drives to optimize time intensive seeks to the 
medium. Targets always use this message when reselecting an initiator for a 
tagged process. 

This message leads to placing the I/0 process in question at the beginning of the 
queue. The currently active process is run until completion. Subsequent HEAD OF 

QUEUE TAG processes are placed ahead of older ones at the beginning of the 
queue. In this way multiple HEAD OF QUEUE TAG processes are executed in last-in, 
first-out order. 

This message causes I/0 processes to be executed in the order in which they 
were received. In other words, all processes that were already in the queue will 
be executed before this process and likewise all processes that arrive afterwards 
will be executed after this one. An exception to this is made for processes with 
the HEAD OF QUEUE TAG. 

A target that does not support tagged queues will reply to a QUEUE TAG message 
with MESSAGE REJECT. If an initiator receives a command tagged with a number 
already in the queue the result is a so-called incorrect initiator connection. In 
response, the target terminates all I/0 processes of this initiator and sends the 
CHECK CONDITION status. A subsequent request sense command would then 
return the sense key ABORTED COMMAND and the extended sense OVERLAPPED COM­

MANDS ATTEMPTED. 

If a target attempts to reselect vvith an incorrect number in the QUEUE TAG 

message, the initiator will respond with ABORT TAG. 

11.7 Termination of 1/0 processes 

There are a number of ways to terminate or kill I/0 processes, for instance sim­
ple termination of all processes of a target or LUN. In tagged queues either all or 
only active processes can be halted. Additionally, an I/0 process can be made to 
terminate 'as soon as possible.' 



128 SCSI Bus and IDE Interface 

BUS DEVICE RESET 

(OCh) 

CLEAR QUEUE 

(OEh) 

ABORT TAG (ODh) 

ABORT (06h) 

TERMINATE I/O 

PROCESS (llh) 

This message tells the target to kill all active and outstanding l/0 processes. In 
reality, the target performs a soft reset. This action not only kills all I/0 process­
es but also nullifies device reservations and causes device parameters to be reset 
to start-up values. The target enters unit attention condition, which means that 
it will reply to the next command with a CHECK CONDITION status. The sense key 
for the following REQUEST SENSE command will be UNIT ATTENTION (06h). 

This message is only implemented by devices supporting tagged queues. The 
CLEAR QUEUE message kills the active l/0 processes and those waiting in the 
queue from any and all initiators for this LUN or target routine. 

The ABORT TAG message allows l/0 processes within ordered tagged queues to 
be terminated. This message kills only the currently active process. Neither sta­
tus nor a final message will be sent for the terminated process. The I/0 process­
es in the queue are unaffected. The state of the LUN remains unchanged in all 
other respects. 

The abort message terminates all running I/0 processes and all those in the 
queue for this I_T_L nexus. As with the ABORT TAG message, the target skips the 
status and message phases and immediately brings about BUS FREE. All other 
I_T_L nexuses remain unaffected. 

This message tells the target to terminate the current l/0 process as soon as pos­
sible. There are a few differences here with respect to the methods just described. 

Firstly, it is up to the target's own discretion as to when to end the 
process. In this way it can see to it that, for example, the data structure of a tape 
is not damaged by continuing a write until the end of the record. If the write 
were immediately cut short a damaged record would result. 

After the target has terminated the process the progression to the BUS 

FREE phase takes place normally. First, the status I/o PROCESS TERMINATED is sent 
followed by a COMMAND COMPLETE message. If by chance an error occurs when 
terminating the process the status byte will reflect this. 

The message TERMINATE I/O PROCESS is intended for longer I/0 processes 
that may delay the execution of more important tasks. A subsequent request 
sense command will return the sense key NO SENSE (OOh) and the extended sense 
key I/o PROCESS TERlVIINATED (OOh, 06h). The information field of the sense data 
will contain the difference between the amount of data requested and the 
amount transferred. 



11.8 

MESSAGE REJECT 
(07h) 

MESSAGE PARITY 

ERROR (09h) 

11.9 

SCSI bus protocol 129 

Error handling in the message system 

Two problems may occur when sending messages for which there is a means to 
recover. Since the message system represents the lowest level of communication 
on the SCSI bus, special messages exist to handle precisely these cases. 

This message is appropriate when a device does not support an optional mes­
sage. After receiving the unsupported message the device responds immediate­
ly with MESSAGE REJECT. 

If an initiator wishes to reject a message it must first assert ATN before de­
asserting the ACK of the last REQ/ ACK sequence. 

In the case of a target, which can control bus phases directly, it simply 
brings about the MESSAGE IN phase and sends the message. If ATN is still active 
after the MESSAGE REJECT message the target switches back to MESSAGE OUT and 
collects the messages. 

The target responds to parity errors during COMMAND, DATA, and MESSAGE OUT 

phases with a RESTORE POINTERS message. This action makes it possible to retry 
the transfer with the same data. 

However, parity errors during a MESSAGE IN phase require a special pro­
cedure. In this case the initiator sends the MESSAGE PARITY ERROR message. As 
alvvays, it asserts ATN to inform the target of its desire to send a message. The tar­
get reacts to MESSAGE PARITY ERROR by resending the original message. 

Asynchronous event notification 

In addition to messages SCSI provides targets with an alternative method of 
informing an initiator of unforeseen difficulties. This optional mechanism is 
called asynchronous event notification (AEN). 

To carry out AEN the initiator and target must be able to trade roles tem­
porarily. The target (acting as an initiator) sends the initiator (acting as a target) 
the SEND command. The data within the command contains information describ­
ing the target's difficulties. 

The SEND command and the AEN format for the data are described in 
Chapter 17. 

There are a number of applications for AEN. For example, devices of the 
communications or processor class often have data for an initiator that is not the 
direct result of a command. AEN allows the target to inform the initiator of the 
situation, which in turn can request the data from the device. 

Another application is the implementation of a write cache for a disk or 
tape drive. A write cache allows a device to send GOOD status and COMMAND 

COMPLETE immediately upon receiving the write data into its cache, effectively 
eliminating the access time from the command execution time. Of course, at this 



130 SCSI Bus and IDE Interface 

point the data has not been written to the medium and therefore a write error 
could still occur. AEN is used to inform the initiator of the problem by sending 
it the sense data describing the nature of the error (Figure 11.5). 

There is a possible altemative to the above approach for devices that 
have write cache but do not implement AEN. Here the target simply responds 
with a CHECK CONDITION status for the next command. The disadvantage of this 
method is obvious: an initiator does not learn of the error until it sends that same 
device another command. Up until that point it goes on believing that the com­
mand was successful. 

Host 
(initiator) 

Host 
(temporary 

target) 

Cached 
WRITE 

Status 
GOOD 

SEND (AEN) 
~ 

AEN packet 
with 

sense data 

Drive 
(target) 

Error ~ 

Drive 
(temporary 

initiator) 

Figure 11.5 Asynchronous event notification. 



12 SCSI commands 

Chapter 11 described the flow of phases underlying the sending of SCSI com­
mands. The command itself is always embedded within the context of an I/0 
process. After the IDEN1IFY message, the target collects the command bytes from 
the initiator. The target then executes the command, during which it may decide 
to free the bus for other devices. Finally, the command concludes with a status 
byte and COMMAND COMPLETE message. 

12.1 The SCSI target model 

A simple model for a SCSI target was introduced in Section 10.1. At this point, 
we take a look at this model in greater detail (Figure 12.1). A SCSI target is 
addressed using its SCSI ID. Within a single target up to eight LUNs and eight 
target routines are accessible. A target must implement at least one LUN. Target 
routines are optional. Each SCSI command is executed by the particular LUN or 
target routine identified within the command. 

LUN 

SCSI ID 

~--------1 

I Target 1 

: routine 0 : 
[ ________ _j 

Target 
~- I 

: LUN 7: 
i I 
i ________ J 

Figure 12.1 Model of a target. 

~--------1 

I Target 1 

: routine 7 : 
l --------' 

131 



132 SCSI Bus and IDE Interface 

LUNs and target 
routines 

Device classes 

Mode 
parameters 

Most commonly a target will consist of a single LUN. This is the case for SCSI disk 
and tape drives where the controller is embedded within the device. The SCSI 
standard, however, allows for up to eight physical devices to be controlled by a 
single target, each addressed by its own unique LUN number. A bridge controller 
which oversees, for example, four ESDI drives plays this role. Although the spec­
ification allows for each LUN to belong to a different device class, the target would 
need to implement SCSI commands of each class, which is very impractical. 

Target routines are l/0 processes that run on the target itself. These were 
added with SCSI-2 and are useful, among other things, for diagnostic and test 
purposes. Target routines are always vendor unique; there is no model or com­
mand set defined in SCSI-2. They are rarely implemented and are at most of sec­
ondary importance. 

SCSI supports a variety of device types, from disk drives to printers to scanners. 
While disk drives are a source as well as a destination of information, printers 
only receive and scanners only send data. Data is exchanged with disk drives in 
a block format. Printers accept data of varying lengths. For these reasons SCSI 
defines a number of device classes. Table 12.1 shows an example of the data 
returned from an INQUIRY command. · 

For each device class SCSI defines a model, a command set and parame­
ter pages for configuring the device. We will cover the device classes in the.same 
way, touching on all three aspects for each class. In addition to the device class 
specific details, there are commands and parameter pages that are common to 
all devices. These will be covered in this chapter. Chapters 13-21 cover each 
device class in detail. 

Every LUN contains a set of parameters that configure its operation. These para­
meters can be written with MODE SELECT and read with MODE SENSE. Collectively, 
they are typically refered to as mode parameters. The parameters are sent across 
the bus in blocks called pages. Here, as with commands, some pages pertain to 
all devices, while some are only for specific classes. 

One thing that all device classes have in common is the way in which the 
parameters are organized and maintained by the LUN. A LUN has three copies 
or sets of its parameters: the current, the default, and the saved parameters. The 
current parameters are those with which the device is currently functioning. 
These reside in RAM on the target and are lost when the device powers down. 
The saved values are kept in some type of non-volatile memory. On a disk drive 
this might be the medium itself, otherwise NOVRAM is frequently employed. 
At power-on time all devices copy the saved values to the current parameters. 
The default values are set by the manufacturer into PROM. The saved values 
reflect default settings when the device is purchased. A SCSI command allows 
the default to be copied to the saved values. 

There is actually a fourth set of parameters, though somewhat different 
from the others_, that the target can access. These changeable parameters are also 
hard-coded into the firmware. This set tells an initiator which individual para­
meters may be manipulated and to what extent. In this way a diagnostic program 



UNIT ATTENTION 

condition 

12.2 

SCSI commands 133 

Table 12.1 List of device classes. 

Code Device classes 

OOh Disk drives 
Olh Tape drives 
02h Printers 
03h Processor devices 
04h WORM drives 
05h CD-ROM drives 
06h Scanners 
07h Optical disk 
08h Media changer 
09h Communication devices 

0Ah-1Eh Reserved 
1Fh Unknown device 

or device driver can determine, for example, which sector sizes a disk drive will 
allow before blindly attempting to set the value. 

A UNIT ATTENTION condition occurs when a LUN undergoes a change that anini­
tiator should know about. An example of this is the changing of medium for a 
removable medium drive or tape device. In such a case there are two methods 
of informing the initiator. The more elegant way is to use an AEN. This 
approach, however, is supported by very few SCSI devices. 

The second, and more standard, approach is for a target in a UNIT ATTEN­

TION condition to interrupt the next command with a CHECK CONDITION status. 
The initiator can then use a REQUEST SENSE command to determine just exactly 
was has occurred. 

All targets enter UNIT ATTENTION condition immediately following 
power-up or reset. The first command is always met with a CHECK CONDITION sta­
tus. When using the SCSI monitor program it is important to be aware that some 
initiators automatically poll the targets \Vith REQUEST SENSE commands and thus 
reset the UNIT ATTENTION condition. 

Command descriptor blocks 

SCSI commands are sent across the bus as a sequence of bytes called a command 
descriptor block. Many also include additional parameter lists. While descriptor 
blocks are sent during the command phase, parameter lists are transmitted dur­
ing a data phase. Not all commands pertain to user data organized in logical 
blocks. Some commands use parameter lists to obtain information about the 
device or to configure them. There are also commands that deliver no informa­
tion at all except in the status byte that concludes all commands. A descriptor 
block can be 6, 10, or 12 bytes long. 



134 SCSI Bus and IDE Interface 

6-Byte 
commands 

Table 12.2 shows the structure of a typical 6-byte command. Depending on 
whether the command uses logical blocks, parameter lists or status information, 
each field will have a different purpose or perhaps no function at all. 

Table 12.2 Template for 6-byte commands. 

7 [ 6 I 5 l 4 I 3 I 2 I 1 I 0 

0 Opcode 

1 LUN I(MSB) 

2 Logical block 

3 (LSB) 

4 Transfer length 

5 Control byte 

Opcodes The first byte of every command, byte 0, is the opcode. The three most signifi­
cant bits encode the command group, the remaining five encode the actual com­
mand. Each command group corresponds to a descriptor block of a given 
length. In this way a target knows which command to execute and how many 
more bytes remain in the descriptor block by examining this first byte alone. 
Table 12.3 shows the breakdown of SCSI opcodes. 

Table 12.3 Format of SCSI opcode. 

Bit 7 6 1 5 4 3 1 2 1 0 

Group Command 

Command group The three bits of the command group define eight different groups (Table 12.4). 
Vendors are not allowed to use the reserved groups. These opcodes are intended 
for future versions of the standard. Vendor unique commands must be defined as 
group 6 or 7 commands, though this flexibility is seldom taken advantage of. 

Table 12.4 Command groups. 

Group Ope odes Description 

0 00h-1Fh 6-Byte commands 
1 20h-3Fh 10-Byte commands 
2 40h-5Fh 10-Byte commands 
3 60h-7Fh Reserved 
4 80h-9Fh Reserved 
5 AOh-BFh 12-Byte commands 
6 COh-DFh Vendor unique 
7 EOh-FFh Vendor unique 



SCSI commands 135 

LUN SCSI commands are always directed to a LUN or to a target routine, not to the 
target itself. Byte 1 contains the LUN number in the three uppermost bits. This 
may seem redundant in light of the fact that the IDENTIFY message has already 
defined the LUN. In fact, this field exists only to be compatible with SCSI-1. All 
SCSI-2 devices I am familiar with use the IDENTIFY message as well as the LUN 
field. Target routines are new in SCSI-2 and are addressable only using the IDEN­

TIFY message. 

Logical blocks Six-byte commands that operate on logical blocks spread the logical block num­
ber (LBN) over three bytes, as shown in Table 12.2. In total, 21 bits are available 
to address the LBN, which corresponds to approximately 2 million logical 
blocks. Since a logical block is usually 512 bytes long this represents about a 
gigabyte of addressable storage. Therefore, 6-byte commands alone cannot 
access all of the data of devices with more than a gigabyte of storage. 

Transfer length This byte reflects the amount that should be transferred. Depending on the com­
mand itself, this field is interpreted differently. Some commands transfer no data at 
all and here the byte is meaningless. If the command uses a parameter list (which 
I will refer to as a parameter oriented command) then data length reflects the para­
meter list length in bytes. If there are fewer parameter bytes available than request­
ed, a target will simply send what is there without complaining. For commands 
that operate on logical blocks (what I call block oriented commands) transfer length 
represents the number of logical blocks starting at the LBN to be transferred. 

The 6-byte commands but also some 10- and 12-byte commands use a 
single byte for the transfer length. For such commands that are block oriented a 
transfer length of 0 means that 256 blocks should be sent. For parameter orient­
ed commands 0 means that no data should be transferred. 

Control byte The control byte contains just two bits defined in the standard. Both of these are 
optional and are seldom used. In the interest of completeness, short descriptions 
of these bits follow (Table 12.5). 

The link bit allows commands to be chained together as a single I/0 
process. No commands will be executed between two commands of a chain, 
which for optimization reasons might happen otherwise. This is useful, for 
instance, to read a block, change it, and write it back. In addition linked com­
mands allow the use of relative addresses for logical blocks. 

The flag bit may only be used in conjunction with linked commands. If 
this bit is set it causes the target to end the command with LINKED COMMAND COM­

PLETE (WITH FLAG) (OBh) instead of LINKED COMMAND COMPLETE (OAh). This is typ­
ically used to cause an interrupt in the initiator. 

Table 12.5 Command control byte. 

Bit 7 I 6 s I 4 l 3 1 2 1 0 

Vendor spec. Reserved Flag Link 



136 SCSI Bus and IDE Interface 

10- and 12-Byte 
commands 

The 10- and 12-byte commands are very much the same as the 6-byte commands 
(Tables 12.6 and 12.7). The only difference is the number of bytes available for 
the LBN and the transfer length. A 10-byte command contains a 32-bit block 
address or an address space of approximately 2 terabytes. The transfer length 
field is 16 bits long. In SCSI-2 the 12-byte command extends this field to 32 bits. 

Table 12.6 Template for 10-byte commands. 

7 I 6 I 5 I 4 l 3 I 2 I 1 I 0 

0 Opcode 

1 LUN I Reserved 

2 (MSB) 

3 Logical 

4 block 

5 (LSB) 

6 Reserved 

7 (MSB) Transfer length 

8 (LSB) 

9 Control byte 

Table 12.7 Template for 12-byte commands. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 Opcode 

1 LUN I Reserved 

2 (MSB) 

3 Logical 

4 block 

5 (LSB) 

6 (MSB) 

7 Transfer 

8 length 

9 (LSB) 

10 Reserved 

11 Control byte 

Command types There are four different types of commands (Table 12.8). These determine how 
and whether a command must be implemented. 



Status 

SCSI commands 137 

Table 12.8 Command types. 

Symbol 

M 
0 

v 

R 

Meaning 

Mandatory: these commands must be implemented 
Optional: these commands may or may not be implemented. When imple­
mented they must adhere to the standard 
Vendor specific: these opcodes are reserved for manufacturers to implement 
their own commands 
Reserved: these opcodes may not be used. The SCSI committee may assign 
commands at a later date. 

All SCSI commands end with a status phase. The only exceptions to this are 
commands that are interrupted by some unforeseeable event. These were dis­
cussed in Chapter 10. During the status phase a single status byte is transfered. 
Table 12.9 lists all possible status bytes. 

The three most common status bytes are GOOD (OOh), BUSY (08h) and 
CHECK CONDITION (02h). The first two have obvious meanings. A good way to 
become acquainted with the CHECK CONDITION status is with the help of the SCSI 
monitor program. This status is used, among other things, in response to all ille­
gal commands. The problem here may reside in the command itself or in the 
parameter list. When a target replies with this status it also prepares a report of 
sorts, which describes in more detail the nature of the problem. This information 
is read from the target using the REQUEST SENSE command. 

Table 12.9 List of status bytes. 

Status 
byte 

00 
02 

04 

08 
10 
14 

18 

22 

28 

Status 

GOOD 

CHECK CONDITION 

CONDillON MET 

BUSY 

INTERiviEDIATE 

INTER1\1EDIATE - CONDillON MET 

RESERVATION CONFLICT 

COMMAND TERMINATED 

QUEUE FULL 

Description 

The command completed successfully 
The command did not complete successfully. 
Use the REQUEST SENSE command for more 
detailed information 
Used, for example, by the SEARCH DATA 

command to indicate successful search 
The target is momentarily busy. Try again later 
Used in place of GOOD for linked commands 
Used in place of CONDITION MET for linked 
commands 
The LUN is momentarily reserved for another 
SCSI device. Try again later 
The target broke off the command due to a 
TERMINATE I/ 0 PROCESS message 
This command cannot be added to the 
command queue at the present time 



138 SCSI Bus and IDE Interface 

12.3 

INQUIRY (12h) 

Commands for all SCSI devices 

There are a number of commands that are common to all device types (Table 
12.10). The most important of these will be introduced here. We begin with those 
commands whose implementation is mandatory. 

Table 12.10 Commands for all devices. 

Ope ode Name Type Page ANSI Description 

OOh TEST UNIT READY M 141 7.2.16 Reflects whether or not the LUN is 
ready to accept a command 

03h REQUEST SENSE M 142 7.2.14 Returns detailed error information 
12h INQUIRY M 7.2.5 Returns LUN specific information 
15h MODE SELECT(6) M 149 7.2.8 Set device parameters 
16h RESERVE UNIT M 146 8.2.12 Make LUN accessible only to 

certain initiators 
17h RELEASE UNIT M 146 8.2.11 Make LUN accessible to other 

initiators 
18h COPY 0 7.2.3 Autonomous copy from/to another 

device 
1Ah MODE SENSE(6) M 149 7.2.10 Read device parameters 
1Ch RECEIVE DIAGNOSTIC 0 7.2.13 Read self-test results 

RESULTS 

1Dh SEND DIAGNOSTIC M 147 7.2.1 Initiate self-test 
39h COMPARE 0 7.2.2 Compare data 
3Ah COPY AND VERIFY 0 7.2.4 Autonomous copy from/to another 

device, verify success 
3Bh WRITE BUFFER 0 7.2.17 Write the data buffer 
3Ch READ BUFFER 0 7.2.12 Read the data buffer 
40h CHANGE DEFINITION 0 149 7.2.1 Set SCSI version 
4Ch LOG SELECT 0 7.2.6 Read statistics 
4Dh LOG SENSE 0 7.2.7 Read statistics 
55h MODE SELECT(10) 0 7.2.9 Set device parameters 
5Ah MODE SENSE(10) 0 7.2.11 Read device parameters 

The inquiry command tells us about a LUN, giving us a list of specific details in 
a concise format. This command can be used to learn, among other things, which 
SCSI options have been implemented, the SCSI version number, the device type 
and the name of the device. This command will function even if the L UN is not 
able to accept other types of commands. In fact, INQUIRY will only return CHECK 

CONDITION if the target is unable to return the requested inquiry data. INQUIRY is 
the only command that does not reply with CHECK CONDITION when a non-exis­
tent LUN is addressed. Instead, this fact is reflected in the data returned. 

It is most common to see this command with a transfer length of FFh, 
with all other bytes set to zero (Table 12.11). This represents a request for stan­
dard INQUIRY data, where 255 bytes or less are expected: 



SCSI commands 139 

Table 12.11 The INQUIRY command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 INQUIRY (12h) 

1 LUN I Reserved 1 EVDP 

2 Page code 

3 Reserved 

4 Allocation length 

5 Control byte 

e EVDP (enable vital production data): When this bit is clear standard INQUIRY 

data is returned. When this bit is set the page code determines the type of 
information returned by the target. Implementation of this bit is optional. 

e Page code: This byte is valid only when the EVDP bit is set. It specifies that 
more detailed information concerning the target be returned as INQUIRY data. 
Section 7.3.4 of the ANSI standard describes this byte more fully. 

e Allocation length: The number of bytes the initator has reserved for the 
INQUIRY data. Normally this byte will be set to FFh. In response to this the tar­
get will send as much data as it has, up to FFh in total. 

The standard The standard INQUIRY data is structured in the following manner (Table 12.12): 
INQUIRY data 

Table 12.12 INQUIRY data format. 

7 I 6 I 5 4 I 3 I 2 I 1 I 0 

0 Peripheral qualifier Device class 

1 RMB I Reserved (SCSI-1) 

2 ISO ECMA I ANSI 

3 AENI TIO Reserved I Data format 

4 Additional length 

5-6 Reserved (2 bytes) 

7 Rel l vV32 VV16 Sync I Li..'lk j Res. j Que j SftR 

8-15 Manufacturer (8 bytes) 

16-31 Product (16 bytes) 

32-35 Revision ( 4 bytes) 

36-55 Vendor unique (20 bytes) 

56-95 Reserved ( 40 bytes) 

96-n Vendor unique 



140 SCSI Bus and IDE interface 

Table 12.13 Peripheral qualifier. 

Status 

OOOb 
OOlb 
Ollb 

Description 

The device described is connected to the L UN 
The target supports such a device 
The target does not support a device for this LUN 

• Peripheral qualifier (Table 12.13): These three bits reflect whether a physical 
device can be supported under this LUN and whether or not it is connected, 
but say nothing about whether the device is ready. 

• Peripheral device type: These five bits indicate the peripheral device type, or 
class, to which the logical unit belongs. A list of these classes can be found on 
page 133. 

• RMB: Removable bit. A 1 indicates that the medium is removable. For exam­
ple, this bit is always set for diskette drives and tape units. 

• ISO version, ECMA version: Indicates that the device supports the ISO IS-
9316 or the ECMA-111 versions of the SCSI standard. 

e ANSI version: A 0 means that this is a SCSI-1 device, a 1 stands for SCSI-1 
with CCS, a 2 stands for SCSI-2. No other values are valid. 

o AEN (asynchronous event notification capability): This bit is defined only for 
processor devices. If set this bit indicates that the device supports asynchro­
nous event notification. Such a device will accept a SEND command from 
another target. 

• TIO: If set this bit indicates that the device supports the message TERMINATE 

I/ 0 PROCESS. 

• Data format: Indicates the response of the following standard INQUIRY data. 
Interpreted in the same way as the ANSI version field. 

• Additional length: Indicates how many additional bytes of information follow. 

• Rel: When set this bit indicates that the device supports relative addressing. 
Relative addressing is only supported with linked commands. 

• W32: When set this bit indicates support of 32-bit wide SCSI. 

• W16: When set this bit indicates support of 16-bit wide SCSI. 

• Sync: When set this bit indicates support of synchronous transfers. 

• Link: When set this bit indicates support of linked commands. 

• Que: When set this bit indictates support of tagged commands. 

• SftR: When set this bit indictates soft reset capability. Otherwise the device 
performs a hard reset to a RESET condition. 



TEST UNIT READY 

(OOh) 

SCSI commands 141 

SCSI Monitor V1.0 rev 024e 18.7.94(fs) 
ID Lu St lN nX 

SCSI Command 00: 12 00 00 00 FF 00 00 00 00 00 00 00 03 00 00 00 FF 

SCSI Data Buffer Nr. 00: 

0000: 01 80 02 02 26 00 00 18 48 50 20 20 20 20 20 20 C:&HP 
0010: 48 50 33 35 34 38 30 41 20 20 20 20 20 20 20 20 HP35480A 
0020: 41 20 20 20 30 30 30 2F 00 00 02 00 00 00 00 00 A 000/ 
0030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0090: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOAO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOBO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOCO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OODO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOEO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOFO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

Corrunand: G 

Figure 12.2 Example of INQUIRY command. 

e Manufacturer: Manufacturer's name in ASCII. 

• Product: Product's name in ASCII. 

• Revision: Product's version number in ASCII. 

As you can see, the INQUIRY command is capable of delivering a wide 
variety of useful information. An example of INQUIRY data as the SCSI monitor 
program presents it on the screen is shown in Figure 12.2. This particular com­
mand is inquiring about LUN 0 of SCSI ID 3. A total of 255 bytes (OFFh) have 
been requested. 

In order to simplify interpretation of the INQUIRY data, I have placed it in 
a frame corresponding to Table 12.12 in Table 12.14. The peripheral qualifier is 
OOOb, meaning that a physical device is addressable under this LUN. The 
peripheral device type is 00001b, which according to the list on page 133 speci­
fies a tape device. The RMB bit is set in byte 1 indicating removable medium. 
The ANSI field in byte 2 shows that the device is SCSI-2 compliant. This is also 
reflected in the response data format of byte 3. Byte 4 tells us that 38 (26h) addi­
tional bytes of data follow. The link and sync options are set in byte 5, meaning 
that the device supports synchronous transfers and linked commands but not, 
however, tagged queues. 

The command TEST UNIT READY determines whether the LUN in question will 
allow access to the medium (Table 12.15). This means, for example, for a remov­
able medium drive that the medium is present and READY for access. Depending 
on the device, it can take tens of seconds before the READY condition is reached. 
If you are only interested in finding out whether a certain LUN exists then the 
INQUIRY command should be used instead. 



142 SCSI Bus and IDE Interface 

REQUEST SENSE 

(03h) 

Table 12.14 Evaluation of INQUIRY data. 

7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 1 

1 1 0 

2 0 0 0 0 0 0 1 0 

3 0 0 0 0 0 0 1 0 

4 26h 

5-6 OOh,OOh 

7 0 0 0 1 1 0 0 0 

8-15 HP 

16-31 HP35480A 

32-35 A 

36-55 

56-95 

96-n 

TEST UNIT READY is an unusual command because no data phase takes 
place. No parameters are sent and no data is returned. When the physical device 
is ready this command simply returns a GOOD status, otherwise CHECK CONDITION 

is retumed. Then the precise reason for the lack of readiness can be determined 
from the sense data using REQUEST SENSE. 

The command REQUEST SENSE is always used in response to a CHECK CONDITION in 
order to read the sense data (Table 12.16). This data gives information concern­
ing the reason why the preceding command ended abnormally. The sense data 
is also updated when a command ends with COMMAND TERi\t1INATED status. 

It is important to remember that sense data always reflects the state of 
the previous command. It is the initiator's responsibility to follow up on a CHECK 

CONDITION status immediately with REQUEST SENSE. An intervening command 
will cause sense data to be overwritten. 

Table 12.15 The TEST UNIT READY command. 

7 I 6 I 5_1 4 [ 3 I 2 I 1 I 0 

0 TEST UNIT READY (00h) 

1 LUN I Reserved 

2 

3 

4 Reserved 

5 Control byte 



SCSI commands 143 

Table 12.16 The REQUEST SENSE command. 

7 I 6 I 5 l 4 I 3 I 2 I 1 I 0 

0 REQUEST SENSE (03h) 

1 LUN I Reserved 

2 

3 

4 Data length 

5 Control byte 

The command itself looks similar to the INQUIRY command. Here too the 
allocation length is in general set to FFh in order to receive all of the data that 
the target has available. 

Sense data Since interpreting sense data can be complicated, to say the least, we divide the 
task into four steps: 

(1) Determine validity of sense data. 
(2) Evaluation of the sense key 
(3) Evaluation of sense key specific information 
(4) Evaluation of the sense codes 

It is often the case that the sense key alone is enough information, making sub­
sequent steps unnecessary. 

I explain here only the most important fields, which are shown in bold 
in Table 12.17; the meaning of the less important fields can be found in the stan­
dard: 

Table 12.17 Sense data. 

0 

1 

2 

3--6 

7 

8-11 

12 

13 

14 

15-17 

18-n Additional sense bytes 



144 SCSI Bus and IDE Interface 

Table 12.18 The most important sense keys. 

Sense Description 
key 

Oh NO SENSE 

lh RECOVERED ERROR 

2h NOT READY 

3h MEDIUM ERROR 

4h HARDWARE ERROR 

5h ILLEGAL REQUEST 

6h UNIT ATTENTION 

7h DATA PROTECT 

Sh BLANK CHECK 

9h 
Ah COPY ABORTED 

Bh ABORTED COMMAND 

Ch EQUAL 

Dh VOLUME OVERFLOW 

Eh MISCOMPARE 

There is no sense information 
The last command completed successfully but used error cor­
rection in the process 
The addressed LUN is not ready to be accessed 
The target detected a data error on the medium 
The target detected a hardware error during a command or a 
self-test 
Either the command or the parameter list contains an error 
The LUN has been reset, for example through SCSI reset or a 
medium change 
Access to the data is blocked 
Reached unexpected written or unwritten region of the medium 
Vendor specific 
COPY, COMPARE or COPY AND VERIFY was aborted 
The target aborted the command 
Comparison for SEARCH DATA successful 
The medium is full 
Source data and data on the medium do not agree 

• Error code: An error code of 70h is the normal case. This means that the sense 
data refers to the current command. An error code of 71h, on the other hand, 
means that the sense data refer to an earlier command. Such a deferred error can 
occur, for example, with disk drives using write cache. Here the disk drive will 
send a GOOD status immediately after receiving the data of a WRITE command. To 
the host the write appears to be complete, but in reality the data merely resides 
in the drive's write cache waiting to be written to the medium. We find ourselves 
in a critical situation if during the actual write to the medium an unrecoverable 
data error occurs. We will discuss caching and its ramifications in more detail in 
Chapter 13. Fortunately, such errors occur extremely infrequently. 

• Sense key: The sense key is the principal information concerning the reason 
for a CHECK CONDITION. Table 12.18 lists the keys with their corresponding 
meanings. 

e Sense code: After deciphering the sense key, we may or may not need to look 
for more information concerning the error (Table 12.19). For the sense key NOT 

READY, for example, we look to the sense code for further explanation. This 
byte tells of possible hardware and medium errors, among others. 

ILLEGAL REQUEST is a sense key that occurs often while testing a device with the 
SCSI monitor. The sense key specific field contains more detailed information. 
Table 12.20 lists the possibilities for this field for the sense key ILLEGAL REQUEST. 

Look to the standard for the description of other sense keys. If the SKSV bit is 
set, this shows that the sense key specific data is valid. Afterwards, the C/D bit 
should be examined. When set the error lies in the command, otherwise the 



SCSI commands 145 

Table 12.19 Sample sense codes. 

Sense code Description 
13 14 

04 00 L UN not ready, reason unknown 
04 01 LUN has become ready 
04 02 LUN not ready, waiting for initialization command 
04 03 LUN not ready, operator action necessary 
04 04 LUN not ready, medium being formatted 
24 00 Error in command block 

Table 12.20 The sense key specific information. 

7 6 5 I 4 3 2 I 1 I 0 

15 SKSV C/D res. BPV Bit position 

16 (MSB) Error position 
~ 

17 (LSB) 

error lies in the parameter list. The position of the first byte in error is contained 
in the error position field. The field for bit position only has meaning for other 
sense keys. 

It should be apparent that the REQUEST SENSE command provides a great 
deal of useful information. The following example, which can easily be dupli­
cated using the SCSI monitor, will bring this point home (Figure 12.3). My first 
step was to send an INQUIRY command, 12 00 00 FF 00 00, to which the target 
responded with CHECK CONDITION. I then sent a REQUEST SENSE allocating 255 

SCSI Monitor Vl.O rev 024e 18.7.94 (fs) 
ID Lu St lN nX 

SCSI Corranand 01: 03 00 00 00 FF 00 00 00 00 00 00 00 03 00 00 00 FF 

SCSI Data Buffer Nr. 00: 

0000: 70 00 05 00 00 00 00 OB 00 00 00 00 24 00 00 CF p$ 
0010: 00 03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0090: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOAO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOBO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOCO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OODO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOEO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOFO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

Command: G 

Figure 12.3 SCSI monitor with REQUEST SENSE command. 



146 SCSI Bus and IDE Interface 

RESERVE (16h) 
and RELEASE 

(17h) 

bytes for sense data. In the status field for this command is OOh, meaning that the 
REQUEST SENSE was successful. If you do not have much experience in interpreting 
hexadecimal numbers it helps to write out each byte in binary on a piece of paper, 
then, using Table 12.21, draw in the boundaries of the individual fields. Byte 0 of 
the sense data is error code 70h; that is, this data refers to the previous command. 
In byte 2 is the sense key 05h: ILLEGAL REQUEST. The sense code is 24h, meaning 
that a field in the previous command was invalid. Looking at the sense key spe­
cific information, byte 15 is COh; the valid bit is set, indicating that there is useful 
information here. The C/D bit is also set, meaning that the error is in the com­
mand itself. Bytes 16 and 17 contain OOh and 03h; in other words, the error is in 
the third byte of the INQUIRY command. A look at the definition shows that byte 
3 of an INQUIRY command must be zero. The FFh belonged not in byte 3 but in 
byte 4 as the allocation length. The command should have been 12 00 00 00 FF 00. 

Table 12.21 Interpretation of the sense data. 

Bit/ 

Byte 7 6 5 4 3 2 1 0 

0 0 1 1 1 0 0 0 0 

1 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 1 0 1 

3-6 

7 0 0 0 0 1 0 1 1 

8-11 

12 0 0 1 0 1 0 0 0 

13 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 

15 1 1 0 0 0 1 1 1 

16 0 0 0 0 0 0 0 0 

17 ·. 0 0 0 0 0 0 1 1 

This pair of commands makes it possible to reserve a LUN for a particular ini­
tiator and then to free it for use by others. These commands are common to all 
device classes. There are special versions of the commands for disk drives. 

What happens when a LUN reserved for a certain initiator receives a 
commmand from another initiator? This LUN will end each such command with 
a RESERVATION CONFLICT status and ignore the command. This reservation mech­
anism provides a degree of protection, albeit somewhat unsophisticated, in 
multi-initiator environments. Many operating systems do not allow, for exam­
ple, two hosts to access a single disk drive. In such situations, however, it is pos­
sible to use RESERVE and RELEASE to share drives between two hosts. As soon as 
one system brings a drive online it reserves that LUN. Should the system go 
down for any reason, a simple SCSI reset is all that is needed to make the drive 
accessible for the other host. 



SEND DIAGNOSTIC 

(1Dh) 

SCSI commands 14 7 

Table 12.22 The RESERVE command. 

7 
1 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 RESERVE (16h) 

1 LUN j3rdPtyj 3rd Pty ID j Res 

2 

3 Reserved 

4 

5 Control byte 

The reserve command itself looks standard (Table 12.22). Only two fields 
call for any explanation; these make it possible for an initiator to reserve a device 
for a third party: 

• 3rdPty: Third party reservation. When clear, this bit calls for the reservation 
to be made for the initiator sending the command. When set, the reservation 
should hold for the initiator whose ID is contained in the third-party device 
ID field. 

• 3rdPty ID: When third party is set this field holds the ID of the device for 
which the reservation holds. 

It is possible for an initiator to modify its own reservation. It can, for example, 
first reserve a device for itself, followed later by a reservation for a third device. 
In this way a device always remains protected. One application for third-party 
reservation is the COPY command. 

A reservation can be dissolved in a number of different ways: by SCSI 
reset, a DEVICE RESET from any initiator, or by a RELEASE command from the ini­
tiator which made the reservation. The RELEASE command looks almost identical 
to the RESERVE command (Table 12.23). 

Table 12.23 The RELEASE command. 

7 I 6 I 5 
J 

4 I 3 I 2 I 1 I 0 

0 RELEASE (17h) 

1 LUN 13rdPtyl 3rd Pty ID I Res 

2 

3 Reserved 

4 

5 Control byte 

The SEND DIAGNOSTIC command causes the target to run certain diagnostic pro­
grams (Table 12.24). In the most simple case, when the ST bit is set, the device 
will run a self-test. If the self-test discovers no problems then the status returned 



148 SCSI Bus and IDE Interface 

Table 12.24 Tl1e SEND DIAGNOSTIC corrunand. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 SEND DIAGNOSTIC (1Dh) 

1 LUN I PF I Res ( ST l Dev~ UniO 

2 Reserved 

3 (MSB) Transfer length 

4 (LSB) 

5 Control byte 

is OOh (GOOD). If, on the other hand, a problem is detected a CHECK CONDITION sta­
tus, 02h, is returned. A follow-up REQUEST SENSE will reveal a sense key of 04h 
(HARDWARE ERROR). Only this implementation of the command is mandatory. The 
optional bits of byte 1 are: 

• PF (page format): When this bit is set the page format conforms to SCSI-2. In 
SCSI-1 the page format was vendor specific. 

• DevO (device offline): When set, this bit allows the target to run diagnostics 
that may affect all LUNs and possibly change their state. If clear no such 
operations will take place. 

• UniO (unit offline): This bit plays the same role as DevO but for protecting 
individual LUNs. 

Optionally, various diagnostics can be run using diagnostic pages sent as para­
meter lists. Diagnostic pages have been defined for each device type. Some 
pages may be vendor specific. For example, a frequently implemented page is 
the TRANSLATE ADDRESS page. This page makes it possible to find out the physical 
address of a logical block. The results are collected from the target using the 
RECEIVE DIAGNOSTIC RESULTS command. Table 12.25 shows the basic structure of a 
diagnostic page. Several such pages can be sent together in a single parameter 
list. The page code and basic structure of the pages are the same for SEND and 
RECEIVE DIAGNOSTIC. The actual parameters, however, usually differ somewhat. 

Table 12.25 Diagnostic page. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 Page code 

1 Reserved 

2 (MSB) Page length (n-3) 

3 (LSB) 

4 Diagnostic 

n parameter 

Dl 



CHANGE 

DEFINITION (40h) 

MODE SELECT(6) 

(15h) and MODE 

SENSE(6) (1Ah) 

SCSI commands 149 

This command allows an initiator to configure a SCSI-2 target to behave like an 
earlier SCSI version (Table 12.26). The following values are allowed in the ver­
sion field: 

• OOh: No change 

• 01h: SCSI-1 

• 02h: SCSI-1 with CCS 

e 03h: SCSI-2 

The Save bit causes the target to save the change permanently. At the next 
power-up cycle the change will be in force. The Transfer length indicates the size 
of the parameter list that the initiator intends to send to the target. Such lists, 
however, are vendor unique and in general are seldom used. 

Table 12.26 The CHANGE DEFINITION command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 l 0 

0 CHANGE DEFINITION (40h) 

1 LUN I Reserved 

2 Reserved I Save 

3 Res j SCSI version 

4 

5 Reserved 

6 

7 

8 Transfer length 

9 Control byte 

MODE SELECT and MODE SENSE are a pair of optional commands that use the same 
parameter lists. These allow an initiator to configure a device and also to deter­
mine its configuration. They are the same for all devices; however, the parame­
ter lists used can be very device dependent. Relative to a typical SCSI command, 
MODE SENSE and MODE SELECT are complex, with many parameters and fields. 
Both commands are essential, implemented for virtually all devices. They are 
covered here in great detaiL 

There are 6-byte and 10-byte versions of both MODE SELECT and MODE 

SENSE. Only the 6-byte version is discussed here. The 10-byte version is identical 
except for the parameter list length, which is two bytes instead of one. 

MODE SELECT(6) allows an initiator to set the internal configuration of a 
LUN (Table 12.27). The command itself is typical. Byte 4 contains the parameter 
list length, which can be up to 255 bytes long. If this byte is zero no list is sent. 
In byte 1 there are two bits of interest: 



150 SCSI Bus and IDE Interface 

Table 12.27 The MODE SELECT command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 MODE SELECT(6) (15h) 

1 LUN I PF I SP 

2 Reserved 

3 

4 Transfer length 

5 Control byte 

7 l 6 I 5 l 4 J 3 J 2 _I 1 I 0 

0 MODE SELECT(lO) (55h) 

1 LUN l PF I SP 

2 

3 

4 Reserved 

5 

6 

7 (MSB) Transfer length 

8 (LSB) 

9 Control byte 

o PF (page format): When this bit is set the parameter pages conform to SCSI-
2; that is, as they are described in this book. Otherwise the parameter pages 
are SCSI-1 compliant. 

o SP (save pages): When this bit is clear changes affect only the current para­
meters. If the bit is set then changes will also be written to the saved para­
meters and will be valid at the next power-up cycle. 

The MODE SENSE command is used to read the mode parameter lists from a device 
(Table 12.28). Like the MODE SELECT command, there is a 10-byte version for 
working with lists longer than 255 bytes: 

o DBD (disable block descriptors): vVhen this bit is set no block descriptors are 
sent before the pages. 

• PCF (page control field): 

OOb: Current values 
Olb: Changeable values 
lOb: Default values 
llb: Saved values 



SCSI commands 151 

Table 12.28 The MODE SENSE command. 

7 I 6 I 5 l 4 I 3 I 2 l 1 I 0 

0 MODE SENSE(6) (1Ah) 

1 LUN I Res I DBDI Res 

2 PCF I Page 

3 Reserved 

4 Transfer length 

5 Control byte 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 MODE SENSE(lO) (5Ah) 

1 LUN j Res I DBDj Res 

2 PCF I Page 

3 

4 Reserved 

5 

6 

7 (MSB) Transfer length 

8 (LSB) 

9 Control byte 

• Page code: The number of the desired parameter page. 

The parameter lists for MODE SELECT and MODE SENSE are basically the same. This 
is useful in that one can read the parameters from the device with MODE SENSE, 

edit them in memory, and write them back with MODE SENSE. A parameter list 
consists of three elements: the mode parameter header (Table 12.29), the block 
descriptors, and the parameter pages. Each element has a pointer to the begin­
ning of the subsequent one. Figure 12.4 shows a typical mode parameter list. 
This one has a header, two block descriptors, and two parameter pages. The 
arrows on the right-hand side represent the pointers within the elements. You 
will need to refer to this figure as we discuss the individual ele:rrtents. 

Table 12.29 Mode parameter header. 

7 l 6 I 5 I 4 I 3 l 2 I 1 I 0 

0 Transfer length 

1 Medium type 

2 Device specific 

3 Block descriptor length 



152 SCSI Bus and IDE Interface 

0 0 Mode data length 
1 1 
2 2 
3 3 Block descriptor length (here: OFh) 

4 0 
5 1 
6 2 
7 3 
8 4 Block descriptor 1 
9 5 
10 6 
11 7 
12 0 
12 1 
13 2 
14 3 
15 4 Block descriptor 2 
16 5 
17 6 
18 7 
19 0 Peripheral device page (09h) 
20 1 Page length (here: 06h) 

21 2 
22 3 
23 4 
24 5 
25 6 
26 6 
27 7 +-
28 0 Disconnect-reconnect page (02h) 
29 1 Page length (here: OEh) 

30 2 
31 3 
... ... 

... . .. 
42 14 
43 15 1+-- +-

Figure 12.4 Example of a mode parameter page. 

Mode parameter header 
The header of the 6-byte MODE commands is four bytes long: 

o Mode data length: The length of the entire parameter list in bytes. 

• Block descriptor length: The total length of the block descriptors. Since a 
block descriptor is always eight bytes long this field is either zero or a multi­
ple of eight. 



SCSI commands 153 

Table 12.30 Block descriptor. 

0 Write density 

1 (MSB) 

2 Number of blocks 

3 (LSB) 

4 Reserved 

5 (MSB) 

6 Block length 

7 (LSB) 

Block descriptor 
Zero or more block descriptors (Table 12.30) may follow a mode parameter 
header. The block descriptor defines the logical block length of all or part of the 
medium. Theoretically, one could use this feature to divide a drive into several 
partitions of differing logical block sizes. However, in the vast majority of cases 
a single block descriptor is employed with a block size defined for the entire 
medium. 

• Write density: This field is dependent on device class. For floppy drives there 
are codes for the popular densities. For disk drives this field has no meaning. 

• Number of blocks: The number of blocks that this descriptor defines. 

• Block length: The number of bytes per logical block for the blocks defined by 
this descriptor. For tape drives a block length of zero means that it is variable 
and is determined by the WRITE command. The block descriptor does not con­
tain a pointer to the next element since the descriptor is of a fixed length (8 
bytes). 

Mode parameter pages 
The third, final, and most important element is the parameter page itself (Table 
12.31). A parameter page begins with the page code in the lowest 6 bits of byte 
0. If follows that the largest page code is 3Fh. The next byte contains the page 
length. Parameter pages vary in length but are at most 255 bytes long. 

The PS (parameter savable) bit of byte 0 is only defined for MODE SENSE. 

When set it indicates that the target is able to save these parameters. There are 

Table 12.31 Mode parameter page. 

7 6 5 I 4 I 3 I 2 I 1 I 0 

0 PS Res Page 

1 Page length 

2 ... Mode 

... n Parameter 



154 SCSI Bus and IDE Interface 

Table 12.32 List of parameter pages. 

Code Name Device 

OOh Vendor specific DTPCSOM 
Olh Read/write error page DTCO 
02h Disconnect-reconnect page DTPCSOM 
03h Format page D 
03h Parallel interface page p 

03h Measurement units page s 
04h Rigid disk geometry page D 
04h Serial interface page p 

05h Flexible disk page D 
05h Printer options page p 

06h Optical memory page 0 
07h Verification error page DCO 
08h Caching page DCO 
09h Peripheral device page DTPCSOM 
OAh Control mode page DTPCSOM 
OBh Medium type page DTC 
OCh Notch partitions page D 
ODh CD-ROM page c 
OEh CD-ROM audio page c 
lOh Device configuration page T 
llh Medium partitions page 1 T 
12h Medium partitions page 2 T 
13h Medium partitions page 3 T 
14h Medium partitions page 4 T 
lDh Element address assignment page M 
lEh Transport geometry page M 
lFh Device capabilities page M 
3Fh All available pages DTPCSOM 

three parameter pages, which are defined for all device types. These are the con­
trol mode page (OAh), the disconnect-reconnect page (02h), and the peripheral 
device page (09h). 

Most parameter pages are device specific. These pages are defined in the 
SCSI literature included with the device. Table 12.32 gives an overview of para­
meter pages defined in the SCSI standard. Of special interest is page code 3Fh, 
which allows MODE SENSE to read all of the pages maintained by a device. The 
device column indicates the device classes for which a parameter page is 
defined. The abbreviations are defined as follows: D_, disk drives; T, tape drives; 
P, printers; C, CD-ROMs; S, scanners; 0, optical storage; M, medium changers; 
and C, communications devices. 



SCSI commands 155 

12.4 Mode parameter pages for all device classes 

The disconnect­
reconnect page 

(02h) 

The following parameter pages are defined for all device classes. 

The parameters of this page (Table 12.33) determine the behaviour of the target 
with respect to freeing the bus. Whether or not the target is allowed to free the bus 
at all is a function of the DiscPriv bit in the IDENTIFY message of every I/0 process. 

The parameter DTDC (data transfer disconnect) in byte 12 also deter­
mines the general behavior of the target. It has the following effect: 

• OOb: Disconnection from the bus is allowed. 

• 01b: No disconnection should take place once the data transfer has begun 
until all data has been sent. The time parameters of this page are ignored in 
this case. 

• 1 Ob: Reserved. 

• 11b: No disconnection should take place once the data transfer has begun 
until the command is complete. Time parameters are also ignored in this case. 

Table 12.33 The disconnect-reconnect page. 

7 6 5 I 4 I 3 I 2 I 1 I 0 

0 PS Res Disconnect-reconnect page (02h) 

1 Page length (OEh) 

2 Buffer full condition 

3 Buffer empty condition 

4 (MSB) Maximum bus 

5 inactivity time (LSB) 

6 (MSB) Minimum 

7 bus free time (LSB) 

8 (MSB) Maximum 

9 connection time (LSB) 

10 (MSB) Maximum 

11 burst length (LSB) 

12 I (DTDC) 

13 

14 Reserved 

15 



156 SCSI Bus and IDE Interface 

Peripheral 
device page 

(09h) 

The maximal burst length cannot be specified when the DTDC is non-zero. The 
following parameters affect the target's disconnect-reconnect behavior when 
DTDC is zero. 

• The buffer full ratio determines, for read operations, how full the data buffer 
should be before the target attempts a reconnect to the initiator. The value is 
in units of 1/256 times the number of buffers. The buffer empty ratio works 
the same way for write operations. It determines how empty the buffer 
should be before attempting to reconnect to the initiator. 

• The bus inactivity limit specifies the maximum amount of time in 100 ps 
increments that a target may occupy the bus without sending or receiving 
data. If the limit is exceeded the target must free the bus. 

• The disconnect time limit specifies the minimum amount of time in 100 ps 
increments that a target must wait after freeing the bus before it attempts a 
reselection. 

• The connect time limit specifies in 100 ps increments the maximum amount 
of time that a target may occupy the bus. 

• The maximum burst size specifies the maximum number of data bytes (in 512 
byte increments) that the target may transfer before relinquishing the bus. 

This parameter page does not allow many settings and is more or less vendor 
specific (Table 12.34). The interface identifier describes a physical interface. This 
is meaningful for bridge controllers; otherwise a zero stands for SCSI. A few val­
ues are defined in the standard: 

• OOOOh: SCSI 

e 0001h: SMD 

Table 12.34 The peripheral device page. 

7 6 5 I 4 I 3 I 2 I 1 I 0 

0 PS Res Peripheral device page (09h) 

1 Page length (n-1) 

2 (MSB) Interface 

3 (LSB) 

4 Reserved 

5 Reserved 

6 Reserved 

7 Reserved 

8 ... Vendor specific 

... n 



Control mode 
page (OAh) 

e 0002h: ESDI 

e 0003h: IPI-2 

e 0004h: IPI -3 

SCSI commands 157 

The control mode page contains parameters for controlling various SCSI-2 char­
acteristics (Table 12.35). I mention here only a few of the more important ones 
and refer the reader to the standard for more details. 

The queue algorithm modifier pertains to SIMPLE QUEUE TAG commands. 
It takes on two values: a value of 0 specifies that the target must order com­
mands in such a way that data integrity is guaranteed across the entire medium 
for all initiators. A value of 1 allows the target to re-order commands without 
restrictions. A drive can often achieve a substantial increase in throughput by 
optimizing the order in which logical blocks are accessed. 

The DQue bit allows tagged queuing to be disabled. When set all queue 
messages are replied to with MESSAGE REJECT. The three bits RAENP, UAAENP 
and EAENP allow AEN in certain situations. If none of these bits is set AEN is 
disabled. 

RAENP (ready AEN permission) specifies that the target should use 
AEN to notify initiators of an initialization instead of responding with UNIT 

ATTENTION for the first command. UAAENP (unit attention AEN) allows AEN 
instead of UNIT ATTENTION during normal operation. EAENP (error AEN permis­
sion) allows a target to use AEN for deferred errors again instead of relying on 
a UNIT ATTENTION response to the next command. 

Table 12.35 The control mode page. 

7 6 5 I 4 l 3 I 2 1 0 

0 PS Res Control mode page (OAh) 

1 Page length (06h) 

2 Reserved RLEC 

3 Queue algorithms I Reserved QErr DQue 

4 EECA Reserved IRAENP UAAENP EAENP 

5 Reserved 

6 (MSB) Ready AEN 

7 W n.l rl n. ff ·.-v:n• • rl T 



158 

13 Direct access devices 

This class includes all devices that allow direct access to any logical block. Disk 
drives, magneto-optical drives, diskettes and RAM disks are among the most 
popular examples of this class. 

WORM drives use an optical medium that can only be written to once 
and have their own device class. The same is true of CD-ROM. 

13.1 The model of a SCSI disk drive 

The basic physical design of disk drives and the organization of data on the 
medium were described in Part I. Refer to Chapter 2 before continuing if any of 
the following terms are unclear: read/write head, sector, cylinder, logical block, 
ECC, CRC, mapping, interleave, track skew, and zone-bit recording 

A SCSI disk drive presents the user with a sequence of logical blocks for 
storing information (Figure 13.1). These blocks can be written to and read any 
number of times. They are uniquely identified by their logical block number 
(LBN). The first logical block has the number 0. 

In contrast to tape drives, the logical blocks of a disk drive allow direct 
access to any block. The actual fetching of the data is completely transparent to 
the host. In general the host has no idea where on the medium a logical block is 
located. 

Normally, a logical block contains exclusively user information. There 
do exist, however, optional commands that allow limited access to format infor­
mation like ECC or CRC. 

Mapping The mapping of logical blocks to physical sectors is not specified in the SCSI 
standard (Table 13.1). However, it should be implemented in such a way that the 
time needed to access adjacent blocks is minimized. Most drives use a linear 
mapping, where adjacent logical blocks come from adjacent physical sectors. 

The following example will help to make this clear. Assume a drive with 
400 cylinders (tracks), 2 heads, and 25 sectors. A state-of-the-art disk drive can 
switch heads within the time it takes to rotate from one sector to another. A 



\ 
User 
data 

Logical blocks 

Direct access drives 159 

Replacement sectors 
and cylinders 

Saved 
MODE parameters 

Defect lists 
Plist 
Glist 
Clist 

Figure 13.1 Organization of the SCSI medium. 

change of tracks typically takes around 2 ms. A linear mapping minimizes 
delays by switching heads before calling for a change of tracks. 

Logical blocks The size of a logical block can vary between 1 and 64Kbytes. The most widely 
used size is 512 bytes, as is the case for the DOS operating system. In the UNIX 
world there are also blocks of 4 Kbytes. A SCSI drive can accommodate more 
than one block size on a single medium. Theoretically, each block may be a dif­
ferent size. 

Table 13.1 Mapping of logical blocks. 

LBN Cylinder Head Sector 

0 0 0 0 
1 0 0 1 

24 0 0 24 

Head switch 

25 0 1 0 

49 0 1 24 

Adjacent track seek and head switch 

50 1 0 0 

19999 399 1 24 



160 SCSI Bus and IDE Interface 

Extends and 
notches 

Removable 
medium drives 

RAM disks 

Medium defects 

A continuous sequence of blocks of the same size is called an extend. Extends are 
defined using the parameter list of a MODE SELECT command (see page 150). 
However, this optional feature is seldom employed. For most applications all 
blocks of a SCSI drive will have the same block size; that is, they will belong to a 
single extend. Be careful not to confuse zone-bit recording with extends. Zone-bit 
recording has to do with how the information is stored on the medium. Here the 
outer tracks contain more sectors than the inner tracks. The resulting regions of the 
drive that employ the same number of sectors per track are called notches. Extends, 
on the other hand, are groupings of logical blocks. Adding to this confusion is the 
fact that logical block size and sector size may not be the same (see Figure 13.2). 

The medium of a SCSI drive may or may not be removable. Diskette drives, 
magneto-optical drives and removable cartridge drives are examples of remov­
able medium drives. The medium is said to be 'mounted' when it is loaded into 
the unit and is ready to read or write. A SCSI drive in this state is said to be in 
condition ready. Any attempt to access a drive that is not ready leads to a CHECK 

CONDITION with the sense key NOT READY. 

The model of a SCSI disk drive does not specify that information must be stored 
in a nonvolatile manner. This allows for the implementation of a 'disk drive' out 
of RAM (hence RAM disk). The result is lightning fast storage that loses infor­
mation when the power is removed. 

A medium defect prevents information from being written and read correctly. 
Such a defect renders an entire sector unusable. Defects are an unavoidable out­
come of the plating process of rigid disks but can also result from a fingerprint 
on a diskette. Section 7.2 goes into more detail concerning medium defects as 
they actually occur. 

SCSI makes it possible for a target to present a virtually defect-free medi­
um to the outside world. This is done by replacing defective logical blocks with 

MODE 
parameter 
header 

Block 
descriptor 1 : 
512 bytes/ 
logical block 

Biock 

1 
descriptor 2: 
1024 bytes/ 
logical block 

MODE 
pages ... Extend 1 Extend 2 

Notch 1 

Geometry 
page 

3 Sectors 
per track 

Notch 2: Notch 1: 
four sectors three sectors 
per track per track 

Figure 13.2 SCSI extends and notches. 



Direct access drives 161 

replacement blocks set aside solely for this purpose. It does not concern anini­
tiator whether or not a logical block has been replaced. The defect management 
is carried out by the drive alone. Replaceable medium drives like diskettes, how­
ever, cannot accommodate such an approach because here the physical format 
of the medium plays an important role. If SCSI defect management were 
employed then a diskette written on a SCSI drive could not be read by a stan­
dard PC floppy drive. 

There are a number of methods of defect management. A target using 
automatic reallocation replaces a block automatically as soon as a defect is 
detected. This sounds very attractive but brings with it certain disadvantages as 
well. If the data in logical block can no longer be read successfully the block will 
be replaced with a good one. However, the data in this block is obviously not 
what was written to the original defective block but rather the format pattern. 
For this reason the target should inform the host of such an action; it can do this 
using the message system. Automatic reallocation during writing, on the other 
hand, is not a problem. Here either the data is still in the write buffer and the tar­
get can write it to the new block or the target can respond to the host with a write 
error. Because of the inherent differences SCSI allows these features to be 
enabled and disabled separately. 

In addition to the above method where the drive autonomously man­
ages defects is the more standard approach where the host is in charge. Here 
defective blocks are replaced using the command REASSIGN BLOCK. This method 
is preferred because the operating system has full control. 

Defect lists There are four different types of defect lists used with SCSI drives. The primary 
defect list (PList) contains the defects discovered by the manufacturer using ana­
log testing equipment. Such equipment can find positions that might not cause 
errors until the medium ages. The PList is permanent and never changes after 
the drive leaves the factory. The grown defect list (GList) contains additional 
defects that were discovered during the operation of the drive. These are defec­
tive blocks discovered during formatting or reallocated either automatically or 
using REASSIGN BLOCK. The certification list (CList) contains defects that were dis­
covered during the certification procedure of formatting. The defects of the 
CList belong to the GList as well. Finally, there are the defects that an initiator 
sends to the target. Called the DList, this list is sent to the target before format­
ting takes place, at which time it becomes part of the GList. The PList and GList 
together contain all medium defects. 

Data buffers and Every SCSI disk controller has a built-in memory buffer with at least enough 
cache room to store a sector's worth of data. A physical sector is written or read in 

entirety at one time, therefore the data must be processed in real time. Since SCSI 
cannot guarantee real-time performance a sector's worth of data is first collect­
ed in the buffer before writing it to the medium. 



162 SCSI Bus and IDE Interface 

Pre-fetch 

Writing 
optimization 

When the data buffer is large enough to accommodate an entire track it is possi­
ble to implement speed enhancing options like read pre-fetch. Here a controller 
will assume that whenever a logical block X is to be read, block X+ 1 will be 
requested next. The validity of this assumption depends on the operating sys­
tem of the host. Nevertheless, when the controller reads a sector it reads the rest 
of the track into the buffer as well. This extra work costs practically no time since 
it is merely a DMA transfer to the buffer. In the event that the subsequent blocks 
are called for the transfer can take place immediately. Otherwise, the data can 
simply be ignored with no penalty. 

Another method of optimization is possible when a large enough buffer 
is available. Assume that a large number of continuous blocks is requested from 
the drive. After the seek to the proper track is complete it is probably the case 
that the head is located somewhere in the middle of the set of requested blocks. 
Normally, the controller would wait until the first block rotates undemeath the 
heads before starting to read. However, when the buffer is large enough the con­
troller can begin to read the sectors into memory immediately. Afterwards the 
controller simply rearranges the order in which the data is sent to the host. This 
method can save many milliseconds of time. 

Other methods of optimization are available when writing data to the drive. 
Consider the point in time just after the data has been collected into the con­
troller's write buffer. Normally, the seek takes place and the data is written to the 
medium before COMMAND COMPLETE is sent to the initiator. However, if the con­
troller responds immediately with GOOD status and COMMAND COMPLETE the 
access time is effectively eliminated. This approach brings with it an element of 
risk. If the actual write to the medium should fail the host must be notified of the 
error. In SCSI-2 this is possible using AEN. Here the target informs the host that 
the WRITE command that originally terminated with GOOD status was, in fact, 
unsuccessful. More difficult is the situation where power is lost. Drives are nor­
mally built so that once writing a sector has begun it can be completed, thus 
maintaining the integrity of the medium even when power is interrupted. 
However, implementing a feature whereby the entire data buffer could be saved 
would be much too costly. 

An operating system assumes that everything written to a drive is 
secure. If this is not, in fact, the case the results can be catastrophic. More than 
just data is at stake here: if configuration information or other operating system 
specific data is lost it may necessitate reinstallation of the entire system. 
However, as with any mechanical device, failures do occur no matter what pre­
cautions are taken. In this case the increase in performance rnust be VV'eighed 
against such risks. 

For these reasons this write feature is configurable using the cache page 
of MODE SELECT. When enabled, writes are extremely fast but data integrity is at 
risk; when disabled data integrity is maintained but with a degradation in per­
formance. 



Direct access drives 163 

Caching Caching goes one step further with the data buffer than the techniques described 
above. Since SCSI-2 provides a mode parameter page especially for configuring 
the cache we will look at caching here in greater detail. Certain aspects of drive 
performance as well as the definition of average access time can be found in 
Section 2.3. 

In general a cache is fast storage which contains copies of certain por­
tions of another slower storage medium. The cache can be accessed usually at 
least an order of magnitude faster than the slower storage but is much smaller 
in capacity. A cache directory is used to determine whether a specific piece of 
data is resident in the cache. When the desired data is in the cache we speak of 
a cache hit; otherwise it is called a cache miss. 

Caches were first employed in the main memory of mainframe comput­
ers. Here very expensive, very fast RAM is used to cache the slower, less expen­
sive, but very large main memory of the system. Even though such a cache is 
typically only a fraction of the size of main memory it is not uncommon to reach 
a hit quota of over 90°/o. Such success is due largely to the fact that much of com­
puter programs are loops. 

The situation for mass storage is completely different. The effectiveness 
of a mass storage cache is very dependent on the operating system and applica­
tion. At least in multi-user systems, disk accesses are distributed over the entire 
medium. There are, however, areas that are more frequently accessed, for exam­
ple, directories and tables that the operating system manages. This makes 
designing an effective disk cache very challenging. 

The hit quota of a disk cache usually lies under 50°/o. Nevertheless, the 
increase in performance can be quite high. A cache hit can turn a 17 ms disk 
access into a 500 ns cache read. 

The effectiveness of a disk cache is strongly influenced by the way in 
which it is configured. The cache fills as read data is copied there. This can hap­
pen in parallel to the data transfer so that no loss in perfomance occurs. When 
write data is written first into the cache and then onto the disk it is referred to as 
write-through cache. Here the same potential problems can occur as earlier with 
the simple memory buffer. If the device waits until the data is written to the 
medium before responding with GOOD status there is no speed advantage. If 
GOOD status is returned upon receiving data into the cache, data may be lost. 
These two features - whether write-through cache is used and when status 
should be returned - can be controlled using the cache page parameters. A third 
option is read pre-fetch. Several parameters are used to set how many more 
blocks than requested should be read into the cache. 

The next issue relevant to cache management is determining which 
blocks should be overwritten when the cache is full. The most simple and most 
commonly used approach displaces the data that has not been accessed for the 
longest time. This method can be enhanced by allowing certain areas in the 
cache to be exempt from being displaced. Additionally, it can be specified that 
pre-fetch data should be sacrificed first. 



164 SCSI Bus and IDE Interface 

Table 13.2 Hard disk commands. 

Opcode Name Type Page ANSI Description 

OOh TEST UNIT READY 141 7.2.16 Reflects whether or not the LUN is 
ready to accept a command 

03h REQUEST SENSE 142 7.2.14 Returns detailed error information 
04h FORMAT UNIT 168 8.2.1 Format the medium 
07h REASSIGN BLOCKS 8.2.10 Defective blocks reassigned 
08h READ(6) 165 8.2.5 Read. Limited addressing 
OAh WRITE(6) 165 8.2.5 Write. Limited addressing 
OBh SEEK(6) 8.2.15 Seek to a logical block 
12h INQUIRY 7.2.5 Returns LUN specific information 
15h MODE SELECT(6) 149 7.2.8 Set device parameters 
16h RESERVE UNIT 146 8.2.12 Make LUN accessible only to certain 

initiators 
17h RELEASE UNIT M 146 8.2.11 Make ,LUN accessible to other initiators 
18h COPY 0 7.2.3 Autonomous copy from/to another 

device 
1Ah MODE SENSE(6) 149 7.2.10 Read device specific parameters 
1Bh START STOP UNIT 0 8.2.17 Load/ unload medium 
1Ch RECEIVE DIAGNOSTIC 

RESULTS 0 7.2.13 Read self-test results 
1Dh SEND DIAGNOSTIC 147 7.2.1 Initiate self-test 
1Eh PREVENT ALLOW 

MEDIUM REMOVAL 0 8.2.4 Lock/unlock medium 
25h READ CAPACITY 8.2.7 Read number of logical blocks 
28h READ(10) 165 8.2.6 Read logical block 
2Ah WRITE(10) 165 8.2.6 Write logical block 
2Bh SEEK(10) 0 8.2.15 Seek to a logical block 
2Eh WRITE AND VERIFY 0 8.2.22 Write logical block, verify success 
30h SEARCH DATA HIGH 0 8.2.14 Search logical blocks for data pattern 
31h SEARCH DATA EQUAL 0 8.2.14 Search logical blocks for data pattern 
32h SEARCH DATA LOW 0 8.2.14 Search logical blocks for data pattern 
33h SET LIMITS 0 8.2.16 Define logical block boundaries 
34h PRE-FETCH 0 8.2.3 Read data into buffer 
35h SYNCHRONIZE CACHE 0 8.2.8 Write cache to medium 
36h LOCK UNLOCK CACHE 0 8.2.2 Hold data in cache 
37h READ DEFECT DATA 0 8.2.8 Read list of defective blocks 
39h COMPARE 0 7.2.2 Compare data 
3Ah COPY AND VERIFY 0 7.2.4 Autonomous copy from/ to another 

device, verify success 
3Bh WRITE BUFFER 0 7.2.17 Write the data buffer 
3Ch READ BUFFER 0 7.2.12 Read the data buffer 
3Eh READ LONG 0 166 8.2.9 Read data and ECC 
3Fh WRITE LONG 0 166 8.2.23 Write data and ECC 
40h CHANGE DEFINillON 0 149 7.2.1 Set SCSI version 
41h WRITE SAME 0 8.2.24 Write data pattern 
4Ch LOG SELECT 0 7.2.6 Read statistics 
4Dh LOG SENSE 0 7.2.7 Read statistics 
55h MODE SELECT(10) 0 149 7.2.9 Set device parameters 
5Ah MODE SENSE(10) 0 149 7.2.10 Read device parameters 



Direct access drives 165 

13.2 Hard disk commands 

READ(6) (08h) and 
WRITE(6) (OAh); 

READ(lO) (28h) 
and WRITE(lO) 

(2Ah) 

Table 13.2 shows a list of commands for disk drives. The most important of these 
are discussed here. 

The READ command requests a certain number of logical blocks from a target. The 
WRITE command provides a target with a number of logical blocks to be written 
to the medium. The structure of these commands is identical (Table 13.3). Each 
contains the start address and the transfer length expressed in logical blocks. 

There is a 6-byte as well as a 10-byte version of both the READ and WRITE 

commands. The 6-byte version stems from SCSI's predecesor SASI. It has the 
disadvantage that only 21 bits are provided for the logical block address. 
Assuming a block length of 512 bytes, this allows a little more than a gigabyte to 
be addressed. For many modern drives this is simply not adaquate. 

It hard to believe but at one time host adapters used 6-byte READ and 
WRITE commands exclusively. At the same time these adapters were capable of 
recognizing the full capacity of drives of more than a gigabyte. When a block 
above the magical 21-bit boundary was be addressed, the host adapter would 

Table 13.3 READ and WRITE commands. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 READ(6) (08h) or WRITE(6) (OAh) 

1 LUN I (MSB) Logical block 

2 

3 Logical block (LSB) 

4 Transfer length 

5 Control byte 

7 I 6 I 5 I 4 I 3 1 2 J 1 I 0 

0 READ(lO) (28h) or WRIIE(10) (2Ah) 

1 LUN I DPOI FUAI Res. j Rel 

2 (MSB) Logical block 

3 

4 

5 Logical block (LSB) 

6 Reserved 

7 (MSB) Transfer length 

8 (LSB) 

9 Control byte 



166 SCSI Bus and IDE Interface 

READ LONG (3Eh) 
and WRITE LONG 

(3Fh) 

simply ignore the uppermost bits. Of coursef this would address and write the 
wrong logical block on the drive. You can imagine what happened. An operat­
ing system would gradually fill a drive starting with the lowermost logical 
blocks. The system would operate normally until the 21-bit address was 
reachedf at which time logical block 0 would be overwritten. This mistake would 
wipe out the boot blockf the internal medium tablesf and the directories (in this 
order). The drive would mysteriously become unusable without even a hard­
ware error having been detected. For this reason it is highly recommended to 
avoid the 6-byte READ and WRITE commandsf and if you ever find yourself the 
victim of unexplainable data corruption be sure to investigate whether or not the 
6-byte demon is to blame. 

Other than the start address and transfer lengthf the 6-byte versions have 
no parameters. As with all block oriented 6-byte commandsf a transfer length of 
zero actually means that 256 are requested. In contrastf zero transfer length 
means just that for the 10-byte commands and no data is sent. In the 10-byte ver­
sion there are a number of additional control bits: 

e DPO (disable page output): This bit helps the target to manage the cache. If it 
is setf it tells the target that the host does not intend to read the data again in 
the near future. The target may decide not to keep this data in the cache. 

e FUA (force unit access): When this bit is set the target is forced to read the 
data from the medium even if it resides in the cache. If the cache contains a 
newer version of the data then it must first be written to the medium and 
then re-read. In the case of a WRITE command the target must wait until the 
data is on the medium before responding with GOOD status. This affects 
drives with cache as well as with buffer memory. 

e Rei (relative addressing): This bitf which is valid only in conjunction with 
linked commandsf causes the start address to be interpreted as an offset to the 
start address of the last command. 

The most important variants to the READ and WRITE commands are READ LONG 
and WRITE LONG. Both are 10-byte commandsf which operate not only on the user 
data but also on the ECC. Moreoverf these commands operate on strictly one 
block at a time (Figure 13.3). The transfer length is interpreted as the number of 
bytes to transfer. Byte 1f bit 1 of a READ LONG command is the COOR control bit. 
Only if COOR is set will data correction be performed in the event of a read error. 
Otherwise the data will be transferred just as it comes from the medium. 

The type of encoding used to write data onto the medium as well as the 
ECC polynomial is vendor specific. However, the ECC polynomial must be 
known if we wish to write a valid ECC along with the data. Unfortunately, this 
makes it neccessary to know device specific information when using READ LONG 
or WRITE LONGf which is at odds with the vendor independent philosophy of SCSI. 

A very practical application of these commands is in the testing of a sys­
temfs response to a data error. To accomplish this the drive is first connected to 
a PC running the SCSI monitor and a logical block is read using READ LONG. After 
modifying a few bytes the data is written back to the drive using WRITE LONG. 



Other variants 
of READ and 

WRITE 

READ CAPACITY 

Logical block 

READ LONG 
WRITE LONG 

s 
Gap Header Gap y 

1 2 n 
c 

512 Bytes data 

512 Bytes data 

512 Bytes data 

I Sync I Cylinder I Head Sector I CRC -~ 

Direct access drives 167 

ECC Gap 
3 

Figure 13.3 Physical layout of a logical block. 

Now in the system, the first access to this block will result in an ECC error. With 
a little practice it is possible to produce correctable as well as uncorrectable data 
errors. 

Two additional commands remain to be mentioned: WRITE AND VERIFY writes 
data to the medium and then reads it back while comparing it to the original 
data. The data is only transferred once across the SCSI bus. Another way to 
insure absolute data integrity from host memory to the medium is to link togeth­
er a standard READ and WRITE command and then compare the data in host mem­
ory. Finally, the command WRITE SAME allows one to write the same block sever­
al times to the medium. 

Also mandatory for disk drives is the command READ CAPACITY (Table 13.4). It 
has the standard structure of 10-byte commands and returns eight bytes of infor­
mation: four bytes reflect the last LBN of the drive while the remaining four 
reflect the block length. 

The PMI (partial medium indicator) control bit, byte 8, bit 0, plays an 
important role. When clear, the command returns the LBN of the last logical 
block of the medium as described above. In this case the block number in the 
comrrtand block rrtust be zero. 

When PMI is set the command returns something completely different. 
Now the LBN in the command is interpreted and the target returns the next 
LBN, after which a noticeable delay in access will occur. Delays in access occur, 
for example, at cylinder boundaries. Using this command the operating system 
can determine whether a certain area of frequently accessed storage is ideally 
located. 



168 SCSI Bus and IDE Interface 

FORMAT UNIT 

(04h) 

Table 13.4 The READ CAPACITY command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 READ CAPACITY (25h) 

1 LUN I Reserved j Rel 

2 (MSB) 

3 Logical 
1--

4 block 
r--

5 (LSB) 

6 
-

7 Reserved 
-

\PMI 8 

9 Control byte 

The FORMAT UNIT command instructs the target to format the medium of a specif­
ic LUN (Table 13.5). In its simplest form no parameters are sent and the target for­
mats using default settings. The actual formatting procedure has two phases. 
First the physical medium is formatted, meaning that each sector is written with 
header, data, and ECC information. Afterwards, the mapping from physical 
blocks to logical blocks takes place. Finally, during a second pass over the medi­
um defective blocks are reallocated; that is, replaced with reserve blocks. The tar­
get will also accept a list of additional medium defects to be reallocated in a para­
meter block. Since format parameters are set using the MODE SELECT command it 
is imperative to first use MODE SELECT then the FORMAT command. Only in this way 
will the drive configuration reflect the desired mode parameters (see Figure 13.4) 

The following parameters are contained in the command itself: 

e Fmt (format data): This bit must be set when a parameter list follows the FOR­

MAT UNIT command. 

e Cmpl (complete): This bit may only be set when Fmt is set. It indicates that 
the defect list in the parameter list is exhaustive. All defect lists except the 
PList are deleted and newly constructed. 

Table 13.5 The FORMAT UNIT command. 

7 I 6 I s I 4 I 3 I 2 I 1 I 0 

0 FORMAT UNIT (04h) 

1 LUN J Fmt !Cmplj Defect list format 

2 Vendor specific 

3 (MSB) Interleave 

4 (LSB) 

5 Control byte 



MODE 
SELECT 

Extends, 
sectors, 
offsets, 
etc. 

Direct access drives 169 

FORMAT UNIT 

Interleave, DUst 

New 
format 
and 
defect 
lists 

Old 
defect 
lists: 

Plist 
CUst 
GUst 

Figure 13.4 Influences on formatting. 

e Defect list format: This field indicates one of three defect list formats: block 
format (OOOb), index format (100b), or sector format (101b). Only one format 
type is allowed in a single parameter list. The formats are described in detail 
later in this section under the heading 'Defect Descriptors'. 

e Interleave: The term 'interleave' is explained in Chapter 2. This field indicates 
the interleave that should be employed. A value of OOh means that the target 
should use its default values. To assure a one-to-one interleave a value of 01h 
must be used. 

Parameter lists Figure 13.5 describes by way of example the structure of the FOR\1AT UNIT para­
meter list. Bytes 0 to 3 contain the header. Next comes the optional initialization 
pattern descriptor. This has a variable length, which in this example spans from 
byte 4 to byte 8. This is followed by optional defect descriptors. Thus, a para­
meter list is necessary when sending either an initialization pattern or defect 
lists with the FORMAT command. Any other pertinent format information is 
found in the MODE parameter pages, especially the format page. 

In addition to the control bits in byte 1, the header of the parameter list 
contains the length of the defect lists in bytes 2 and 3. This length may be zero. 
The number of defects can be inferred from the list length together with the list 
format in byte 1 of the command itself. A description of the control bits follows: 



170 SCSI Bus and IDE Interface 

7 I& Is 14 13 !2 I 1 !o 
0 Reserved 
1 FOV I DPR 1 OCR I STP I IP I DSP I lmm I VS 

2 (MSB) Length of defect list 
3 here 0008h (LSB} 
4 IP Mod I Reserved 
5 Pattern type 

6 (MSB) Pattern length 
7 here 0001 h (LSB) .J 8 Initialization pattern 

9 Defect descriptor 1 
10 
11 
12 
13 Defect descriptor 2 
14 
15 
16 

7 I & I 5 I 4 I 3 I 2 I 1 I 0 
0 FORMAT UNIT (04h} 
1 LUN I Fmt ICmpll Defect list 

Format 
2 Vendor specific 
3 Interleave (MSB) 

;------

4 (LSB) 
5 Control 

Code Defect I ist format 
OOOb Block format, 4 Bytes long. 
1 OOb Index format, 8 Bytes long. 
101 b Sector format, 8 Bytes long. 

Figure 13.5 Format Unit with parameter list. 

e FOV (format option valid): Only when this bit is set are the bits DPR, DCR, 
STP, IP and DSP valid. Otherwise, these bits must be set to zero and the tar­
get will use its default values. 

e DPR (disable primary): When this bit is set a PList will not be transferred to 
the target. The PList constructed by the manucturer, however, remains intact. 

• STP (stop format): This bit controls what should happen when the target 
does, in fact, accept a PList or GList to use in formatting, but the list cannot 
be found or read. In both cases the command terminates with CHECK CONDI­

TION status. When STP is set, the target will abort formatting and prepare the 
sense key MEDIUM ERROR. Otherwise, the formatting will take place and the 
sense key RECOVERED ERROR will be available. 

e IP (initialization pattern): When set this bit indicates that the parameter list 
contains a descriptor for the initialization pattern. 



Defect 
descriptors 

Block format 
(OOOb) 

Direct access drives 171 

e DSP( disable saving parameters): Normally all mode parameters are saved 
during the formatting process. This action is inhibited when DSP is set. 

e Imm (imediate): The setting of this bit causes status to be returned as soon as 
the parameter list has been received. Otherwise the status is sent after com­
pletion of the task as usual. 

e VS: (vendor specific) 

If IP is set then an initialization pattern descriptor follows the parameter list 
header. The initialization pattern is a sequence of bytes that are written as data 
to each block of the drive. 

e IP-Mod: These control bits allow the target to modify a portion of the initial­
ization pattern for each block. Olb means that the first four bytes of every log­
ical block should contain the logical block number. lOb means that each phys­
ical block should contain the logical block number. OOb leaves the initializa­
tion pattern unchanged. llb is reserved. 

e Pattern type: Here OOh means that the target should use its default pattern. In 
this case the pattern length must also be zero or a CHECK CONDITION will result. 
A value of Olh causes the supplied pattern to be used. The remaining values 
are reserved or vendor specific. 

e Pattern length: Indicates the length of the initialization pattern. 

e Initialization pattern: This pattern is written to each logical block during the 
formatting process. The pattern is repeated until the block is filled. 

The rest of the parameter block is comprised of the defect descriptors. The defect 
descriptors that are used with FORMAT UNIT as well as other commands receive 
special attention in their own section. 

In conclusion, consider again the example in Figure 13.5. An arrow 
points from the IP bit to the beginning of the initialization pattern descriptor 
because only when this bit is set will the descriptor follow. The pattern length 
contains the pointer, which points to the end of the descriptor. The defect list 
length together with the pattern length points to the end of the entire parameter 
list. In the defect list format field of the FORMAT UNIT command is the value OOOb, 
indicating 4-byte long defect descriptors. 

Defect descriptors are used by the commands FORMAT UNIT, READ DEFECT DATA, 

SEND DIAGNOSTIC and RECEIVE DIAGNOSTIC RESULTS. The various formats are select­
ed using a 3-bit code. 

The four bytes of the descriptor contain the LBN of the block in which the defect 
is located (Table 13.6). When using the block format the list must be constructed 
in ascending order. An LBN may correspond to more than one sector. 



172 SCSI Bus and IDE Interface 

Index format 
(100b) 

Sector format 
(101b) 

Commands for 
cache 

management 

Table 13.6 Defect descriptor in block format. 

0 (MSB) 

1 Block number of 

2 defective block 

3 (LSB) 

The index pulse indicates the beginning of every track on the disk. The first four 
bytes of the index format contain the cylinder and head number of the defect 
(Table 13.7). The remaining four bytes contain the defect position measured in 
bytes from the index. If FFFFFFFFh is given here the entire track should be 
regarded as defective. For drives that support variable sector lengths, only the 
index format may be used for the manufacturer's defect list (PList). 

Note that numbers such as FFFFFFFFh are often refered to as -1, which 
corresponds to their signed integer interpretation. Although this is easier to pro­
nounce, the width of the number is no longer apparent. 

Table 13.7 Defect descriptor in index format. 

0 (MSB) Cylinder number 

1 of defective block 

2 (LSB) 

3 Head number 

4 (MSB) 

5 Position of defect as 

6 bytes after index 

7 (LSB) 

The sector format is in structure exactly like the index format except that bytes 
4 through 7 contain the sector number of the defect. Here too a sector number of 
FFFFFFFFh indicates that the entire track is defective (Table 13.8). 

In addition to the commands that implicitly modify the cache, there are anum­
ber of SCSI-2 commands that configure the cache directly. 

The command LOCK UNLOCK CACHE allows certain regions in the cache to 
be locked. Locked blocks will not be overwritten by other data. The command is 
structured like a READ(lO) command. Byte 1, bit 1 is the lock bit. When set, a 
region is locked; otherwise it is freed. Only those regions that are in the cache at 
the time of the command are affected. The command PRE-FETCH is also structured 
like READ(lO). It instructs the target to read the specified blocks from the mediuii1 
into the cache. No transfer across the SCSI bus takes place. 



Direct access drives 173 

Table 13.8 Defect descriptor in sector format. 

0 (MSB) Cylinder number 

1 of defective block 

2 (LSB) 

3 Head number 

4 (MSB) 

5 Defective 

6 sector 

7 (LSB) 

Finally, SYNCHRONIZE CACHE causes the target to write the specifed region 
of the cache to the medium. This makes sense when a target has been allowed to 
respond to WRITE commands immediately with GOOD status before actually writ­
ing the medium. 

13.3 Mode parameter pages for disk drives 

Format page 
(03h) 

The following mode parameter pages are defined for disk drives (Table 13.9): 

Table 13.9 Mode parameter pages for disk drives. 

Page Name Page ANSI 
code 

01h Read I write error page 8.3.3.6 
02h Disconnect I reconnect page 155 7.3.3.2 
03h Format page 173 8.3.3.3 
04h Disk drive geometry page 176 8.3.3.7 
05h Floppy disk page 8.3.3.2 
07h Verify error page 8.3.3.8 
08h Cache page 177 8.3.3.1 
09h Peripheral device page 156 7.3.3.3 
OAh Control mode page 157 7.3.3.1 
OBh Medium type page 8.3.3.4 
OCh Notch page 178 8.3.3.5 

The format page contains the information necessary to format the medium 
(Table 13.10). In particular it contains information concerning replacement sec­
tors and tracks. The terms interleave, track skew and cylinder skew were 
already covered in Chapter 2. 

A new term is introduced here, however, which has special meaning in 
the SCSI world. With respect to SCSI, a zone refers to a group of tracks to which 
a certain number of replacement sectors or tracks are allocated. 



174 SCSI Bus and IDE Interface 

Table 13.10 Format page. 

7 6 5 I 4 I 3 I 2 I 1 I 0 

0 PS Res Format page (03h) 

1 Page length (16h) 

2 (MSB) Tracks per zone 
!----

3 (LSB) 

4 (MSB) Replacement sectors 
r---

5 per zone (LSB) 

6 (MSB) Replacement tracks 
!----

7 per zone (LSB) 

8 (MSB) Replacement tracks 
!----

9 perLUN (LSB) 

10 (MSB) Sectors 
r---

11 per track (LSB) 

12 (MSB) Data bytes 
!----

13 per sector (LSB) 

14 (MSB) Interleave 
-

15 (LSB) 

16 (MSB) Track skew 
-

17 (LSB) 

18 (MSB) Cylinder skew 
-

19 (LSB) 

20 SSEC HSE9 RMB I SURF! Reserved 

21 
-

22 Reserved 
-

23 

Outside the world of SCSI the term zone is often used in the context of 
zone-bit recording. Zone-bit recording refers to a recording technique whereby 
the outer cylinders are written with a higher bit density, and therefore more sec­
tors, than the inner cylinders. In SCSI the regions with a constant number of sec­
tors are called notches. It is unfortunate that the terminology is inconsistent here. 

A look at the format page reveals that many values vary with each notch. 
It is possible for a target to define some or all mode parameter pages separately 
for each notch. A special notch page contains the number of active notches influ­
enced by the MODE commands: 



Direct access drives 175 

e Tracks per zone: The entire medium is divided into zones consisting of this 
number of tracks per zone. The last zone may have fewer tracks. A value of 
zero treats the entire medium as a single zone. 

• Replacement sectors per zone: A zero instructs the target to use its default 
value. However, a notch page, if implemented, can be used to achieve zero 
sectors per zone. 

e Replacement tracks per zone: Alternate tracks make it possible to replace an 
entire track that contains many defects. A value of zero is interpreted as such 
in this field. 

e Replacement tracks per LUN: Corresponds to the above fields with respect to 
aLUN. 

e Sectors per track: This is the number of physical sectors including alternates 
per track. 

e Bytes per sector: This is the number of data bytes per physical sector. This is 
not necessarily equal to the number of bytes per logical block. 

e Interleave: This field is only valid for MODE SENSE. It reflects the value defined 
by FORMAT UNIT. 

e Track skew: Specifies the number of physical sectors between the last logical 
block of one track and the next logical block of the next track (see also 
Chapter 2). 

e Cylinder skew: Specifies the number of physical sectors between the last log­
ical block of one cylinder and the next logical block of the next cylinder (see 
also Chapter 2). 

e SSEC (soft sector): Specifies that the drive should use soft sectoring. 

e HESC (hard sector): Specifies that the drive should use hard sectoring. 

The target must support either hard or soft sectoring or both. 

e RMB (removable): The target uses removable medium. This must reflect the 
information returned by the INQUIRY command. 

e SURF (surface): When this bit is zero logical blocks are allocated progressive­
ly to the sectors of a cylinder before those of the next cylinder. When SURF is 
set logical blocks are allocated progressively to the sectors of a surface before 
those of the next surface. ~Aost hard disks have this bit clear; most diskette 
drives have it set. 

It is obvious that alternate sectors reduce the space available for user data. If too 
many alternate sectors are allocated then storage is sacrificed unnecessarily. On 
the other hand, the medium is unusable as soon as all alternate sectors have 
been exhausted. The answer is to find a compromise somewhere in between 
these two extremes. 

In practice this is achieved in the following way: for simplicity, assume a 
medium with constant geometry; that is, without notches. A zone is defined as 



176 SCSI Bus and IDE Interface 

Disk drive 
geometry page 

(04h) 

being a single track. For each zone one alternate sector is allocated. When nec­
essary this alternate can be read with almost no delay. If additional sectors of the 
track are defective the entire track is reallocated. An alternate cylinder should be 
set aside for every 200 cylinders. This rule of thumb allocates between 3 and 5% 
of the drive capacity to replacement sectors. 

Hard disks and diskettes use different geometry pages. In this book~ however~ 
only the hard disk geometry page is discussed. This page pertains to hard 
drives with removable medium as well. With the exception of spindle synchro­
nization~ the parameters deal strictly with fixed geometry information (Table 
13.11). Changeable parameters such as the number of sectors and sector length 

Table 13.11 Mode commands: geometry page. 

7 6 5 I 4 I 3 I 2 I 1 I 0 

0 PS Res Geometry page (04h) 

1 Page length (16h) 

2 (MSB) 
-

3 Number of cylinders 
-

4 (LSB) 

5 Number of heads 

6 (MSB) Start cylinder ,_ 
7 for 

1-

8 write precompensation (LSB) 

9 (MSB) Start cylinder 
1-

10 for 
1-

11 reduced write current (LSB) 

12 (MSB) Step rate 
1-

13 (LSB) 

14 (MSB) Cylinder number 
-

15 of 
-

16 landing zone (LSB) 

17 Reserved 

18 Rotational offset 

19 Reserved 

20 (MSB) Medium 
-

21 rotation rate (LSB) 

22 Reserved 
'-

23 



The cache page 
(OS h) 

Direct access drives 177 

belong to the format page. For most fields, the relevant background terminolo­
gy is explained in Chapter 2. 

The rotational position locking field is used to synchronize the spindles 
of two or more individual disk drives. Synchronization makes it possible to read 
and write blocks from different drives at precisely the same time without laten­
cy delays by ensuring that these blocks rotate underneath the heads of their 
respective drives in unison. The drives must not only have the same rotational 
speed but must also synchronize the relative positions of the heads with respect 
to the medium. This is accomplished by declaring one drive the master and the 
remaining drives slaves, which govem their speed relative to the master. Here 
additional signals are needed that are not provided by the SCSI bus. Spindle 
synchronization is employed in RAID arrays, which achieve very high through­
put by accessing drives in parallel while eliminating latency delays. 

e RPL (rotational postition locking): OOb disables synchronization; Olb instructs 
the drive to act as a slave, and lOb as a master. 

8 Rotational offset: This byte reflects the amount of rotational offset a slave will 
have to its master measured in 1/256th of a rotation. This allo\tVS a staggering 
of the individual disks. 

Table 13.12 shows the cache parameter page for the MODE commands: 

e WCE (write cache enable): When set the target replies with a GOOD status as 
soon as all of the data has been received into the cache. Otherwise this status 
may not be returned until the data has been successfully written to the medi­
um. Be aware that when WCE is set the target decides when to write the data 
to the medium. There may be a substantial delay here if a large number of 

Table 13.12 Mode parameter cache page 

7 6 s I 4 I 3 I 2 l 1 J 0 

0 PS Res Cache page (08h) 

1 Page length (OAh) 

2 Reserved IWCEI MF .. t RCD 

3 Read retention priority l Write retention priority 

4 (MSB) Disable pre-fetch 
!----

5 transfer length (LSB) 

6 (MSB) Pre-fetch minimum 
r----

7 (LSB) 

8 (MSB) Pre-fetch maximum 
-

9 (LSB) 

10 (MSB) Absolute pre-fetch maximum 
r-----

11 (LSB) 



178 SCSI Bus and IDE Interface 

Notch page 
(OCh) 

I/0 processes must be processed. The command SYNCHRONIZE CACHE forces 
all cache data yet to be secured to be written to the medium. 

e MF (multiplication factor): Normally the values for pre-fetch maximum and 
minimum reflect a certain number of blocks. However, when MF is set these 
values represent scalars which are to be multiplied with the transfer length to 
obtain their meaning. 

e RCD (read cache disable): Causes the medium to be read even if the data 
resides in the cache. 

e Read retention priority and write retention priority: Specify with what priori­
ty the data either read or written into the cache is to be maintained. The pri­
ority given is with respect to data resulting from pre-fetch operations. Oh 
means that all data should be treated equally; 1h gives the data a lower prior­
ity than pre-fetch data; Fh gives the data higher priority than pre-fetch data. 

e Disable pre-fetch transfer length: This field specifies the maximal transfer 
length for which a pre-fetch should occur. Zero disables pre-fetch. 

e Pre-fetch minimum: This field specifies the minimum number of blocks that 
should be pre-fetched regardless of whether other commands are impeded. 

e Pre-fetch maximum: This field specifies the maximum number of blocks that 
should be pre-fetched. 

The interpretation of the above two fields is independent of the MF bit. If both 
values are equal pre-fetch will occur regardless of other pending commands. If 
there is a difference between minimum and maximum, a pre-fetch will be bro­
ken off inside this interval if otherwise another command would be delayed. 

e Absolute pre-fetch maximum: This field only has meaning when MF is set. It 
limits the pre-fetch length resulting from the multiplication factor. 

The notch page describes the regions of the disk with a constant number of sec­
tors per track (so-called notches). This optional page does not even have to be 
implemented for drives that do, in fact, contain regions of varying number of 
sectors (Table 13.13). If notch pages are implemented then each notch will have 
its own page (Figure 13.6). 

e ND (notched drive): Only when this bit is set is the notch page valid. 
Othervvise the drive has no notches and the rest of the page is empty, 

e LPN (logical or physical notch): When set this bit indicates that the bound­
aries of the active notches are expressed as logical blocks. Otherwise they are 
expressed as physical addresses. Here the three most significant bytes hold 
the cylinder number and the lowest byte the head number. 

e Active notch: This field contains the number of the notch to which this page 
and other MODE SELECT pages refer. This number is valid until it is changed by 
MODE SELECT. A zero means that subsequent mode commands pertain to those 
parameters that apply across all notches. 



Peripherals 
page 

Disconnect/ 
reconnect 
page 

I 
I 

l 
3 

Notch page 

Active 
notch: 3 

1 
4 

f--

f--

Direct access drives 179 

21 ! 
I 

21 1 
II 4 

3 

Geometry 
page 

Cache page 

r-
~ 

Figure 13.6 Mode parameter pages with notches. 

Table 13.13 Mode commands: notch page. 

7 6 5 I 4 I 3 I 2 1 0 

0 PS Res Notch page (OCh) 

1 Page length (16h) 

2 ND LPN Reserved 

3 Reserved 

4 (MSB) Maximum number 
-

5 of notches (LSB) 

6 (MSB) Active notch 
-

7 (LSB) 

8 (MSB) 
-

9 Beginning of 
-

10 active notch ,_ 
11 (LSB) 

12 (MSB) 
·-

13 End of of 
-

14 active notch 
-

15 (LSB) 

16 3Fh 3Eh 3Dhl ... 

... :t\.1ode page 
!-

... with notches 
,_ 

1 04h 1 o3h 1 23 ... 02h 01h OOh 

• Mode pages with notches: This field is 8 bytes long or a total of 64 bits. Each 
bit represents one of the MODE pages from OOh to 3Fh. The most significant bit 
corresponds to page 3Fh, the least significant to page OOh. A set bit means 
that the corresponding MODE page contains parameters that may be different 
for different notches. A zero means that the page applies to all notches. 



14 Tape drives 

14.1 The model of a SCSI tape drive 

The drive 

The recording 
medium 

180 

SCSI tape drives belong to the sequential access device class of the ANSI stan­
dard. I am not aware of any devices other than tape drives belonging to this class. 

The data in a sequential access device is organized on the medium as a 
linear sequence of blocks. In order to access the data of a certain block the medi­
um must be moved from the current position through all intervening positions 
to the desired block. It is easy to see that this is precisely the situation described 
by a tape drive. 

The SCSI model of a tape drive differentiates between the drive itself and the 
exchangeable medium. The drive is either in ready condition or not ready. The 
drive is in ready condition when it is able to execute all possible commands. For 
example, the drive is not ready when no medium is present or when an online 
switch is de-activated. 

The drive can also find itself in the write protected state. Although the 
write protection mechanism is usually implemented on the removable medium, 
many drives have a write protection switch as well. 

The recording medium for sequential devices consists of a tape of various 
widths and lengths coated with magnetic material. This tape may be wound 
onto single reels or packaged in a cartridge or cassette format. When the medi­
um is loaded in the device and data access is possible the medium is said to be 
rrlounted. During loading and unloading the m_edium is demounted. This ter­
minology corresponds to that of replaceable medium drives. 

The usable length of a tape has a beginning and end, which are marked 
BOM (beginning of medium) and EOM (end of medium), respectively. These do 
not necessarily correspond to the physical ends of the tape. The length beyond 
these marks is used to secure the tape to the reels. 

Many recording formats include an additional EW (early warning) 
marking. This mark is placed at a position prior to the EOM mark. It allows the 
target enough time to warn the initiator of the end of the tape and write any data 

l 



Recording 
formats 

Tape drives 181 

that may already be in its buffer. The SCSI tape drive commands are listed in 
Table 14.1. 

The range of recording formats for magnetic tape is almost endless (Figure 14.1). 
Fortunately, it is of little consequence for the discussion of SCSI tape drives 

Table 14.1 SCSI tape drive commands. 

Opcode Name Type Page ANSI Description 

OOh TEST UNIT READY 141 7.2.16 Reflects whether or not the LUN is 
ready to accept a command 

01h REWIND 184 9.2.11 Rewinds tape 
03h REQUEST SENSE 142 7.2.14 Returns detailed error information 
05h READ BLOCK LIMITS 188 9.2.5 Returns possible block lengths 
08h READ 185 9.2.4 Read 
OAh WRITE 185 9.2.14 Write 
OFh READ REVERSE 9.2.7 Read backwards 
10h WRITE FILEMARKS 187 9.2.15 Write filemarks 
llh SPACE 186 9.2.12 Advance tape 
12h INQUIRY 7.2.5 Returns LUN specific information 
13h VERIFY 0 9.2.13 Verify data 
14h RECOVER BUFFERED 0 9.2.8 Recover data from buffer 

DATA 

15h MODE SELECT(6) 149 7.2.8 Set device parameters 
16h RESERVE UNIT 146 9.2.10 Make LUN accessible only to certain 

initiators 
17h RELEASE UNIT 146 9.2.9 Make LUN accessible to other initiators 
18h COPY 0 7.2.3 Autonomous copy from/to another 

device 
19h ERASE 187 9.2.1 Erase tape 
1Ah MODE SENSE(6) 149 7.2.10 Read device parameters 
1Bh LOAD UNLOAD 0 189 9.2.2 Load/ unload medium 
1Ch RECEIVE DIAGNOSTIC 0 7.2.13 Read self-test results 

RESULTS 

1Dh SEND DIAGNOSTIC 147 7.2.1 Initiate self-test 
1Eh PREVENT ALLOW 0 8.2.4 Lock/ unlock door 

MEDIUM REMOVAL 

2Bh LOCATE 0 188 9.2.3 Seek LBN 
34h READ POSITION 0 9.2.6 Read current tape position 
.39h COMPARE 0 7.2.2 Compare data 
3Ah COPY AND VERIFY 0 7.2.4 Autonomous copy from/to another 

device, verify success 
3Bh WRITE BUFFER 0 7.2.17 Write the data buffer 
3Ch READ BUFFER 0 7.2.12 Read the data buffer 
40h CHANGE DEFINillON 0 149 7.2.1 Set SCSI version 
4Ch LOG SELECT 0 7.2.6 Read statistics 
4Dh LOG SENSE 0 7.2.7 Read statistics 
55h MODE SELECT(lO) 0 7.2.9 Set device parameters 
5Ah MODE SENSE(lO) 0 7.2.10 Read device parameters 



182 SCSI Bus and IDE Interface 

Serpentine format 

Parallel format 

Diagonal format 

Figure 14.1 Various tape recording formats. 

which format is used on the medium itself. The format is strictly a matter of con­
cern for the drive, not the SCSI controller. When a drive is compatible with a 
number of different formats, the MODE SELECT command is used to choose among 
them. 

Nevertheless, as background information three basic recording formats 
are mentioned here. The first of these is parallel storage format. Here multiple 
tracks are recorded simultaneously in the same direction. This is the method tra­
ditional reel-to-reel devices employ, using nine tracks, eight data and parity, on 
Vz inch wide tape. The parallel recording technique leads to a relatively high 
throughput at moderate tape speeds. Common specifications are 6250 bits per 
inch (BPI) at 125 inches per second (IPS). These values multiplied together yield 
a data throughput of 780 Kbytes per second. The disadvantage of this method is 
the necessity of a relatively complex and therefore expensive read/write head. 

The second technique uses a simple read/write head and only a single 
track. The data are written and read serially. When one end of the tape is reached 
the head is moved slightly so that the track can be continued in the opposite 
direction. This is repeated until the result is a serpentine track P...Inning back and 
forth across the tape. This method is used mainly in cassette devices following 
the QIC standard. 

The helical scan technique originally came from video cassette recording. 
Here a rotating head is used to write short diagonal tracks across the width of a 
relatively slow moving tape. This method is used by the EXABYTE drive and is 
also similar to the technique used in some 4 mm DAT drives. 

Many recording formats use preformatted media. These methods make 
possible the use of physical blocks in organizing data. The physical block 

0 



Partitions 

Objects within a 
partition 

Data blocks 

Tape marks 

Buffered and 
unbuffered 

modes 

Tape drives 183 

structure, which is largely hidden from the SCSI interface, can be accessed 
directly using the LOCATE command. 

A tape can be divided into one or more partitions. Partition 0, which always 
exists, is called the default partion. Every partition has its own identification for 
beginning, end, and EW, and they are called BOPx, EOPx and EWx, where x 
stands for the number of the partition. Commands for tape devices always per­
tain to the active partition. The active partition can be changed using either the 
device configuration page of MODE SELECT or the LOCATE command. 

Within a partition data blocks and tape marks are used to segment the medium. 
These are organized hierachically, with data blocks at the lowest level followed 
by filemarks and at the highest level setmarks. 

The EOD (end of data) mark is special in that its implementation is 
dependent on the type of recording format. In general, this mark is generated 
when a certain length of unwritten tape has gone past the read head. 

To an initiator a tape, like a disk drive, looks like a sequence of logical blocks, 
and as with a disk drive logical blocks may or may not correspond one-to-one 
with physical blocks on the tape. The blocks themselves are either fixed or of 
variable size up to 16 Mbytes. This is more than adequate. Extremely long blocks 
should be avoided since a block must be read and written as a single unit with­
out interruption. 

A tape drive may also employ the use of tape marks among the logical blocks 
holding user data. Tape marks make it possible to locate specific places on the 
tape without having to read the intervening data. Moreover, tape marks can be 
identified on higher tape speeds than are used to read actual data. This further 
decreases the access time. There are two types of tape mark: the filemark and the 
setmark. Setmarks represent the higher level division of a partition, filemarks 
the lower level. 

The role of data buffers with respect to disk I/0 was covered earlier in this book. 
Such a buffer is realized as onboard RAM and its contents are volatile. The 
buffer is used to store data temporarily before it is written to the medium or 
passed on to the initiator, as the case may be. 

SCSI tape devices support both buffered and unbuffered modes of oper­
ation. The modes relate to the way in which write operations are performed; that 
is, all commands that write either data blocks or tape marks. In addition, some 
commands include an Immed (immediate) control bit which overrides the mode 
for a given command. 

Tape devices without a data buffer always operate in the unbuffered 
mode. In this mode any write operation will conclude with a status phase only 



184 SCSI Bus and IDE Interface 

after a write to the medium has occurred. However, when Immed is set_. com­
mands that do not write to the medium (like, for instance, REWIND) are allowed 
to return GOOD status immediately after the command is received. 

Tape devices with a data buffer can be configured to operate in either 
mode. This configuration is accomplished using the appropriate parameter page 
of the MODE SELECT command. 

The data buffer of a SCSI tape device may hold tape marks as well as 
data. In the buffered mode a tape device is allowed to return GOOD status as soon 
as write data has been received into the buffer. Commands with the Immed bit 
set are allowed to respond in the same manner. When Immed is clear this forces 
a command to be executed in the unbuffered mode. 

14.2 Commands for tape devices 

Tape device commands differ greatly from those of disk drives in many respects 
but this is especially so with regard to READ and WRITE commands and their 
derivatives. These commands do not make use of logical block numbers but 
only a transfer length. A command begins its reading or writing at the current 
position of the tape. 

REWIND (Olh) The REWIND command causes the target to position the medium to the beginning 
of the active partition (Table 14.2). However_. before doing so the target must 
write to the medium all data, filemarks, and setmarks that may reside in the 
buffer. 

The only parameter is the Immed bit in byte 1. When set the target will 
return status after any buffered data has been written to the medium but before 
command execution has begun. When clear status will be returned only after the 
medium has been fully rewound. 

SCSI-1 compatible devices do not neccessarily write buffered data to the 
medium before the execution of this command. In order to make SCSI-2 and 
SCSI-1 devices compatible one can make use of the WRITE FILEMARKS command 
with the Immed bit set before issuing a REWIND command. 

Table 14.2 The REWIND command. 

I I I I I 4 I .:) I I 
., I 
1 I 0 

0 REWIND (Olh) 

1 LUN I Reserved _limmed 
2 

,_____ 
3 Reserved 

!----

4 

5 Control byte 

... ~ 



Tape drives 185 

Table 14.3 The READ command for tape drives. 

7 I 6 I 5 l 4 I 3 I 2 l 1 l 0 

0 READ (08h) 

1 LUN I Reserved j SILl I Fixed 

2 (MSB) 
-

3 Transfer length 
-

4 (LSB) 

5 Control byte 

READ (08h) The READ command is structured differently to the disk drive version (Table 
14.3). There is no field for the logical block number since the tape READ command 
always begins with the next logical block. The next block is the first block 
reached as the tape moves toward the EOP mark. Lacking the LBN field, the 6-
byte version has ample room for the transfer length, making a 10- or 12-byte ver­
sion of this command unnecessary. 

In addition to the LUN number byte 1 contains two further paramters. 
The Fixed bit indicates whether fixed or variable length blocks are expected. 
This also defines how the transfer length is to be interpreted. 

The SILl (suppress incorrect length indicator) bit specifies how the target 
should react when a logical block is read with an unexpected length. When the 
SILl bit is clear the target will abort any command leading to length error with 
a CHECK CONDITION status. Otherwise, such length errors will be more or less tol­
erated. 

Bytes 2 to 4 contain the transfer length. When the Fixed bit is set then the 
transfer length reflects the number of blocks of fixed length to be read. The fixed 
block length can be read using MODE SELECT. If Fixed is clear then a block of vari­
able length will be read and the transfer length indicates how much space the ini­
tiator has reserved for the data. The 24-bit transfer length is sufficient for block 
lengths up to 16 Mbytes, which should be adequate for years to come. When the 
transfer length is zero the tape will not be moved, nor will data be transferred. 

If a tape mark is found during the reading of a block a CHECK CONDITION 

status will be returned. The precise behavior in such a case can be modified 
using the mode parameters. 

WRITE (OAh) The WRITE command is analogous to the READ command and functions analo­
gously as well (Table 14.4). Byte 1 contains the LUN number and Fixed bit with 
the same interpretation they have with the READ command. 

The WRITE command is executed in either the buffered or unbuffered 
mode depending on how the MODE SELECT parameters have been set. In the 
buffered mode the status phase takes place as soon as the target receives all data 
into its data buffer. The advantage here is that the I/0 process completes more 
quickly. On the other hand a nonrecoverable write error may occur after GOOD 

status has been returned. SCSI accommodates such a deferred error using the 



186 SCSI Bus and IDE Interface 

Table 14.4 The WRITE command for tape drives. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 WRITE (OAh) 

1 LUN I Reserved j Fixed 

2 (MSB) 
-

3 Transfer length 
-

4 (LSB) 

5 Control byte 

mechanism already described on page 144. The data not yet written to the medi­
um can be recovered using the optional command RECOVER BUFFER DATA. In the 
unbuffered mode the data must be written to the medium before the status 
phase takes place. The latter approach is preferred by many system administra­
tors because it avoids such problems. 

If anEW mark is found during a WRITE command the device will attempt 
to finish writing the data and will, in any case, return a CHECK CONDITION status 
to the initiator. It can be determined whether the data was accommodated in the 
partition by examining the sense key. 

SPACE (11h) The space command is used to advance or rewind the tape a certain number of 
data blocks or tape marks (Table 14.5). The rewind capability is optional. 

The parameter Count in bytes 2 through 4 indicates the number of objects 
to be advanced. Negative numbers (in two's complement) indicate rewinding. 

In addition to the LUN number byte 1 contains the Code field which 
specifies what is to be counted. The possible codes are given in Table 14.6. Two 
of these, filemarks and setmarks, are worth explaining. When sequential file­
marks are to be counted then the tape is advanced until Count consecutive file­
marks are found. This means that for Count n, the tape will be positioned after 
the nth filemark when the command completes. Sequential setmarks are han­
dled in the same way. 

The hierarchy of objects plays an important role in error and event han­
dling for the SPACE command. The details can be found in the ANSI specification 

Table 14.5 The SPACE command. 

7 I 6 I 5 l 4 l 3 l 2 I 1 I 0 

0 SPACE (11h) 

1 LUN I Reserved I Code 

2 (MSB) 
-

3 Count 
-

4 (LSB) 

5 Control byte 

WR1 



WRITE FILEMARKS 

(10h) 

Tape drives 187 

Table 14.6 Meaning of the Code field. 

Code Description M/0 

OOOb Blocks M 
OOlb Filemarks M 
OlOb Sequential filemarks 0 
Ollb End-of-data 0 
lOOb Setmarks 0 
lOlb Sequential setmarks 0 

in Section 9.2.12. However, a generalization can be made: if a higher level object 
is encountered during spacing than is being counted, then the command will be 
broken off at that point with a CHECK CONDITION status. For example, if filemarks 
are being counted a setmark will lead to command termination. 

In addition, reaching either the beginning or the end of a partition dur­
ing a space command will cause the command to be terminated with CHECK CON­

DITION status. 

This command writes to the current position the number of tape marks given in 
the transfer length field (Table 14.7). When the WSmk bit is 1 then setmarks are 
written; when 0 filemarks are written. The Immed bit specifies that the target 
should reply with GOOD status as soon as the command is recognized. Otherwise 
all buffered data and tape marks must be written before the execution of the 
command begins. WRITE FILEMARKS with transfer length zero can be used to cause 
the data buffer to be written to tape. 

If anEW mark is encountered during or before the write filemarks com­
mand the target will attempt to finish writing the requested number of tape 
marks. In either case it concludes the command with CHECK CONDITION status. 
The sense data reveal whether or not the tape marks were successfully written. 

ERASE (19h) This command erases the medium starting at the current position (Table 14.8). 
Just how this is carried out is device dependent. Huwever, afterwards a data pat-

Table 14.7 The WRITE FILEMARKS command. 
ry 

I 6 I s I 4 I 3 I 2 I 1 I 0 I 

0 WRITE FILEMARKS (10h) 

1 LUN ~ Reserved I WSm~Fixed 
2 (MSB) 

r---
3 Transfer length 

r---
4 (LSB) 

5 Control byte 



188 SCSI Bus and IDE Interface 

READ BLOCK 

LIMITS ( 05h) 

LOCATE (2Bh) 

Table 14.8 The ERASE command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 ERASE (19h) 

1 LUN I Reserved IWMskj Long 

2 
-

3 Reserved ,___ 
4 

5 Control byte 

tem should be in place where previously data blocks and tape marks were 
found. 

When the Long bit is set, the remainder of the tape starting at the current 
position will be erased. Otherwise a gap will be erased on the tape whose length 
is specified in the device configuration parameter page as gap length. The 
Immed bit has its standard interpretation. 

This command returns the maximum and minimum block size of the device. 
There are no parameters. 

The block size information is returned in a parameter block where bytes 
1 through 3 contain the maximum block length, and bytes 4 through 5 the min­
imal block length (Table 14.9). 

A maximal block length of zero indicates that there is no block length 
limit. When the maximal and minimal lengths are equal the device supports 
only a fixed block length. In this case the READ and WRITE commands must 
always have the Fixed bit set and the block length must reflect the value 
returned by this command. 

The LOCATE command is optional but is, nonetheless, a very useful command 
(Table 14.10). On the one hand, it makes it possible to search the tape for a spe­
cific logical or physical block. Additionally, the command can be used to change 
the active partition. 

Table 14.9 Block limits parameter block. 

I I 7 I 6 I 5 I 4 I 3 I 2 I 1 l 0 

0 Reserved 

1 (MSB) 
f----

2 Maximum block length 
i----

3 (LSB) 

4 (MSB) Minimum 
r----

5 block length (LSB) 

1 



LOAD UNLOAD 

(1Bh) 

Tape drives 189 

Table 14.10 The LOCATE command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 LOCATE (2Bh) 

1 LUN I Reserved I BT I CP I Immed 

2 Reserved 

3 (MSB) 
-

4 Block number 
-

5 
-

6 (LSB) 

7 Reserved 

8 Partition 

9 Control byte 

Since in general tape can hold an enormous number of blocks LOCATE is 
a 10-byte command. The block number is contained in bytes 3 through 6/ allow­
ing 4 giga-blocks to be addressed. When the BT bit is set the block address is 
interpreted as a device specific physical address/ otherwise as SCSI LBN. 

Byte 8 contains the number of the Partition to become active before posi­
tioning to the block number. This byte is ignored when the CP bit in byte 2 is not set. 

This command loads or unloads the medium (Table 14.11). In addition/ the tape 
can be re-tensioned by spooling the entire tape from one reel to the other. 

The command has no parameters but a few control bits in byte 4. When 
the Load bit is set the tape is to be loaded and positioned to the BOT mark. 

If the Load bit is clear the tape will be unloaded. All buffered data and tape 
marks are written to the medium prior to unloading. If the EOT bit is set the tape 
will be positioned to the EOT mark/ otherwise the BOT mark will be sought. In 
either case the medium is dismounted and any subsequent command calling for 
medium access will cause a CHECK CONDITION status with the sense key NOT READY. 

Finally/ the ReTen control bit causes the tape to be re-tensioned before the 
action described by the Load bit is performed. 

Table 14.11 The LOAD UNLOAD command. 

I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 LOAD UNLOAD (lBh) 

1 LUN I Reserved 1Immed 

2 
-

3 Reserved 
-

j EOTj ReTe1 Load 4 

5 Control byte 



190 SCSI Bus and IDE Interface 

14.3 

Mode parameter 
header 

Mode parameters for tape devices 

The device specific byte of the mode parameter header (Table 14.12) returned by 
the MODE SENSE command contains the following information: 

e The WP bit indicates that the medium is write protected. 

e Buffer mode is defined for three values. These pertain to commands that 
write either data or tape marks to the medium, which together are referred to 
as write operations. 

Table 14.12 Device specific parameter byte in header. 

6 1 5 1 4 3 2 1 1 0 

Buffer mode Speed 

e OOOb is the unbuffered mode. For all write operations the target must wait 
until the medium has actually been written before returning status. 

e 001b: The target may return GOOD status as soon as all data has been received 
into the data buffer. 

• 010b: The target may return GOOD status as soon as all data has been received 
into the data buffer and all buffered data from other initiators has been writ­
ten to the medium. 

e In the Speed field a 0 represents the device's default tape speed. The values 
1h through Fh reflect speeds from slowest to fastest. 

Block descriptor Byte 0 of the block descriptor contains a device specific code for the write den­
sity. The most important of these are given in Table 14.13. 

Table 14.13 Write density for tape drives. 

Code Width Tracks BPI Format Type 

01h 1/2 inch 9 800 NRZI Reel-to-reel 
02h 1/2 inch 9 1600 PE Reel-to-reel 
03h lf2 inch 9 6250 GCR Reel-to-reel 
OFh 114 inch 15 10 000 GCR QIC-120 cassette 
10h %inch 18 10 000 GCR QIC-150 cassette 
llh 114 inch 26 16 000 GCR QIC-320 cassette 
13h 4mm 1 61000 DDS 4mmDAT 

I 
l 

.1 



Mode parameter 
pages 

The device 
configuration 

page (10h) 

Tape drives 191 

Table 14.14 Mode pages for tape devices. 

Page Name Page ANSI 
code 

01h Read-write error page 9.3.3.4 
02h Disconnect-reconnect page 155 7.3.3.2 
09h Peripheral device page 156 7.3.3.3 
OAh Control mode page 157 7.3.3.1 
10h Device configuration page 191 9.3.3.1 
llh Partitions page 1 192 9.3.3.3 
12h Partitions page 2 192 9.3.3.3 
13h Partitions page 3 192 9.3.3.3 
14h Partitions page 4 192 9.3.3.3 

The mode parameter pages in Table 14.14 are defined for tape devices. 

The device configuration page contains various configuration information for 
the tape drive (Table 14.15). Only the more important details will be covered 
here. Refer to Section 9.3.3 of the ANSI specification for further information. 

Byte 3 contains the active partition. This can be modified using MODE 

SELECT when the CAP (change active partition) bit of byte 2 is set. 

Table 14.15 Device configuration page for tape devices. 

7 6 5 I 4 I 3 J 2 I 1 I 0 

0 PS Res. Page code (10h) 

1 Page length 

2 Res. CAP CARl Active format 

3 Active partition 

4 Write buffer full ratio 

5 Read buffer empty ratio 

6 (MSB) Write 
-

7 Delay (LSB) 

8 DBR BIS RSm~ AVCI SOCF I RBOI REW 

9 Gap size 

10 EOD I EEG,SEW I Reserved 

11 (MSB) 
r---

12 Buffer size at EW 
r---

13 (LSB) 

14 Data compression 

15 Reserved 



192 SCSI Bus and IDE Interface 

Partition pages 
1 through 4 (llh, 

12h, 13h, 14h) 

Table 14.16 Partition page 1 for tape devices. 

7 6 5 _I 4 I 3 I 2 I 1 I 0 

0 PS Res. Page code (llh) 

1 Page length 

2 Maximum additional partitions 

3 Additional partitions (n+ 1) 

4 FDP SDP IDP J PSUM I Reserved 

5 Format recognition 

6 Reserved 

7 Reserved 

8-8+2n Partition size descriptors 

8+2n (MSB) Partition 

8+2n+1 Size (LSB) 

Partition page 1 has an 8-byte header followed by up to 64 partition size descrip­
tors of 2 bytes each. If more partitions are needed pages 2 through 4 can be used, 
each of which accommodates 64 partitions. This allows SCSI-2 devices to sup­
port up to 256 partitions. Partition page 1 is shown in Table 14.16. Each descrip­
tor contains the length of its partition. The unit of measure for length is defined 
by the PSUM field. Here the value OOh means bytes, 01h Kbytes, and 02h 
Mbytes. Unlike page 1, partion pag~s 2 through 4 consist of only descriptors 
(Table 14.17). 

Table 14.17 Partition pages 2-4 for tape devices. 

7 6 5 I 4 I 3 I 2 1 1 I 0 

0 PS Res. Page code (12-14h) 

1 Page length 

2-2+2n Partition descriptors 

2+2n (MSB) Partition 

2+2n+1 Size (LSB) 

; 

I 

L 



15 Printers 

The degree to which the various device classes are defined in SCSI-2 varies 
greatly. Up until this point we have seen very detailed specifications for disk and 
tape drive devices. This is not the case for printers, as will become apparent in 
the description of the device model. 

15.1 The model of a SCSI printer 

The model of a SCSI printer represents to some extent an exception among SCSI 
device models (Figure 15.1). Here the design is of a bridge controller connected to a 
printer mechanism. Of course, there is nothing preventing the integration of the con­
troller into the printer itself. We will see that one advantage of this approach is that 
the MODE SELECT command can be used to manipulate the physical printer interface. 

The command set basically treats the printer as a black box that accepts 
data. No page description language is defined here, rather the data format is left 
up to the initiator. Nevertheless, this 'black box' does allow internal configuration 

I 
I I 

SCSI ID 0 

LUN 0 

Printer 
controller 

LUN 1 

LUN 2 

SCSI 

RS-232 

Centronics 

Data Products 

Device specific 
interfaces 

Printer 0 

Printer 1 

Printer 2 

Figure 15.1 Model of a SCSI printer. 

I 

193 



194 SCSI Bus and IDE Interface 

PostScript 

Command set SCSI PostScript 

Device model SCSI Printer 

Protocol SCSI Centronics 

Physical 
SCSI Centronics interface 

Figure 15.2 SCSI printer interface. 

to some degree using SCSI commands. For instance, there is the optional control 
of printer fonts and forms. The printer itself may be equipped with a data buffer, 
making a buffered mode possible. 

The standard does not specify what the printer must do when it receives 
a particular character. While a typical dot-matrix printer will simply print any 
printable character, a PostScript compatible printer will use the page description 
language PostScript to interpret the character. To make things even more compli­
cated there are also a number of printer manufacturers that have developed 
unique printer control languages. Some of these have become de facto standards, 
which are often emulated by other printers. For example, many printers provide 
HP Laserjet emulation as well as Epson or Diablo emulations. Unfortunately, none 
of these emulations is defined in the SCSI-2 standard. If this were the case one 
could simply buy a SCSI printer and plug it in (Figure 15.2). As a result the soft­
ware must be informed of the printer's emulation in order to function properly. 

In summary, one can say that the SCSI-2 command set for printers is lim­
ited to data transfer and the control of certain parameters. With reference to the 
interface model this leaves the top level not completely defined. 

15.2 Printer commands 

Table 15.1 lists all of the commands defined for SCSI printers. Printers have a rel­
atively large number of corrLinands that are completely vendor unique. These 
opcodes are 01h, 02h, 05h, 06h, 07h, 08h, 09h, OCh, ODh, OEh, OFh, 11h, 13h, 19h 
and COh to FFh. All other opcodes are reserved. 

PRINT (OAh) The PRINT command sends the number of bytes contained in Transfer length to 
the printer (Table 15.2). Depending on buffer mode the status phase will occur 
either immediately after the data transfer or it will occur after the printing has 
actually taken place. 



Printers 195 

Table 15.1 SCSI commands for printers. 

Opcode Name Type Page ANSI Description 

OOh TEST UNIT READY 141 7.2.16 Reflects whether or not the LUN is 
ready to accept a command 

03h REQUEST SENSE 142 7.2.14 Returns detailed error information 
04h FORMAT 196 10.2.1 Formats medium 
OAh PRINT 194 10.2.2 Print data 
OBh SLEW AND PRINT 196 10.2.4 
10h SYNCHRONIZE 196 10.2.6 

BUFFER 

12h INQUIRY 7.2.5 Returns LUN specific information 
14h RECOVER BUFFERED 0 10.2.3 Retrieve data from the data buffer 

DATA 

15h MODE SELECT(6) 149 7.2.8 Set device parameters 
16h RESERVE UNIT 146 9.2.10 Make LUN accessible only to certain 

initiators 
17h RELEASE UNIT 146 9.2.9 Make LUN accessible to other initiators 
18h COPY 0 7.2.3 Autonomous copy from/ to another 

device 
1Ah MODE SENSE(6) 149 7.2.10 Read device parameters 
1Bh STOP PRINT 0 196 10.2.5 
1Ch RECEIVE DIAGNOSTIC 0 7.2.13 Read self-test results 

RESULTS 

lDh SEND DIAGNOSTIC 147 7.2.1 Initiate self-test 
39h COMPARE 0 7.2.2 Compare data 
3Ah COPY AND VERIFY 0 7.2.4 Autonomous copy from/ to another 

device, verify success 
3Bh WRITE BUFFER 0 7.2.17 Write the data buffer 
3Ch READ BUFFER 0 7.2.12 Read the data buffer 
40h CHANGE DEFINITION 0 149 7.2.1 Set SCSI version 
4Ch LOG SELECT 0 7.2.6 Read statistics 
4Dh LOG SENSE 0 7.2.7 Read statistics 
55h MODE SELECT(lO) 0 7.2.9 Set device parameters 
5Ah MODE SENSE(lO) 0 7.2.10 Read device parameters 

Table 15.2 The PRINT command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 l 0 

0 PRINT (OAh) 

1 LUN I Reserved 

2 (MSB) 
-

3 Transfer length 
-

4 (LSB) 

5 Control byte 



196 SCSI Bus and IDE Interface 

SLEW AND PRINT 

(OBh) 

STOP PRINT (1Bh) 

FORMAT (04h) 

SYNCHRONIZE 

BUFFER (10h) 

Table 15.3 The SLEW AND PRINT command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 SLEW AND PRINT (OBh) 

1 LUN I Reserved I Channe 

2 Slew value 

3 (MSB) Transfer length 
-

4 (LSB) 

5 Control byte 

This command works just like the PRINT command except that it allows a certain 
number of lines to be skipped before printing, as well as a choice of forms chan­
nel (Table 15.3). When the Channel bit is set the number of the forms channel is 
given in Slew value. Otherwise, this byte is interpreted as the number of lines to 
be skipped before printing. 

This command halts printing (Table 15.4). If the Retain bit is clear then the data 
remaining in the buffer is discarded. Otherwise, it is held and a subsequent PRINT 

command or a SYNCHRONIZE BUFFER will allow printing to continue. 

Table 15.4 The STOP PRINT command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 STOP PRINT (1 Bh) 

1 LUN I Reserved I Retain 

2 Vendor unique 

3 Reserved 
1---

4 

5 Control byte 

This command makes it possible to send form or font data to the printer (Table 
15.5). The value OOb in the Typ field chooses form control, the value 01b font con­
trol. 

This command causes the printer to print the contents of the data buffer (Table 
15.6). This is used to make sure that all data has been printed. Page printers 
sometimes need a form feed in this case. This command waits until after print­
ing to return status. If for any reason printing cannot take place a CHECK CONDI­

TION is returned. 



15.3 

Mode parameter 
header 

Printers 197 

Table 15.5 The FORMAT command for printers. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 FORMAT (04h) 

1 LUN I Reserved l Typ 

2 (MSB) 
-

3 Transfer length 
-

4 (LSB) 

5 Control byte 

Table 15.6 The SYNCHRONIZE BUFFER command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 SYNCHRONIZE BUFFER (10h) 

1 LUN I 
2 

-
3 Reserved 

-
4 

5 Control byte 

Mode parameters for printers 

The device specific byte in the mode parameter header has the following form 
(Table 15.7): 

e Buffer mode is defined for two values and is relevant for PRINT and SLEW AND 

PRINT commands. All other values are reserved. 

e OOOb is for unbuffered mode. The printer controller will not return status 
until the data has actually been printed. 

• OOlb is the buffered mode. Here the controller is allowed to return GOOD sta­
tus as soon as all data has been received into the buffer. 

Table 15.7 Device specific byte in mode header. 

Bit 7 6 I 5 I 4 3 I 2 I 1 I 0 

Res Buffer mode Reserved 



198 SCSI Bus and IDE Interface 

Mode parameter 
pages 

Parallel interface 
page (03h) 

Serial interface 
page (04h) 

Table 15.8 Mode parameter pages for printers. 

Page Name Page ANSI 
code 

02h Disconnect-reconnect page 155 7.3.3.2 
03h Parallel interface page 198 10.3.3.1 
04h Serial interface page 198 10.3.3.3 
05h Printer options page 10.3.3.2 
09h Peripheral device page 156 7.3.3.3 
OAh Control mode page 157 7.3.3.1 

Table 15.8 shows the mode parameter pages defined for printers. 

This parameter page controls the characteristics of a parallel printer interface 
(Table 15.9). The parameter Parity assumes the values OOb for no parity, Olb for 
even parity and lOb for odd parity. The meaning of byte 2 is explained in detail 
in section 10.3.3.1 of the ANSI standard. 

Table 15.9 Parallel interface page. 

7 6 5 I 4 I 3 l 2 I 1 I 0 

0 PS Res Page code (03h) 

1 Page length (03h) 

2 Parity PIPCj Res I VCBPI VCBSI VESj Autofeed 

3 Reserved 

This parameter page controls the characteristics of a serial RS-232C interface. 
The fields are more or less self explanatory (Table 15.10). Section 2.1 is a good 
source of background information on the serial interface (Table 15.11). The RTS 

Table 15.10 Serial interface page. 

7 6 5 J 4 3 J 2 l 1 l 0 

0 PS Res Page code (04h) 

1 Page length (06h) 

2 Reserved Stop-bit length 

3 Parity j Res Bits per character 

4 RTS CTS Res Protocol 

5 (MSB) 
-

6 Baud rate 
-

7 (LSB) 



Printers 199 

Table 15.11 Parameters of the serial interface. 

Code Parity 

OOOb No parity 
OOlb Mark 
OlOb Space 
Ollb Odd 
lOOb Even 

Code Protocol 

OOOOb No protocol 
OOOlb XON/XOFF 

0010b ETX/ ACK 

OOllb DTR 

bit specifies that the printer controller should activate the RTS signal of the inter­
face. If the CTS bit is clear the controller will ignore the RTS signal altogether. 
Otherwise output is stopped as long as RTS is inactive. 



200 

16 Scanners 

16.1 The model of a SCSI scanner 

A scanner is a device capable of converting pictures and text to an electronic rep­
resentation made up of rows of pixels. Pixels can be black and white, color, or 
gray scale. The number of bits needed to represent a pixel is dependent on which 
of these three possibilities is chosen. As a result there are different data formats 
for storing scanned images. These formats are not specified in the SCSI standard; 
many are vendor unique. Similar to the printer definition, the SCSI standard is 
limited to the exchange of data and the control of the scanner. 

A SCSI scanner uses the coordinate system shown in Figure 16.1. The 
units of the coordinate system can be specified using the measuring units page 
of the MODE SELECT command. The available units are inches, millimeters or 
points (1/72 inch) or fractions thereof. The unit of measure chosen does not 
affect the resolution of the scanner. 

y 

0 

h 

Scan 
window 

~ Origin 

X 

Scan 
direction 

Figure 16.1 Coordinate system and scan window. 



The window 
descriptor 

Scanners 201 

Table 16.1 Window descriptor. 

7 I 6 I 5 I 4 l 3 J 2 I 1 I 0 

0 Window identifier 

1 Reserved i Auto 

2-3 X-axis resolution 

4-5 Y-axis resolution 

6-9 X-axis upper left 

10-13 Y-axis upper left 

14-17 Window width 

18-21 Window length 

22 Brightness 

23 Threshold 

24 Contrast 

25 Image composition 

26 Bits per pixel 

27-28 Halftone pattern 

29 RIF l Reserved I Padding type 

30-31 Bit ordering 

32 Compression type 

33 Compression argument 

34-39 Reserved 

40-n Vendor specific 

A SCSI scanner can be configured such that the scanning surface is bro­
ken up into one or many windows. These windows may differ in size and loca­
tion as well as scanning method. Each window is described by a separate win­
dow descriptor, an example of which is shown in Table 16.1. 

In order to save space, parameters that occupy more than 1 byte are represented 
in a single line in the table. As is usually the case for SCSI the length of the para­
meter block is contained within the parameter block itself. 

Most fields here are self-explanatory. The Auto bit specifies that the scan­
ner may create subwindows automatically. When reading the window parame­
ter data this bit reflects whether the window was automatically created. The RlF 
bit indicates that the image is a negative. The image composition, halftone pat­
tern and compression fields are essentially vendor specific. 



202 SCSI Bus and IDE Interface 

16.2 Scanner commands 

Table 16.2lists all of the commands defined for SCSI scanners. 

Table 16.2 Commands for scanners. 

Opcode Name Type Page ANSI Description 

OOh TEST UNIT READY 141 7.2.16 Reflects whether or not the LUN is 
ready to accept a command 

03h REQUEST SENSE 142 7.2.14 Returns detailed error information 
12h INQUIRY 7.2.5 Returns LUN specific information 
15h MODE SELECT(6) 149 7.2.8 Set device parameters 
16h RESERVE UNIT 146 9.2.10 Make LUN accessible only to certain 

initiators 
17h RELEASE UNIT 146 9.2.9 Make LUN accessible to other initiators 
18h COPY 0 7.2.3 Autonomous copy from/ to another 

device 
1Ah MODE SENSE(6) 149 7.2.10 Read device specific parameters 
1Bh SCAN 0 203 14.2.5 Scan 
1Ch RECEIVE DIAGNOSTIC 0 7.2.13 Read self-test results 

RESULTS 

1Dh SEND DIAGNOSTIC 147 7.2.1 Initiate self-test 
24h SET WINDOW M 202 14.2.6 
25h GET WINDOW 0 14.2.2 
28h READ M 203 14.2.4 Read 
2Ah SEND 0 14.2.7 
31h OBJECT POSillON 0 14.2.3 
34h GET DATA BUFFER 

STATUS 0 14.2.1 
39h COMPARE 0 7.2.2 Compare data 
3Ah COPY AND VERIFY 0 7.2.4 Autonomous copy from/ to another 

device, verify success 
3Bh WRITE BUFFER 0 7.2.17 Write the data buffer 
3Ch READ BUFFER 0 7.2.12 Read the data buffer 
40h CHANGE DEFINITION 0 7.2.1 Set SCSI version 
4Ch LOG SELECT 0 7.2.6 Read statistics 
4Dh LOG SENSE 0 7.2.7 Read statistics 
55h MODE SELECT(10) 0 7.2.9 Set device parameters 
SAh MODE SENSE(10) 0 7.2.10 Read device parameters 

SET WINDOW Tne SET WINDOW command creates one or more scanning windows (Table 16.3). 
(24h) Here the data phase contains a window list made up of a list header and one or 

more window descriptors, as in Table 16.1. The header contains only the total 
length of the window descriptors (Table 16.4). Individual descriptors must all be 
the same length. 



Table 16.3 The SET WINDOW command. 

7 I 6 I 5 I 4 1 3 I 2 I 
0 SET WINDOW (24h) 

1 LUN I 
2 

I---

3 Reserved 
I---

4 
c----

5 

6 (MSB) 
I---

7 Transfer length 
I---

8 

9 Control byte 

Table 16.4 Window header data. 

7 

0 

(MSB) 

7 

Reserved 

Window descriptor 

length 

Scanners 203 

1 l 0 

(LSB) 

0 

(LSB) 

READ (28h) The READ command reads data from the scanner (Table 16.5). Here different 
types of data are possible. Data type code OOh stands for image data. The data 
type qualifier is a vendor specific parameter, which is required for some data 
types. The data length is measured in blocks whose size has been specified using 
the mode parameter block descriptor. 

SCAN (1Bh) Tile scan cornmand initiates the scanning process (Table 16.6). This command is 
optional because this is done manually for many scanners. The data length spec­
ifies the length of the window list supplied in the data phase of the command. 
The window list is composed of one or many window numbers previously 
defined. 



204 SCSI Bus and IDE Interface 

Table 16.5 The READ command for scanners. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 READ (28h) 

1 LUN I Reserved 

2 Data type code 

3 Reserved 

4 (MSB) Data type 
-

5 qualifier (LSB) 

6 (MSB) 
-

7 Transfer length 
,_____ 

8 (LSB) 

9 Control byte 

Table 16.6 The SCAN command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 SCAN (1Bh) 

1 LUN I 
2 

3 Reserved 

4 Transfer length 

5 Control byte 

16.3 Mode parameters for scanners 

MODE parameter Table 16.7 shows the mode parameter pages defined for SCSI scanners. 
pages 

Table 16.7 Mode parameter pages for scanners. 

Page Name Page ANSI 
code 

02h Disconnect-reconnect page 155 7.3.3.2 
03h Measurements units page 205 14.3.3.1 
09h Peripheral device page 156 7.3.3.3 
OAh Control mode page 157 7.3.3.1 

I 
.~l 

tl 



Measurement 
units page {03h) 

Scanners 205 

This page is very straightforward (Table 16.8). Byte 2 specifies the basic unit of 
measure, where OOh stands for inches, 01h for millimeters, and 02h for points 
(1/72 inch). Bytes 4 and 5 contain the number of units that should make up a 
basic measurement unit. This means that when byte 2 contains 01h and byte 5 
contains 64h that the measurement unit is 1/100 of a millimeter. 

Table 16.8 Measurements units page. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 Page code (03h) 

1 Page length (06h) 

2 Measurement unit 

3 Reserved 

4 (MSB) Divisor 
!-------

5 (LSB) 

6 Reserved 
1---

7 



206 

17 Processor devices 

Processor devices are a very general device class. Although such devices only 
send and receive data across the bus, they are capable of a wide variety of very 
useful general tasks. Processors that offload a main processor or a data acquisi­
tion system are two examples of such devices. 

17.1 The model of a SCSI processor device 

From the SCSI perspective, a processor device simply exchanges data over the 
bus with the initiator (Figure 17.1). The kind of data sent is left completely 
unspecified. Here SCSI simply acts as a physical interface between devices. The 
protocol above that is left up to the designers. 

A processor device, like all SCSI targets, can support up to eight logical 
devices. If a LUN is momentarily incapable of receiving or sending data it can 

User specific 

User specific 

Command set SEND/RECEIVE 

Device model Processor device 

Protocol SCSI 

Physical SCSI interface 

Command set 

Device model 

Protocol 

Physical 
interface 

Figure 17.1 User defined protocol. 



Processor devices 207 

either return a CHECK CONDITION status or it can disconnect and reconnect at a 
later time. 

What follows are descriptions of two applications for SCSI processor 
devices. The first consists of two coupled processors, which together act as a 
redundant file server. Both servers are identical and contain the same data. The 
servers use the SCSI bus for communicating with each other and for insuring 
that they each contain the same data. If one system should fail the other system 
remains fully functionaL 

The second application is a PC equipped with an A/D converter, which 
together function as a data acquisition system. The PC collects all of the neces­
sary data and is even capable of preprocessing. It plays the role of a SCSI target 
and delivers the preprocessed data to a workstation. 

There are countless other possible applications for processor devices 
(Figure 17.2). SCSI is powerful in this area because it allows customized hard­
ware to be controlled using an industry standard interface. 

SCSI host adapters for PCs that also function as targets are widely avail­
able for this purpose. 

User defined 
data 

RECEIVE 

• PC (Target) 
SCSI 

Workstation 
lAID converter I • (Initiator) 

SEND 
User defined 

command 

Figure 17.2 Example of a SCSI processor drive. 

17.2 Commands for processor devices 

Table 17.1lists all of the commands defined for processor devices. 

RECEIVE (08h) The RECEIVE command (relative to the initiator) instructs the target to send data 
to the initiator (Table 17.2). The direction of the transfer can be confusing. 
Remember that the direction is the same as that for READ, with which RECEIVE 

shares an opcode. 



208 SCSI Bus and IDE Interface 

Table 17.1 Commands for processor devices. 

Ope ode Name Type Page ANSI Description 

OOh TEST UNIT READY 141 7.2.16 Reflects whether or not the LUN is 
ready to accept a command 

03h REQUEST SENSE 142 7.2.14 Returns detailed error information 
08h RECEIVE 207 11.2.1 Like read 
OAh SEND 208 11.2.2 Like write 
12h INQUIRY 7.2.5 Returns LUN specific information 
18h COPY 0 7.2.3 Autonomous copy from/ to another 

device 
1Ch RECEIVE DIAGNOSTIC 0 7.2.13 Read self-test results 

RESULTS 

1Dh SEND DIAGNOSTIC 147 7.2.1 Initiate self-test 
39h COMPARE 0 7.2.2 Compare data 
3Ah COPY AND VERIFY 0 7.2.4 Autonomous copy from/ to another 

device, verify success 
3Bh WRITE BUFFER 0 7.2.17 Write the data buffer 
3Ch READ BUFFER 0 7.2.12 Read the data buffer 
40h CHANGE DEFINITION 0 149 7.2.1 Set SCSI version 
4Ch LOG SELECT 0 7.2.6 Read statistics 
4Dh LOG SENSE 0 7.2.7 Read statistics 

Table 17.2 The RECEIVE command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 RECEIVE (08h) 

1 LUN I Reserved 

2 (MSB) 
-

3 Transfer length 
-

4 (LSB) 

5 Control byte 

SEND (OAh) The SEND command instructs the target to receive data from the initiator (Table 
17.3). The transfer length indicates the amount of data to be sent. The AEN bit 
indicates that the data packet is in AEN format. This is used to send sense data 
to a processor device. 

AEN data format The workings of AEN has already been explained in Chapter 11. Byte 0 of an 
AEN data packet contains in the lowest three bits the value LUNTRN. When the 
LUNTAR bit is set then LUNTRN reflects the target routine to which the data 
pertain. Otherwise the data pertain to the LUN specified in this field (Table 17.4). 



Processor devices 209 

Table 17.3 The SEND command. 

7 I 6 I 5 I 4 1 3 I 2 I 1 I 0 

0 SEND (OAh) 

1 LUN I Reserved IAEN 

2 (MSB) 
f---

3 Transfer length 
f---

4 (LSB) 

5 Control byte 

Table 17.4 AEN data. 

7 I 6 5 4 I 3 2 I 1 J 0 

0 Reserved LUNTAR Reserved LUNTRN 

1 

2 Reserved 

3 

4 to Sense data, byte 0 

n+4 Sense data, byte n 



210 

18 Communications devices 

18.1 The model of a SCSI communications device 

SCSI communications devices closely resemble processor devices. Here too data 
is received and sent across the bus. While processor devices may locally process 
the data, communications devices send it further. An important distinction is 
that communications make possible an additional level of addressing. The chan­
nel number allows the addressing of different logical channels. These might be 
connected to various physical communications ports within the device. On the 
other hand, these might be used to address different LAN protocols. The chan­
nel number is 16 bits long, making 64 000 logical channels available. As always, 
a communications device may have up to eight LUNs, which explodes this num­
ber to half a million. 

As with processor devices, the SCSI bus is used strictly as a physical 
interface since the SCSI-2 standard does not specify the contents of data packets. 

Host SCSI 

Host SCSI 

Channel 0 

Communications Channel 1 
controller 

Communications 
controller 

Channel 2 

Channel 3 

0: TCP/IP 

1: IPX 

2: DECnet 

3: OSI 

I 
-a> 
a>u 

: I c:::cu 
~1:: 

£E w_ 

Figure 18.1 Examples of SCSI communications devices. 



18.2 

GET MESSAGE(6) 

(08h) and SEND 

MESSAGE(6) (OAh) 

GET MESSAGE(lO) 

(28h) and SEND 

MESSAGE(lO) 

(2Ah) 

Communications devices 211 

For this reason communications devices lack device specific parameter pages. 
Examples of SCSI communications devices are shown in Figure 18.1. 

Commands for SCSI communications devices 

Table 18.1 lists the commands defined for SCSI communications devices. For 
SCSI communications devices there are two additional commands defined, each 
with a 6-, 10-, and 12-byte version. Since the GET MESSAGE and SEND MESSAGE com­
mands are identical except for the opcode they are discussed here in pairs. 

These versions of the commands are the only ones that are not mandatory. There 
is no support for logical channels (Table 18.2). 

The 10-byte version has no support for logical channels but does have a 16-bit 
wide transfer length field. The maximal length of a data packet is limited to 
64 Kbytes (Table 18.3). 

Table 18.1 Commands for SCSI communications devices. 

Ope ode Name Type Page ANSI Description 

OOh TEST UNIT READY 141 7.2.16 Reflects whether or not the LUN is 
ready to accept a command 

03h REQUEST SENSE 142 7.2.14 Returns detailed error information 
08h GET MESSAGE(6) 211 17.2.1 Read 
OAh SEND MESSAGE(6) 211 17.2.4 Write 
12h INQUIRY 7.2.5 Returns LUN specific information 
15h MODE SELECT(6) 0 149 7.2.8 Set device parameters 
1Ah MODE SENSE(6) 0 149 7.2.10 Read device parameters 
1Ch RECEIVE DIAGNOSTIC 0 7.2.13 Read self-test results 

RESULTS 

1Dh SEND DIAGNOSTIC 147 7.2.1 Initiate self-test 
28h GET MESSAGE(lO) 0 211 17.2.2 Receive 
2Ah SEND MESSAGE(10) 0 211 17.2.5 Send 
3Bh WRITE BUFFER 0 7.2.17 Write the data buffer 
3Ch READ BUFFER 0 7.2.12 Read the data buffer 
40h CHANGE DEFINITION 0 149 7.2.1 Set SCSI version 
4Ch LOG SELECT 0 7.2.6 Read statistics 
4Dh LOG SENSE 0 7.2.7 Read statistics 
55h MODE SELECT(lO) 0 7.2.9 Set device parameters 
5Ah MODE SENSE(lO) 0 7.2.10 Read device parameters 
ASh GET MESSAGE(12) 0 212 17.2.3 Receive 
AAh SEND MESSAGE(12) 0 212 17.2.5 Send 



212 SCSI Bus and IDE Interface 

GET MESSAGE(12) 

(A8h) and SEND 

MESSAGE(12) 

(AAh) 

Table 18.2 The GET MESSAGE(6) and SEND MESSAGE(6) commands. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 GET MESSAGE(6) (08h) or 
SEND MESSAGE(6) (0Ah) 

1 LUN I Reserved 

2 (MSB) 
!-

3 Transfer length 
r----

4 (LSB) 

5 Control byte 

Table 18.3 The GET MESSAGE(lO) and SEND MESSAGE(lO) commands. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 GET MESSAGE(10) (28h) or 
SEND MESSAGE(10) (2Ah) 

1 LUN I 
2 Reserved 

r----

3 

4 (MSB) Channel 
-

5 number (LSB) 

6 Reserved 

7 (MSB) Transfer 
-

8 length (LSB) 

9 Control byte 

Finally, the 12-byte version supports logical channels and a transfer length field 
of 32 bits wide (Table 18.4). 



ld 

Communications devices 213 

Table 18.4 The GET MESSAGE(12) and SEND MESSAGE(12) commands. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 GET MESSAGE(12) (A8h) or 
SEND MESSAGE(12) (AAh) 

1 LUN I 
2 Reserved 

-
3 

4 (MSB) Channel 
-

5 number (LSB) 

6 (MSB) 
-

7 Transfer 
-

8 length 
-

9 (LSB) 

10 Reserved 

11 Control byte 

18.3 Mode parameter pages for communications 
devices 

There are no device specific mode parameter pages for communications devices. 
Table 18.5 shows the parameter pages relevant to this class. 

Table 18.5 Mode parameter pages for communications devices. 

Page Name Page ANSI 
code 

02h Disconnect-reconnect page 155 7.3.3.2 
09h Peripheral device page 156 7.3.3.3 
OAh Control mode page 157 7.3.3.1 



19 Optical storage and WORM 

drives 

19.1 The SCSI model of optical storage 

Generations of a 
logical block 

214 

The SCSI model of optical storage is very similar to that of regular disk drives. 
We will use magnetic disk drives as a basis for comparison and discuss the dif­
ferences as they become relevant. 

One difference between the two is that optical storage has the potential 
for much greater storage capacity. For this reason 12-byte commands have been 
defined for medium access commands. These have a 32-bit logical number field, 
like the 10-byte version, but also a 32-bit wide transfer length. 

The device class for optical storage is very diverse. It includes read-only 
media (like CD-ROM), media that can be written only once (WORM drives) and 
media that can be rewritten indefinitely. CD-ROM and WORM drives, however, 
each have their own device class. Except for the audio dimension of CDs, these 
classes represent subclasses of the optical storage class presented here. 

Nevertheless, a single drive capable of working with all three types of 
medium is also conceivable. For this reason an initiator must use a MODE SENSE 

to determine what type of medium is involved when working with a device of 
this class. Naturally, this must occur whenever the medium is replaced. 

Optical storage has physical characteristics that are foreign to magnetic 
disk drives. These differences are accounted for in the command set. For exam­
ple, for WORM drives, there is a command that allows the seeking to locations 
that have not been written. Many rewritable optical medium drives require that 
data be erased before being written again. There is also a command for this pur­
pose. 

WORM drives have their own device class, which is a proper subclass of 
optical storage. Both of these are covered here. We postpone the discussion of 
CD-ROM at this point since its audio capabilities make it worthy of a separate 
chapter. 

Many devices with write-once media are capable of emulating the rewriting of 
a block. The UPDATE command writes the modified logical block to another loca­
tion on the medium and makes it available via a pointer to the new location. The 
original logical block remains unchanged and represents an earlier generation of 

l 



The model of a 
SCSI WORM 

drive 

19.2 

Optical storage and WORM drives 215 

the data. Older generations are identified with a lower generation number, start­
ing with zero. The older generations of a logical block are accessible using the 
READ UPDATED BLOCK command. 

WORM drives are also a subclass of optical storage. Since the medium can only 
be written once some commands are dispensable. For example, the ERASE com­
mand has no meaning here. Also missing is the FORMAT command because a 
WORM medium is already formatted. 

Commands for optical storage and WORM drives 

Table 19.1 lists the commands defined for optical storage and WORM drives. 
You will notice that all mandatory commands are either disk drive commands 
or commands for all SCSI classes. This allows us to concentrate on only those 
commands that are unique to optical storage devices. 

At this point I would also like to skip the 12-byte versions of the READ 

and WRITE commands. Here the parameters and control bits are identical to the 
6- and 10-byte versions. 

Table 19.1 Commands for optical storage devices. 

Opcode Name Opt WORM Page ANSI Description 

OOh TEST UNIT READY 141 7.2.16 Reflects whether or not the LUN is 
ready to accept a command 

01h REZERO UNIT 0 0 8.2.13 Seek track 0 
03h REQUEST SENSE 142 7.2.14 Returns detailed error information 
04h FORMAT UNIT 0 0 168 8.2.1 Formats medium 
07h REASSIGN BLOCKS 0 0 8.2.10 Defective blocks reassigned 
08h READ(6) 0 0 165 8.2.5 Read. Limited addressing 
OAh WRITE(6) 0 0 165 8.2.5 Write. Limited addressing 
OBh SEEK(6) 0 8.2.15 Seek to a logical block 
12h INQUIRY 7.2.5 Returns LUN specific information 
15h MODE SELECT(6) 0 0 149 7.2.8 Set device parameters 
16h RESERVE UNIT 146 8.2.12 Make LUN accessible only to cer-

tain initiators 
17h RELEASE UNIT 146 8.2.11 Make LUN accessible to other ini-

tiators 
18h COPY 0 0 7.2.3 Autonomous copy from/to another 

device 
1Ah MODE SENSE(6) 0 0 149 7.2.10 Read device parameters 
1Bh START STOP UNIT 0 0 8.2.17 Load/unload medium 
1Ch RECEIVE DIAGNOSTIC 0 0 7.2.13 Read self-test results 

RESULTS 

1Dh SEND DIAGNOSTIC 147 7.2.1 Initiate self-test 
1Eh PREVENT ALLOW 0 0 8.2.4 Lock/ unlock medium 

MEDIUM REMOVAL 



216 SCSI Bus and IDE Interface 

Table 19.1 continued 

Ope ode Name Opt WORM Page ANSI Description 

25h READ CAPACITY 8.2.7 Read number of logical blocks 
28h READ(lO) 165 8.2.6 Read logical block 
29h READ GENERATION 0 0 217 15.2.6 Read maximum generation address 

ofLBN 
2Ah WRITE(lO) 165 8.2.6 Write logical block 
2Bh SEEK(lO) 0 0 8.2.15 Seek to a logical block 
2Ch ERASE 0 0 219 15.2.1 
2Dh READ UPDATED 0 0 218 15.2.7 Read specific version of changed 

BLOCK block 
2Eh WRITE AND VERIFY 0 0 15.2.15 Write logical block, verify success 
2Fh VERIFY 0 0 15.2.11 Verify data on medium 
30h SEARCH DATA 0 0 8.2.14 Search logical blocks for data 

HIGH(lO) pattern 
31h SEARCH DATA 0 0 8.2.14 Search logical blocks for data 

EQUAL(lO) pattern 
32h SEARCH DATA 0 0 8.2.14 Search logical blocks for data 

LOW(lO) pattern 
33h SET LIMITS(lO) 0 0 8.2.16 Define logical block boundaries 
34h PRE-FETCH 0 0 8.2.3 Read data into buffer. 
35h SYNCHRONIZE CACHE 0 0 8.2.8 Write cache to medium 
36h LOCK-UNLOCK CACHE 0 0 8.2.2 Hold data in cache 
37h READ DEFECT DATA(lO) 0 0 8.2.8 Read list of defective blocks 
38h MEDIUM SCAN 0 0 218 15.2.3 Search for free area 
39h COMPARE 0 0 7.2.2 Compare data 
3Ah COPY AND VERIFY 0 0 7.2.4 Autonomous copy from/ to another 

device, verify success 
3Bh WRITE BUFFER 0 0 7.2.17 Write the data buffer 
3Ch READ BUFFER 0 0 7.2.12 Read the data buffer 
3Dh UPDATE BLOCK 0 217 15.2.10 
3Eh READ LONG 0 0 166 8.2.9 Read data and ECC 
3Fh WRITE LONG 0 0 166 8.2.23 Write data and ECC 
40h CHANGE DEFINITION 0 0 149 7.2.1 Set SCSI version 
4Ch LOG SELECT 0 0 7.2.6 Read statistics 
4Dh LOG SENSE 0 0 7.2.7 Read statistics 
55h MODE SELECT(10) 0 0 7.2.9 Set device parameters 
5Ah MODE SENSE(lO) 0 0 7.2.10 Read device parameters 
ASh READ(12) 0 0 15.2.4 
AAh WRITE(12) 0 0 15.2.4 
ACh ERASE(l2) 0 15.2.2 
AEh WRITE AND VERIFY 0 0 15.2.16 vVrite logical block, verify success 
AFh VERIFY(12) 0 0 15.2.12 Verify data on medium 
BOh SEARCH DATA 0 0 15.2.8 Search logical blocks for data 

HIGH(12) pattern 
B1h SEARCH DATA 0 0 15.2.8 Search logical blocks for data 

EQUAL(12) pattern 
B2h SEARCH DATA LOW(12) 0 0 15.2.8 Search logical blocks for data 

pattern 
B3h SET LIMITS(12) 0 0 15.2.9 Set logical block boundaries 
B7h READ DEFECT 0 0 15.2.5 

DATA(12) 



UPDATE BLOCK 

(3D h) 

READ GENERATION 

(29h) 

Optical storage and WORM drives 217 

Table 19.2 The UPDATE BLOCK command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 UPDATE BLOCK (30h) 

1 LUN I Reserved I Rei 

2 (MSB) 
!------

3 Logical 
!------

4 block number 
,___ 

5 (LSB) 

6 
1----

7 Reserved 
1----

8 

9 Control byte 

This command is used to update the data in a logical block (Table 19.2). The new 
data is written to a new location on the medium, leaving the old data intact. In 
fact, the older version can still be accessed using READ UPDATED BLOCK. READ will, 
of course, always read the current version of the logical block. This command 
always operates on one logical block at a time, thus there is no transfer length. 

The READ GENERATION command returns the current generation number of a log­
ical block (Table 19.3). The reply is contained in the first 2 bytes of a 4-byte long 
parameter block (Table 19.4). 

Table 19.3 The READ GENERATION command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 READ GENERATION (29h) 

1 LUN I Reserved I Rel 

2 (MSB) 
-

3 Logical 
-

4 block number 
-

5 (LSB) 

6 
-

7 Reserved 

8 Transfer length (04h) 

9 Control byte 



218 SCSI Bus and IDE Interface 

READ UPDATED 

BLOCK(lO) (2Dh) 

MEDIUM SCAN 

(38h) 

Table 19.4 READ GENERATION results. 

7 I 6 I 5 I 4 _I 3 l 2 l 1 l 0 

0 (MSB) Maximum 
-

1 generation address (LSB) 

2 Reserved 
-

3 

This command is very much like a normal READ command. Even the control bits 
in byte 1 have the same meaning. However, there is no transfer length because 
the command reads exactly one block (Table 19.5). 

Bytes 6 and 7 hold the generation of the block to be read. When the Latest 
bit is set then the most recent generation is numbered zero and the numbers 
incremented for older generations. Otherwise it is the oldest version that is num­
bered zero and the numbers incremented for newer generations. If the request­
ed generation does not exist the command will return a CHECK CONDITION status. 

This command searches for a continuous region of written or unwritten medi­
um after the start address. The command uses a parameter block containing the 
length of the region and the length of area to be searched (Table 19.6). 

A number of parameter bits are used (Table 19.7). When the WBS (writ­
ten block search) bit is set then the target will search for a written region; when 
clear, an unwritten region. The PRA (partial results acceptable) bit indicates that 
the largest of those regions found should be returned in lieu of a qualifying 
region. The ASA bit specifies that the written or unwritten region should be 

Table 19.5 The READ UPDATED BLOCK command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 READ UPDATED BLOCK(IO) (2Dh) 

1 LUN 1 DPOI FUAj Reserved I Rel 

2 (MSB) 
!----

3 Block address (LBN) 
r------

II 
":t: 

r------
5 (LSB) 

6 Latest I (MSB) Generation 

7 (LSB) 

8 Reserved 

9 Control byte 

I 
I 
l 

~ 

ERA: 



Optical storage and WORM drives 219 

Table 19.6 The MEDIUM SCAN command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 MEDIUM SCAN (38h) 

1 LUN I WBSI ASAI RSDI PRAI Rel 

2 (MSB) 
f-----

3 Start 
f----

4 address 
f-----

5 (LSB) 

6 Reserved 
f-----

7 

8 Parameter list length (08h) 

9 Control byte 

continuous. The RSD bit instructs the target to search from the end of the 
medium backwards. The result of the search process is a status. CONDITION MET 

indicates that a region meeting the specifications was found. Then REQUEST SENSE 

will return the sense key EQUAL or NO SENSE with the LBN of the region in the 
information bytes. If no qualifying region is found then GOOD status is returned 
with the sense key set to NO SENSE. 

ERASE(lO) (2Ch) The ERASE command instructs the target to erase a number of logical blocks 
beginning with a start address (Table 19.8). This command is important for re­
writable optical drives which require erasure before writing. Although erasure 
is already implemented within write commands, for performance reasons it is 
more effective to erase large regions with a single ERASE command. 

When the ERA bit is set the Number field must contain a zero, and all of 
the medium after the start address will be erased. Otherwise Number holds the 
number of blocks to be erased. 

Table 19.7 MEDIUM SCAN pararneter list. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 (MSB) 
f-----

1 Number of 
f----

2 blocks requested 
-

3 (LSB) 

4 (MSB) 
-

5 Number of 
-

6 blocks to scan 
-

7 (LSB) 



220 SCSI Bus and IDE Interface 

19.3 

Mode parameter 
header 

Mode parameter 
pages 

Table 19.8 The ERASE command for optical storage. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 ERASE(10) (2Ch) 

1 LUN I Reserved t ERAt RES J Rel 

2 (MSB) 
-

3 Start 
-

4 address (LBN) 
~ 

5 (LSB) 

6 Reserved 

7 (MSB) Number 
r---

8 (LSB) 

9 Control byte 

Mode parameters for optical storage 

The medium type (byte 1) and the device specific parameter (byte 2) have the 
interpretations shown in Table 19.9. 

For a MODE SENSE command WP indicates that the medium is write pro­
tected. A set Cache bit indicates that the target has a cache and that cache con­
trol is possible using the DPO and FUA bits of the WRITE command. 

The EBC (enable blank check) bit causes sectors to be verified as unwrit­
ten before a write is executed. When the checking is enabled an attempt to write 
an already written sector will result in a CHECK CONDmON. 

The mode parameter pages are defined in Table 19.10. 

Table 19.9 Mode parameter header byte 1 and byte 2. 

Code Medium type 

OOh Default 
Olh Read-only medium (R/ 0) 
02h WORM medium (W-0) 
03h Rewritable medium (R/W) 
04h R/0 or W-0 
05h R/0 or R/W 
06h W-0 or R/W 

Bit 7 6 I 5 4 3 I 2 I 1 0 

WP Reserved Cache Reserved EBC 



The optical 
device page 

(06h) 

Optical storage and WORM drives 221 

Table 19.10 Mode parameter pages for optical storage. 

Page Name Page ANSI 
code 

Olh Read/write error page 8.3.3.6 
02h Disconnect-reconnect page 155 7.3.3.2 
06h Optical device page 221 15.3.3.1 
07h Verification error page 8.3.3.8 
08h Caching page 177 8.3.3.1 
09h Peripheral device page 156 7.3.3.3 
OAh Control mode page 157 7.3.3.1 
OBh Medium type page 8.3.3.4 

The optical device page (Table 19.11) contains precisely one parameter: the 
RUBR (report updated block read) bit. When set this bit causes the target to 
reply with CHECK CONDITION to a read of a block updated with an UPDATE com­
mand. In this way the host will know that the block being accessed does not rep­
resent the most recent version of the data. 

Table 19.11 The optical device page. 

7 6 5 I 4 I 3 I 2 I 1 I 0 

0 PS Res Page code (06h) 

1 Page length (02h) 

2 Reserved IRUBR 
r---

3 



222 

20 CD-ROM 

20.1 

CD-ROM is a wide and varied topic, worthy of an entire book. A number of 
books have, in fact, been written on the subject. For the purposes of this discus­
sion, however, we will concentrate on those aspects of CD-ROM that are rele­
vant to the SCSI bus. Because of this I will only be able to touch on topics like 
the recording format and the organization of the medium. 

The model of a SCSI CD-ROM drive 

SCSI CD-ROM drives can read data that conforms to the standards laid down in 
the yellow book and the red book (IEC 908). These CDs may hold audio infor­
mation in addition to other forms of digital data. One major aspect of CD-ROM 
is that data can only be written with a device dedicated to the function; typical 
CD-ROM drives do not write (Figure 20.1). 

The recording format demands that the data be written at a constant lin­
ear velocity (CLV). This means that the transfer rate is the same over the entire 

Output 0 

~ 
i ~¥~:~ation Com ands Data 

Output 1 

Output 2 

Output 3 

Audio commands 

SCSI bus 

Figure 20.1 Model of a CD-ROM drive. 
j 

I 
I 

~ 



CD-ROM 223 

medium; in other words, there is no zone-bit recording. Nevertheless, the bit 
density is kept constant by rotating the disk more quickly for outer tracks and 
more slowly for inner tracks. 

Normally the read head of a CD-ROM drive is parked as long as no data 
access is taking place. However, a CD-ROM drive can assume a HOLD state, in 
which the head remains in the area of the last read. A timeout is defined among 
the mode parameters, which specifies how long after an access the head should 
be kept in the HOLD state. 

With respect to data access a CD-ROM drive does not differ significant­
ly from other types of drives. Of course, as mentioned, no write commands have 
been implemented. On the other hand, in addition to logical blocks CD-ROM 
drives also employ other forms of data addressing. 

Many SCSI CD-ROM drives can also read the audio format. This is 
accomplished using a separate channel that is not defined within the SCSI stan­
dard. However, audio commands and mode parameters are included. Therefore 
a SCSI CD-ROM drive with audio capabilities can be used as a CD player and 
be controlled across the SCSI bus. 

The CD-ROM In terms of the organization of the medium CD-ROM is fundamentally different 
medium to the other types of disks discussed thus far. While the smallest addressable 

unit is still a physical sector, this sector is 1/75 of a second long. It can contain 
audio information or computer data. In the latter case sector lengths of 2048, 
2336, or 2340 bytes are possible. For computer applications a length of 2048 bytes 
is usually employed. This provides enough room for adequate error correction 
information and is divisible by 5~2. 

The address of a sector is specified in terms of minutes, seconds, and sec­
tors (or large frames) in the form MM:SS:FF. This is referred to as the MSF for­
mat. When an MSF address is used in a SCSI command it is given as shown in 
Table 20.1. The individual fields are encoded as a binary encoded decimal. 

As a whole the medium is divided in up into 99 tracks. A CD-ROM track 
is a continuous sequence of sectors of the same type. A transition area must lie 
between tracks of differing types but these too must be formatted. CD-ROM 
tracks can contain up to 99 indexes. 

The mapping from physical sectors to logical blocks is done linearly. T[lis 
also takes into account the transition areas in between tracks. This results in the 
situation where not all logical blocks are accessible by all commands. For 
instance, the logical blocks containing audio information can only be read with 
the audio commands, not with the regular read commands. The logical blocks 
that map to transition areas cannot be read at all. 

Table 20.1 CD-ROM address in MSF format. 

0 Reserved 
1 M-field 
2 S-field 
3 F-field 



224 SCSI Bus and IDE Interface 

20.2 Commands for CD-ROM 

For the most part the mandatory CD-ROM commands have already been intro­
duced in previous chapters. An exception is READ CD-ROM CAPACITY which is a 
variation of the disk drive version. The commands unique to CD-ROM are all 
optional (Table 20.2). Examples would include the command to read the disk 
table of contents and the audio commands. Of the latter, if any are implemented 
they must all be implemented. 

Table 20.2 CD-ROM commands. 

Opcode Name Opt Page ANSI Description 

OOh TEST UNIT READY 141 7.2.16 Reflects whether or not the LUN is ready 
to accept a command 

01h REZERO UNIT 0 8.2.13 Seek track 0 
03h REQUEST SENSE 142 7.2.14 Returns detailed error information 
08h READ(6) 0 165 8.2.5 Read. Limited addressing 
OAh WRITE(6) 0 165 8.2.5 Write. Limited addressing 
OBh SEEK(6) 0 8.2.15 Seek to LBN 
12h INQUIRY 7.2.5 Returns LUN specific information 
15h MODE SELECT(6) 0 149 7.2.8 Set device parameters 
16h RESERVE UNIT 146 8.2.12 Make LUN accessible only to certain ini-

tiators 
17h RELEASE UNIT 146 8.2.11 Make LUN accessible to other initiators 
18h COPY 0 7.2.3 Autonomous copy from/ to another device 
1Ah MODE SENSE(6) 0 149 7.2.10 Read device parameters 
1Bh START STOP UNIT 0 8.2.17 Load/unload medium 
1Ch RECEIVE DIAGNOSTIC 0 7.2.13 Read self-test results 

RESULTS 

1Dh SEND DIAGNOSTIC 147 7.2.1 Initiate self-test 
1Eh PREVENT ALLOW 0 8.2.4 Lock/unlock door 

MEDIUM REMOVAL 

25h READ CD-ROM 225 13.2.8 Read number of logical blocks 
CAPACITY 

28h READ(lO) 165 8.2.6 Read 
2Bh SEEK(lO) 0 8.2.15 Seek LBN 
2Fh VERIFY(lO) 0 15.2.11 Verify 
30h SEARCH DATA 0 8.2.14 

HIGH(lO) 

31h SEARCH DATA 0 8.2.14 
EQUAL(10) 

32h SEARCH DATA 0 8.2.14 
LOW(lO) 

33h SET LIMITS(lO) 0 8.2.16 Define logical block boundaries 
34h PRE-FETCH 0 8.2.3 Read data into buffer 
35h SYNCHRONIZE CACHE 0 8.2.8 Re-read data into cache 
36h LOCK-UNLOCK CACHE 0 8.2.2 Lock/unlock data in cache 
39h COMPARE 0 7.2.2 Compare data 
3Ah COPY AND VERIFY 0 7.2.4 Autonomous copy from/ to another 

device, verify success ~ 
l 
! 
i 
5 
1 
i 
~ 
·~ 
l 

'~· ;-",,\;:,~':~" 



)-. 

a 
11 
k 
d 

READ CD-ROM 

CAPACITY (25h) 

READ TOC (43h) 

CD-ROM 225 

Table 20.2 continued 

Ope ode Name Opt Page ANSI Description 

3Bh WRITE BUFFER 0 7.2.17 Write data buffer 
3Ch READ BUFFER 0 7.2.12 Read data buffer 
3Eh READ LONG 0 166 8.2.9 Read data and ECC 
40h CHANGE DEFINITION 0 149 7.2.1 Set SCSI version 
45h PLAY AUDIO(lO) 0* 227 13.2.2 
47h PLAY AUDIO MSF 0* 227 13.2.4 
48h PLAY AUDIO 0* 227 13.2.5 

TRACK/ INDEX 

49h PLAY TRACK 

RELATIVE(lO) 0* 13.2.6 
4Ch LOG SELECT 0 7.2.6 Read statistics 
4Dh LOG SENSE 0 7.2.7 Read statistics 
SSh MODE SELECT(IO) 0 7.2.9 Set device parameters 
SAh MODE SENSE(lO) 0 7.2.10 Read device parameters 
ASh PLAY AUDI0(12) 0* 227 13.2.3 
A8h READ(12) 0 15.2.4 Read 
A9h PLAY TRACK 0* 13.2.7 

RELATIVE(12) 

AFh VERIFY(12) 0 15.2.12 Verify data 
BOh SEARCH DATA 0 15.2.8 

HIGH(12) 

B1h SEARCH DATA 0 15.2.8 
EQUAL(12) 

B2h SEARCH DATA LOW(12) 0 15.2.8 
B3h SET LIMITS(12) 0 15.2.9 
B7h READ DEFECT 0 15.2.5 

DATA(12) 

This command works just like the corresponding command for disk drives 
(Table 20.3). When the PMI bit is clear the logical block number must be zero. In 
this case the logical block address and the length of the last valid block will be 
returned. If, on the other hand, the PMI bit is set then the command will return 
the address and the length of the logical block, after which a substantial delay in 
access time occurs relative to the block provided in the command. In simpler 
words (though perhaps not exactly correct), the command retums the address of 
the last logical block of the track containing the logical block provided in the 
command. 

The command retums an 8-byte long parameter block. The first 4 bytes 
contain the logical block number, the last 4 bytes the block length. 

This command reads the table of contents of the medium (Table 20.4). Track zero 
is where the table of contents begins. The MSF bit indicates that the CD-ROM 
address should be returned in MSF format, otherwise a logical block number is 
retumed. The command returns a data block containing the table of contents 
with the structure shown in Table 20.5. 



226 SCSI Bus and IDE Interface 

Table 20.3 The READ CD-ROM CAPACITY command. 

7 I 6 l 5 I 4 I 3 I 2 I 1 I 0 

0 READ CD-ROM CAPACITY (25h) 

1 LUN I Reserved I Rei 

2 (MSB) 
~ 

3 Logical 
,.----

4 block number 
'----

5 (LSB) 

6 
:----

7 Reserved 
r---

I PMI 8 

9 Control byte 

Table 20.4 The READ Toe command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 READ TOC (43h) 

1 LUN I Reserved I MSFI Rel 

2 
-

3 
-

4 Reserved 
-

5 
'-----

6 

7 (MSB) Transfer length 
:----

8 (LSB) 

9 Control byte 



CO-ROM 227 

Table 20.5 Data format for READ TOC. 

7 I 6 I s I 4 I 3 I 2 I 1 I 0 

0 (MSB) Transfer length 
1-----

1 (LSB) 

2 First track number 

3 Last track number 

0 Reserved 

1 ADR I Attribute 

2 Track number 

3 Reserved 

4 (MSB) Transfer length 
-

7 (LSB) 

20.3 Audio commands for CD-ROM 

PAUSE/RESUME 
(4Bh) 

PLAY AUDIO(lO) 

(45h) and PLAY 

AUDI0(12) (ASh) 

PLAY AUDIO MSF 
(47h) 

PLAY AUDIO 

TRACK/INDEX 

(48h) 

The audio commands make it possible to control a CD-ROM drive remotely 
across the SCSI bus. 

This 10-byte command simulates the pause button of a CD player. No parame­
ters are involved except the Resume bit (byte 8, bit 0). When this bit is clear, play­
ing should stop; otherwise it should continue. 

The PLAY AUDIO commands cause the playing of audio data. The data to be 
played is specified by the Start address and Transfer length fields. In addition, 
the SOTC bit of the CD-ROM audio page has influence on these commands. 

The 10-byte version of the command is shown in Table 20.6. The 12-byte 
version uses no additional parameters and follows the usual format. 

If the start address is not found or the data specified is not audio infor­
mation, or if the data type changes during playing, the command will abort with 
a CHECK CONDITION status. 

This command also initiates playback of audio data but uses the r-..A:SF address­
ing format (Table 20.7). The data to be played is specified using the starting and 
ending address. 

This variant of PLAY AUDIO uses tracks and indexes to specify the data to be 
played (Table 20.8). Both of these parameters assume values between 0 and 99. 



228 SCSI Bus and IDE Interface 

Table 20.6 The PLAY AUDIO command. 

7 I 6 I s I 4 I 3 I 2 I 1 I 0 

0 PLAY AUDIO(lO) ( 45h) 

1 LUN I Reserved I Rei 

2 (MSB) 
t---

3 Start address 
t---

4 (logical block) 
-

5 (LSB) 

6 Reserved 

7 (MSB) Transfer length 
-

8 (LSB) 

9 Control byte 

Table 20.7 The PLAY AUDIO MSF command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 PLAY AUDIO MSF (47h) 

1 LUN I Reserved 

2 Reserved 

3 Start address, M-field 

4 Start address, S-field 

5 Start address, F-field 

6 End address, M-field 

7 End address, S-field 

8 End address, F-field 

9 Control byte 



20.4 

Mode parameter 
header 

Mode parameter 
block descriptor 

Mode parameter 
pages 

CD-ROM 229 

Table 20.8 The PLAY AUDIO TRACK/INDEX command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 PLAY AUDIO TRACK/INDEX (48h) 

1 LUN I Reserved 

2 Reserved 
-

3 

4 Start address, track 

5 Start address, index 

6 Reserved 

7 End address, track 

8 End address, index 

9 Control byte 

Mode parameters for CD-ROMs 

The mode parameter head contains two parameters for CD-ROM. The field with 
the Medium type assumes the values shown in Table 20,_9. 

The device specific byte contains only a single parameter. Bit 4 is the 
Cache bit and is only defined for MODE SENSE. When set it indicates that the tar­
get is equipped with a cache and that the DPO and FUA bits of the WRITE com­
mand are supported. 

The write density parameter in the mode parameter block descriptor takes on 
the values shown in Table 20.10. 

The mode parameter pages in Table 20.11 have been defined for CD-ROM. 

Table 20.9 CD-ROM medium types. 

Code Medium type 

OOh Default 
Olh 120 mm CD-ROM, data only 
02h 120 mm CD-ROM, audio only 
03h 120 mm CD-ROM, audio and data 
04h Reserved 
05h 80 mm CD-ROM, data only 
06h 80 mm CD-ROM, audio only 
07h 80 mm CD-ROM, audio and data 



230 SCSI Bus and IDE Interface 

The CD-ROM 
page (ODh) 

The CD-ROM 
audio page (OEh) 

Table 20.10 CD-ROM write density. 

Code Medium type 

OOh Default 
01h 2048 bytes I sector 
02h 2336 bytes I sector 
03h 2340 bytes I sector 
04h Audio information 

Table 20.11 Mode parameter pages for CD-ROM devices. 

Page Name Page ANSI 
code 

01h Read/write error page 13.3.3.3 
02h Disconnect/ reconnect page 155 7.3.3.2 
09h Peripheral device page 156 7.3.3.3 
OAh Control mode page 157 7.3.3.1 
OBh Medium type page 8.3.3.4 
ODh CD-ROM page 230 13.3.3.2 
OEh CD-ROM page 230 13.3.3.1 

The CD-ROM page is valid for all medium types (Table 20.12). The inactivity 
timeout specifies how long the head should remain in the HOLD state before 
being parked. A key to timeout values is shown in Table 20.13. 

The parameter MSF seconds per MSF minute is self-explanatory. The 
default value here is 60; the default value for MSF frames per MSF minute is 75. 

Table 20.12 The CD-ROM page. 

7 6 5 I 4 _I 3 I 2 1 1 I 0 

0 PS Res CD-ROM page (ODh) 

1 Page length (06h) 

2 Reserved 

3 Reserved I Inactive 

4 (MSB) Number of 
f---

5 MSF seconds per IviSF minute (LSB) 

6 (MSB) Number of 
-

7 MSF frames per MSF second (LSB) 

The Immed bit has the usual meaning. When set GOOD status is return immedi­
ately. When the SOTC (stop on track boundaries) bit is set the target will stop the 
playback at a track boundary. Otherwise playback will continue until the trans­
fer length has been exhausted (Table 20.14). 



CO-ROM 231 

Table 20.13 Timeout values. 

Code Timeout 

OOh Vendor specific 
01h 125 rns 
02h 250 rns 
03h 500 rns 
04h 1 second 
05h 2 seconds 
06h 4 seconds 
07h 8 seconds 
08h 16 seconds 
09h 32 seconds 
OAh 1 minute 
OBh 2 minutes 
OCh 4 minutes 
ODh 8 minutes 
OEh 16 minutes 
OFh 32 minutes 

A set APRV (audio playback rate valid) bitindicates that the LBA factor 
and the number of LBAs per second is valid. 

The Number of LBAs per second field specifies the rate at which data is 
to be played back. The LBA factor is a multiplier that allows greater resolution 
for the setting of the LBAs per second. A Oh in this field causes Number of LBAs 
per second to be multiplied by 1 and a value of 8h multiplies by 1/256. 

The end of the parameter page consists of settings for the four output 
channels. The Output port n select enables channels to port n. For instance, 
OOOOb will mute the port, OOOlb will connect channel 1, OOlOb will connect chan­
nel 2, and so on. The value for Port n volume can range from OOh for very quiet 
to FFh for very loud. 



232 SCSI Bus and IDE Interface 

Table 20.14 CD-ROM audio page. 

7 6 s I 4 I 3 I 2 I 1 I 0 

0 PS Res CD-ROM audio page (OEh) 

1 Page length (OEh) 

2 I Immedl STOC I Res 
~ 

3 Reserved 
r--

4 

5 APRV Reserved I LBA Factor 

6 (MSB) Number of 
r---

7 LBAs per second (LSB) 

8 Reserved I Output port 0 select 

9 Port 0 volume 

10 Reserved I Output port 1 select 

11 Port 1 volume 

12 Reserved I Output port 2 select 

13 Port 2 volume 

14 Reserved I Output port 3 select 

15 Port 3 volume 



21 Medium-changer devices 

21.1 The model of a SCSI medium-changer device 

Elements of the 
medium-changer 

device 

A SCSI medium-changer device is like a juke-box, allowing many individual media 
to be loaded, unloaded, and accessed just like single media drives (Figure 21.1). 
There are four basic components or elements of this juke-box: the medium transport 
element (MTE), the storage element (SE), the import/ export element (IOE), and the 
data transfer element (DTE). A device may, however, contain more than one of any 
of these elements. Each element is capable of being empty or holding a single medi­
um. All elements are identified using a 16-bit address. The addresses of the various 
elements are consecutive and do not overlap. Since only element addressing is 
employed, all media must be of the same type. This means that the SCSI model does 
not allow a device that supports both cassette tape and optical disks. 

The medium transport element 
The MTE is the mechanism that moves media from one location to another. 
When a double-sided medium is being used the element contains the machinery 

Drive 

Element 53 

Eiement 54' 

Controller 

Elements 1-50 

Storage 
(50 Elements) 

Figure 21.1 Model of a SCSI medium-changer device. 

233 



234 SCSI Bus and IDE Interface 

necessary to turn the unit over. Large devices contain more than one MTE. 

The storage element 
Media is held in the SE until it is needed for access. From here individual media 
are moved by the MT element to other elements of the device. 

The import/export element 
The IOE allows an operator to load media into and remove media from the 
device. Therefore, when a medium unit is to be removed from the device the 
MTE moves it from its current position into the IOE. The IOE does not neces­
sarily have to be implemented since many devices allow direct hand access to 
storage. Large medium-changers, on the other hand, may have several IOEs. 

The data transfer element 
Obviously, media can be accommodated within the DTE, the place where data 
is ultimately accessed. For this reason it also is addressed in the element address 
space. Large medium-changers may employ a number of these DTEs. 

From the SCSI perspective the DTE and the medium-changer are com­
pletely separate entities. No data transfer commands are contained in the medi­
um-changer command set. In fact, the DTE may not even be SCSI compatible. 
One possibility is that the DTE is connected to the host using an interface other 
than SCSI. Another possibility is for it to be connected to the very same SCSI bus 
but at a different SCSI ID; in other words, the DTE is a separate target. The lat­
ter is the standard case (Figure 21.2). Finally, the two might be implemented as 
individual LUNs of the same SCSI target. This configuration is the least likely 
since the LUNs belong to different device classes. 

Volume tags Volume tags are used to identify a particular piece of medium. These tags, which 
are optional, are written on the medium itself and remain with it from element 

0 

Fl g 
Host 

(f) 

0 
(f) 

I I 
SCSI ID 7 

SCSI bus 

Figure 21.2 SCSI medium-changer configuration. 



21.2 

Medium-changer devices 235 

Table 21.1 Format of a medium volume tag. 

Byte Meaning 

0 
-

... Volume identification field 
-

31 

32 Reserved 
-

33 

34 (MSB) Volume sequence number 
-

35 (LSB) 

to element. Double-sided media have a primary volume tag for the default side 
and on alternate volume tag for the reverse side. 

Tags are assigned using either a bar code reader or with the aid of a spe­
cial command. Table 21.1 shows the format of a volume tag just as it is used by 
the COITlmands READ ELEMEN1 STATUS and SEND VOLUME TAG. 

The volume identification field contains ASCII characters. In order to be 
compatible with most operating systems you should use only numbers, capital 
letters and the underscore character. In particular, question marks and asterisks, 
which are wildcards in many systems, should be avoided. 

The volume sequence number is 16-bits long and is used, for example, to 
keep track of the individual pieces of medium that belong to a single volume. 

Commands for medium-changers 

Table 21.2lists the commands defined for medium-changers. 

Table 21.2 Commands for medium-changer devices. 

Opcode Name Opt Page ANSI Description 

OOh TEST UNIT READY 

01h REZERO UNIT 

141 7.2.16 Reflects whether or not the LUN is 
ready to accept a command 

8.2.13 Seek track 0 
03h REQUEST SENSE 142 7.2.14 Returns detailed error information 
07h INITIALIZE ELEMEJ\JT 0 16.2.2 Initialize element 

STATUS 

12h 
15h 
16h 

17h 
1Ah 
1Ch 

INQUIRY 

MODE SELECT(6) 0 
RESERVE 

RELEASE 

MODE SENSE(6) 0 
RECEIVE DIAGNOSTIC 0 
RESULTS 

149 

146 
149 

7.2.5 
7.2.8 

16.2.8 

16.2.6 
7.2.10 
7.2.13 

Returns LUN specific information 
Set device parameters 
Make LUN accessible only to certain 
initiators 
Make LUN accessible to other initiators 
Read device parameters 
Read self-test results 



236 SCSI Bus and IDE Interface 

MOVE MEDIUM 

(ASh) 

Table 21.2 continued 

Ope ode Name Opt Page ANSI Description 

1Dh SEND DIAGNOSTIC 147 7.2.1 Initiate self-test 

1Eh PREVENT ALLOW 0 8.2.4 Lock/unlock door 
MEDIUM REMOVAL 

2Bh POSITION TO 0 16.2.4 
ELEMENT 

3Bh WRITE BUFFER 0 7.2.17 Write data buffer 

3Ch READ BUFFER 0 7.2.12 Read data buffer 
40h CHANGE DEFINITION 0 149 7.2.1 Set SCSI version 

4Ch LOG SELECT 0 7.2.6 Read statistics 
4Dh LOG SENSE 0 7.2.7 Read statistics 

SSh MODE SELECT(10) 0 7.2.9 Set device parameters 
SAh MODE SENSE(10) 0 7.2.10 Read device parameters 
ASh MOVE MEDIUM M 236 16.2.3 

A6h EXCHANGE MEDIUM 0 237 16.2.1 
BSh REQUEST VOLUME 0 16.2.7 

ELEMENT ADDRESS 

B6h SEND VOLUME TAG 0 16.2.9 Assign volume name 
B8h READ ELEMENT 0 16.2.5 

STATUS 

This is the only mandatory command that is device specific. It causes the target 
to move a piece of medium from one element to another (Table 21.3). The ele­
ment addresses of the MTE, the source, and the destination are parameters of the 
command. The Invert bit indicates that the medium should be flipped. 

Table 21.3 The MOVE MEDIUM command. 

7 I 6 I s I 4 I 3 I 2 I 1 I 0 

0 MOVE MEDIUM (ASh) 

1 LUN I Reserved 

2 (MSB) Element address of 
-

3 transport device (LSB) 

4 (MSB) Source address 
-

s (LSB) 

6 (MSB) Destination address 
r---

7 (LSB) 

8 
r----

9 Reserved 
r----

10 I Invert 

11 Control byte 



EXCHANGE 

MEDIUM (A6h) 

21.3 

Medium-changer devices 237 

If the source element is empty or the destination element is full the com­
mand will abort with a CHECK CONDITION status. This is also the case when an 
MTE is called for that is not supported in the mode parameter pages. 

This command goes one step further than the MOVE MEDIUM command. The 
medium in the source element is moved to the destination 1 element and the 
medium previously in the destination 1 element is moved to the destination 2 
element. The source element and the destination 2 element may or may not be 
the same. When they are the two media are exchanged (Table 21.4). 

Table 21.4 The EXCHANGE MEDIUM command. 

7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 

0 EXCHANGE MEDIUM (A6h) 

1 LUN 
l 

Reserved 

2 (MSB) Element address of 
t----

3 medium transport element (LSB) 

4 (MSB) Source address 
-

5 (LSB) 

6 (MSB) Final destination address 
-

7 (LSB) 

8 (MSB) Second destination address 
-

9 (LSB) 

10 I Inv21 Invl 

11 Control byte 

Mode parameter pages for medium-changers 

No device independent mode parameter pages are defined for medium-chang­
ers. Not even the disconnect-reconnect page exists. There are, however, three 
device specific pages, listed in Table 21.5. 

Table 21.5 Mode parameter pages for medium-changer devices. 

Page Name Page ANSI 
code 

lDh Element address page 239 16.3.3.2 
lEh Drive group page 238 16.3.3.3 
lFh Device capabilities page 238 16.3.3.1 



238 SCSI Bus and IDE Interface 

The device 
capabilities page 

(lFh) 

The drive group 
page (lEh) 

Bits 0 through 3 in byte 2 specify whether the corresponding element is capable of 
independently storing a piece of medium. Bytes 4-7 contain a matrix of a possi­
ble sources and destinations for the MOVE MEDIUM command (Table 21.6). A 1 indi­
cates that a transfer between source and destination is supported. Often a direct 
transfer is not possible between the import/ export element and the transfer ele­
ment. This transfer is accomplished by first moving through the storage element. 
Bytes 12-15 contain a similar matrix for the command EXCHANGE MEDIUM. 

Table 21.6 The device capabilities page. 

7 6 5 I 4 3 2 1 0 

0 PS Res Device capabilities page (1Fh) 

1 Page length (12h) 

2 Reserved StorDT StorliE StorST StorMT 

3 Reserved 

4 Reserved MT----)DT MT----)I!E MT----)ST MT----)MT 

5 Reserved ST----)DT ST----)I/E ST----)ST ST----)MT 

6 Reserved 1/E------)DT I/E------)1/E I/E----)ST 1/E------)MT 

7 Reserved DT----)DT DT----)I/E DT----)ST DT----)MT 

8 
-

... Reserved 
-

11 

12 Reserved MT<>DT MT<>IIE MT<>ST MT<>MT 

13 Reserved ST<>DT ST<>l/E ST<>ST ST<>MT 

14 Reserved l/E<>DT I/E<>I!E I/E<>ST I/E<>MT 

15 Reserved DT<>DT DT<>IIE DT<>ST DT<>MT 

Often a number of DTEs are grouped together in order to take advantage of a sin­
gle MTE. If there are several MTEs each one is assigned a single DTE. The drive 
group (transport geometry) page contains information about the assignment of 

Table 21.7 The drive group. 

7 6 5 I 4 J 3 l 2 I 1 I 0 

0 PS Res Drive group page (1Eh) 

1 Page length 

Drive group descriptors 

0 Reserved 1 Rot 

1 Number in group 



The element 
address page 

(lDh) 

Medium-changer devices 239 

DTEs to MTEs and whether the latter has the capability to flip a medium (Table 
21.7). 

The element address assignment page contains the mapping of the various func­
tional elements to their respective element addresses (Table 21.8). 

Table 21.8 The element address page. 

7 6 5 I 4 I 3 I 2 I 1 I 0 

0 PS Res Page code (1 Dh) 

1 Page length (12h) 

2 (MSB) Medium transport 
!---

3 element address (LSB) 

4 (MSB) Number of medium 
1----

5 transport elements (LSB) 

6 (MSB) First storage 
!---

7 element address (LSB) 

8 (MSB) Number of storage 
1----

9 elements (LSB) 

10 (MSB) First import export 
-

11 element address (LSB) 

12 (MSB) Number of import/ 
-

13 export elements (LSB) 

14 (MSB) First data transfer 
1---

15 element address (LSB) 

16 (MSB) Number of data 
1---

17 transfer elements (LSB) 

18 Reserved 
1---

19 



22 The SCSI monitor program 

Accompanying this book is a diskette containing a SCSI monitor program. This 
program allows you to send arbitrary SCSI commands to a SCSI device, includ­
ing the sending and receiving of data. For users without the necessary SCSI host 
adapter the program includes a target simulator so that a bit of experimentation 
is still possible. 

The program runs on an IBM PC compatible computer with at least 512 
Kbytes of memory running DOS 3.3 or later. A hard disk is not required. Also 
necessary is a SCSI host adapter and ASPI (developed by Adaptec) manager 
software supporting the host adapter. It is also possible to integrate the driver 
software into the program itself. The hooks for this are included in the source 
code. 

A list of tested host adapters is contained in the README.DOC file of 
the diskette. Please take note that Adaptec host adapters can be configured to 
send a REQUEST SENSE automatically upon a CHECK CONDffiON status. This is not 
desirable for use with a monitor program since here the user wants to be in full 
control of the sequence of commands. This feature can be disabled by a switch 
or jumper on the host adapter board. 

Warning This program gives no warning or feedback concerning the outcome of SCSI 
commands on a target. It allows you to give any and all SCSI commands regard­
less of their effect. Be extremely careful when sending commands to a disk drive 
containing important information. A seemingly innocent write command could 
destroy valuable data. 

The program is useful for familiarizing yourself with the many details of 
SCSI protocol and commands. In order to avoid undesired results reserve the 
test target using the RESERVE UNIT command. 

And a bit of advice: if you aren't exactly sure what something will do, 
don't do it! 

Program design The SCSI monitor program is written in Borland Pascal 7.0. You should also be 
able to compile it after minimal changes using Turbo Pascal 6.0 or 7.0. There may 
be problems with versions 4.0 and earlier. In order to make the program easier 
to port to other systems it is written in standard Pascal. I have not made use of 

240 



The display 

The SCSI monitor program 241 

any special features unique to Turbo Pascal. However, a minimal amount of 
machine specific assembler code has been incorporated. 

The user interface is simple but at first perhaps a little cryptic. After 
some practice, however, it is quick and easy to work with. Be careful not to con­
fuse commands for the monitor program with SCSI commands. 

The monitor program makes use of 10 command buffers and 10 data 
buffers for holding SCSI commands and SCSI data. Each data buffer is 4 Kbytes 
long. A command buffer has room for 12 command bytes as well as a status byte, 
a byte for the SCSI ID, a byte for the L UN, a byte for the command length, and 
finally a byte indicating the next command buffer to be used. Both the command 
and data buffers are numbered, respectively, from 0 to 9. 

The current command and data buffer are displayed on the screen. The 
command buffer and data buffer are completely independent of each other. For 
example, command buffer 3 can be used with the data in data buffer 0. 

Figure 22.1 shows the display of the SCSI monitor. All values are in hexadecimal. 
At the top of the display you see the current command buffer along with ID, 
LUN, and status. Below this the current data buffer is shown in hexadecimal. To 
the right are the corresponding ASCII characters, which is useful for interpret­
ing the data from commands such as INQUIRY. A value of 40h is added to control 
characters below 20h and displayed in inverse video. 

SCSI Monitor V1.0 rev 024e 18.7.94 (fs) 
Id Lu St lN nX 

SCSI Command 00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ?? 00 FF 

SCSI Data Buffer Nr. 00: 

0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0090: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOAO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

I 
OOBO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOCO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OODO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOEO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOFO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

Command: H 
Commands: Command, Data, dRriver, Go, Help, Id, Lun, leNgth, neXt, Quit 

Figure 22.1 SCSI monitor with help information. 



242 SCSI Bus and IDE Interface 

The command 
buffer 

• Command nn: The current command buffer. 

• Id (SCSI ID): The ID of the device to receive the command. 

• St: SCSI status of the last executed command. This value remains unchanged 
until another command is executed. Even if the command buffer, the LUN, or 
the SCSI ID is edited the status remains unchanged. 

Three special symbols are displayed in this field: 

?? 
** 

No command has been executed from this buffer. 
SCSI command is now being executed. 
The target does not reply. 

• Lu: LUN to which the command pertains. 

• lN: Length of the command. If this value is zero then the default command 
length defined for SCSI-2 command groups is used. Otherwise no command is 
sent. The behavior depends on the hardware employed (see README.DOC). 

• nX: Next command buffer to be used when this command has completed. 

Monitor C (Command) 
commands Syntax: C<Number>,<Offset>,<Count> <Byte1> <Byte2> ... 

• Number: Number of the command buffer. The current command buffer 
changes to display this buffer. Default: the current buffer. 

• Offset: Byte position in the buffer where the command should be placed. 
Default: OOh. 

• Count: When this parameter is included then only one command byte can be 
given. This single command byte is then copied into the buffer 'Count' times. 
Default: OOh. 

• Byte 1 ... ByteN: The command bytes. 

Examples 

Cl 12 00 00 00 FF 

This example writes '12 00 00 00 FF' starting at byte 0 into command buffer 1 and 
makes this the current command buffer. 

C3 

This command makes command buffer 3 the current command buffer. 

C,3 AA 

This command writes AAh into byte 3 of the current command buffer. 

C, ,A 0 

This command fills the current command buffer with zeros. 



The SCSI monitor program 243 

I (ID) 
Syntax: I <ID> 

• ID: The ID for the current command buffer is changed to this value. 

L (LUN) 
Syntax: L <LUN> 

• LUN: The LUN for the current command buffer is changed to this value. 

N (leNgth) 
Syntax: N <Value> 

• Value: The command length for the current command buffer is changed to 
this value. 

X (neXt) 
Syntax: X <CommandBuffer> 

• CommandBuffer: The number of the command buffer, which should be exe­
cuted automatically after the execution of the current command. The value 
FFh means that no command is to executed afterwards. Looping on the cur­
rent command buffer is allowed. 

D (Data) 
Syntax: D<Number>,<Offset>,<Count> <Bytel> <Byte2> ... 

This command, along with its arguments, works completely analogous­
ly to the 'C' command. It allows modification of the data buffer. 

G (Go) 
Syntax: G 

This command starts the execution of the SCSI command in the current 
command buffer. When necessary the current data buffer is employed. During 
the execution time of the command the status will display'**'. The execution of 
a string of commands linked using the nX field can be aborted by hitting any 
key. 

H or? (Help) 
Syntax: H 

This causes a short command overview to be displayed. 

R (dRiver) 
Syntax: D <Driver> 

• R: A for the ASPI driver or S for the target simulator. The target simulator 
emulates a target at ID 0, LUN 0. The target simulator is capable of executing 
TEST UNIT READY, INQUIRY and REQUEST SENSE. 



244 SCSI Bus and IDE Interface 

Getting started 

Q (Quit) 
Syntax: Q 

Quit the program. 

Insure that the SCSI monitor is working by sending an INQUIRY command. 
INQUIRY will return a GOOD status even if an invalid LUN is addressed or if the 
target is in UNIT ATTENTION. 

I assume here that a host adapter has been installed and that the ASPI 
manager has been successfully loaded. Connect a SCSI target device with ID 0 
to the bus. You can easily determine whether your device is recognizable to the 
host adapter using the program SCSANSCSI.EXE, which is also on the diskette. 

Afterwards run the SCSI monitor and enter the following command: 

Command: C 12 0 0 0 FF 

You should now see this command in the current command buffer. The ID and 
LUN should both be zero, the default settings, which need not be modified. The 
status'??' indicates that a command has yet to be executed. 

Now enter: 

Command: G 

Now a OOh should be seen in the status field. Furthermore, data returned from 
the target should now occupy the current data buffer. You should see the prod­
uct name written to the right of the buffer in ASCII. 

If status is'--' then SCSI ID 0 did not reply. In general this means that 
the device was not properly installed. 

SCSI Monitor V1.0 rev 024e 18.7.94 (fs) 
ID Lu St lN nX 

SCSI Command 00: 00 00 00 00 00 00 00 00 00 00 00 00 03 00 02 00 FF 

SCSI Data Buffer Nr. 00: 

0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0090: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOAO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOBO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOCO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OODO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOEO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOFO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

Command: G 

Figure 22.2 SCSI monitor after TEST UNIT READY. 



Examples 

--

The SCSI monitor program 245 

SCSI Monitor V1.0 rev 024e 18.7.94 (fs) 
Id Lu St lN nX 

SCSI Conunand 00: 03 00 00 00 FF 00 00 00 00 00 00 00 03 00 02 00 FF 

SCSI Data Buffer Nr. 00: 

0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0090: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOAO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOBO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOCO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OODO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOEO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOFO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

Conunand: K 3 0 0 0 FF 

Figure 22.3 How REQUEST SENSE is set up. 

When working with the SCSI monitor bear in mind that it is possible to send any 
arbitrary SCSI command, whether valid or not. Therefore, always check the sta­
tus field after sending a command to see whether it has been successfully exe­
cuted. 

The first example in Figure 22.2 shows a CHECK CONDITION status (02h) 
after a TEST UNIT READY command. Why was this status returned? To answer this 
question, the command REQtWSY SENSE is set up in the command buffer. This is 
shown in Figure 22.3. 

Finally, the example in Figure 22.4 shows the results of the REQUEST SENSE 

command. The error code is 70h, indicating that the error pertains to the last exe­
cuted command. The sense key is 02h (NOT READY). The sense code 29h means 
POWER-ON OR RESET. This is just what is expected from a LUN receiving its first 
command after power-up. 

In order to observe this with my configuration I had to tum the SCSI tar­
get off and on after the system had already booted. In this way I prevented the 
host adapter from clearing the UNIT ATTENTION when it scans the bus at boot time. 



246 SCSI Bus and IDE Interface 

"1 

SCSI Monitor V1.0 rev 024e 18.7.94 (fs) 
ID Lu St lN nX 

SCSI Command 00: 03 00 00 00 FF 00 00 00 00 00 00 00 03 00 00 00 FF 

SCSI Data Buffer Nr. 00: 

0000: 70 00 02 00 00 00 00 OB 00 00 00 00 29 00 00 00 p 
0010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
0090: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOAO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOBO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOCO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OODO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOEO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
OOFO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

Command: G 

Figure 22.4 Results of the REQUEST SENSE command. 

.~. 



23 Software interfaces 

It is fortunate that SCSI-2 defines devices so precisely on the target side. The 
result is that a SCSI-2 host adapter works well with all SCSI-2 targets. However, 
what about the relationship between the host and the host adapter? Here the 
operating system must understand which SCSI commands to send to the target. 

For host adapters that emulate a standard disk drive controller this is no 
problem. The host adapter receives drive commands like any PC disk drive con­
troller and then translates the actions to appropriate SCSI commands. However, 
this hardly takes advantage of the full functionality of the SCSI bus. Here the 
controller is dedicated to the disk and cannot, for example, control a scanner or 
printer on the same bus. 

There is much more involved in supporting a so-called transparent host 
adapter, one capable of sending arbitrary commands to any SCSI target device. 
There is a large number of such host adapters and each of them is designed dif­
ferently; each must be supported differently by the operating system. 

Help comes in the form of an additional software layer between the host 
adapter and the operating system or application. This software is delivered with 
hardware (since it is hardware specific) and provides a standardized software 
interface to the operating system. The result is that from the operating system's 
point of view all host adapters using this software interface look the same. 

Here there are a number of examples of such an approach in the indus­
try. The VMS operating system for DEC VAX machines uses the concept of class 
and port drivers. These are already integrated into the system so that the inter­
play of subsystems is clearly defined. In the PC domain two important soft-ware 
interfaces have emerged specifically for SCSI: the ANSI CAM (Common Access 
Method) specification and the ASPI interface from Adaptec, Inc. 

At the moment ASPI drivers are easier to come by than CAM drivers. In 
fact, the SCSI monitor prograrn (v-rith source code) i.."'l.cluded ·with t"bis book sits 
on top of ASPI. This application represents a good example of an ASPI imple­
mentation and it makes sense to give an overview of ASPI at this time. We will 
go into just enough detail to understand ho-vv ASPI is used in the SCSI monitor. 
The complete documentation for ASPI under DOS, Windows, OS/2, Novell and 
UNIX is available from Adaptec. 

247 



248 SCSI Bus and IDE Interface 

Operating system l l Backup 

Disk 
driver 

ASPI manager 
for 

adapter A 

CD-ROM 
driver 

Tape 
driver 

ASPI level 

ASPI manager 
for 

adapter B 

SCSI 
monitor 

ASPI manager 
for 

adapter C 

Figure 23.1 ASPI functional overview. 

23.1 The concept of ASPI 

23.2 

ASPI function 
calls 

ASPI stands for Advanced SCSI Programming Interface. Figure 23.1 depicts the 
functional layers of the interface. Different host adapters use different ASPI 
managers, and multiple managers can be installed simultaneously. The host 
software, whether device drivers or applications, talks to the SCSI bus through 
the ASPI interface. In this way the host software is isolated from the specific 
hardware details of a given host adapter. 

In a DOS environment the ASPI manager is loaded at boot time by the 
system. Therefore, in order to use ASPI one must first obtain the entry point 
from DOS. When a call is made to ASPI using the entry point the address of a 
SCSI request block is put onto the stack. All the information necessary to carry 
out the SCSI procedure is contained in the request block. In the following section 
I show how this is done by way of short examples in Turbo Pascal. 

SCSI request blocks 

ASPI has a set of seven function calls, which are listed in Table 23.1. It is "North 
pointing out that no hard SCSI reset is included among these. This is certainly 
due to the fact that ASPI is capable of multi-tasking and allows many active SCSI 
processes to be active simultaneously. A SCSI reset would abort all of these 
processes in one fell swoop. On the other hand, a little experience with the SCSI 
monitor will show that an illegal command causes some host adapters to crash, 
and only a SCSI reset or system boot will correct this. The ASPI status bytes are 
shown in Table 23.2. 



Software interfaces 249 

Table 23.1 ASPI function codes. 

Code Meaning 

00h HOST ADAPTER INQUIRY 

Olh GET DEVICE TYPE 

02h EXECUTE SCSI COMMAND 

03h ABORT SCSI COMMAND 

04h RESET SCSI DEVICE 

05h SET HOST ADAPTER PARAMETERS 

06h GET DISK DRIVE INFOR!Y1ATION 

Table 23.2 ASPI status bytes. 

Status Description 

OOh In progress 
Olh OK 
02h SRB cancelled by host 
04h Error 
80h Invalid SRB 
81h Invalid host adapter 
82h SCSI target not found 

SCSI request block (SRB) fields contain either parameters to be set or 
they deliver information back and can only be read. In the SRBs depicted here 
the fields that contain information returned from ASPI have a gray background. 

SRB header An SRB always includes an 8-byte long header. Following the SRB come a cer­
tain number of parameter bytes, depending on the function. The SRB header is 
shown in Table 23.3: 

Table 23.3 Format of an SRB header. 

0 Function 

1 

2 

3 Flags 

Reserved 

7 



250 SCSI Bus and IDE Interface 

HOST ADAPTER 

INQUIRY (00h) 

EXECUTE SCSI 

COMMAND (02h) 

• Function: One of the function codes given in Table 23.1. 

• Status: This byte takes on the values given in Table 23.2. 

• Host adapter: The ASPI number of the host adapter. This number is assigned 
by the ASPI manager. The first adapter is assigned zero. 

e Flags: These flags are independent of the function. 

This function call returns information on the installed host adapter (Table 23.4). 
The host adapter number must be provided to the call. 

The Host adapter ID field contains the SCSI ID of the host adapter. The 
Host adapter name and SCSI manager name fields are ASCII. 

The function call GET DEVICE TYPE returns information on the SCSI device 
class. This can be accomplished using the INQUIRY command, so we skip it here. 

This call is used to send an arbitrary SCSI command (Table 23.5). After the call 
the SRB status must be polled until a value other than zero appears. The 
Adaptec documentation describes an alternative to polling which uses a so­
called POST routine. This is not recommended for application programs but is 
preferable for device drivers. 

In byte 3 we are only concemed with the Direction bits. A value of 0 here 
means that the direction of the data transfer is determined by the SCSI command. 

e Target ID: The SCSI ID of the target to receive the command. 

• LUN: The LUN number sent in the IDENTIFY message. 

Table 23.4 HOST ADAPTER INQUIRY. 

0 HOST ADAPTER INQUIRY (00h) 

1 

2 

3 

4 .. 7 

8 

9 

10 .. 
25 

26 .. 
41 

42 .. 
57 



Table 23.5 EXECUTE SCSI CO:tvL\1AND. 

0 

1 

2 

3 

4 .. 7 

8 

9 

10 .. 
13 

l 16 

18 

19 .. 
20 

21 ... 
22 

23 

24 

26 .. 
27 

28 .. 
29 

130 .. 
63 

64 .. 
64+m 

7 4 I 3 
i 

EXECUTE SCSI COMMAND (02h) 

Direction 

Reserved 

Target ID 

LUN 

Data buffer length 

Sense data length (n) 

Data buffer (offset) 

Data buffer (segment) 

SRB li..Ylk pointer (offset) 

SRB link pointer (segment) 

SCSI command length_ (m) 

POST routine (offset) 

SRB routLn.e (segment) 

Reserved 

SCSI command 

Software interfaces 251 

1 0 

• Data buffer length: The number of data bytes to be transferred. 

e Sense data length: The number of bytes reserved for sense data at the end of 
this SRB. For the SCSI monitor this is set to 0 and the autorr1atic requesting 
sense data should be turned off at the host adapter. 

• Data buffer: Segment and offset of the data buffer. 



252 SCSI Bus and IDE Interface 

ABORT SCSI 

COMMAND (03h) 

• SRB link pointer: Pointer to the next SRB in set of linked commands (its use 
should be avoided). 

• SCSI command length: Length of SCSI command. 

• Host adapter status: Here five status codes are defined. 

OOh: OK 

llh: Target does not respond 

12h: Data overrun 

13h: Unexpected BUS FREE 

14h: Target bus phase error 

• Target status: This is the byte retumed during the SCSI status phase. 

• SCSI command: The bytes of the SCSI command. 

• Sense data: Reserved for sense data when the host adapter is set to automat­
ically request sense. 

This function call attempts to abort a SCSI command (Table 23.6). The call itself 
always returns with a GOOD status. Whether or not the command was actually 

. aborted can be determined only by examining the status of the original SRB. 

Table 23.6 ABORT SCSI COMMAND. 

7 0 

0 ABORT SCSI COMMAND (03h) 

1 

2 Host adapter 

3 Reserved 

4 .. 7 Reserved 

8 .. 9 SRB address (offset) 

0 .. 11 SRB address (segment) 



f 
I 

Software interfaces 253 

23.3 ASPI initialization and function calls 

ASPI In order to call ASPI the entry point must be known. This is achieved using DOS 
initialization interrupt 21h, as shown in the following program sample. First ASPI is opened 

and the entry point is determined; afterwards ASPI is closed. 

ASPI open fun c t i on F i l e 0 pen ( F i l eN am e : s t r i n g ) : i n t e g e r ; 

const DOS_OPEN_FILE = $3D; 

var register: registers; 

begin 
FileName:=FileName+chr(O); 
with register 
do 

begin 
ax := DOS OPEN FILE shl 8; 
bx:=O; 
cx:=O; 
ds seg(FileName); 
dx ofs(FileName)+l; because Pascal strings 

0 
end; 
MSDOSCregister); 

carry their length in byte 

if (register.flags and FCarry) 0 
then FileOpen:=-1 
else FileOpen:=register.ax; 

end; 

ASPI entry point pro c e d u r e Get ASP I En t r y ( F i l e Hand l e : i n t e g e r ; v a r 
AspiEntry:MemAdress); 

const ASPI_ENTRY_LENGTH = 4; 
DOS IOCTL READ $4402; 

var register: registers; 

begin 
with register 
do 

begin 
ax DOS_IOCTL_READ; 
bx := FileHandle; 



254 SCSI Bus and IDE Interface 

ex ASPI_ENTRY_LENGTH; 
ds seg(AspiEntry); 
dx ofs(AspiEntry); 

end; 
MSDOS(register); 

end; 

ASPI close fun c t i on F i l e C l o s e ( F i l e Hand l e : i n t e g e r ) : i n t e g e r ; 

const DOS_CLOSE_FILE = $3E; 

var register: registers; 

begin 
with register 
do 

begin 
ax := DOS CLOSE_FILE shl 8; 
bx:=FileHandle; 

end; 
MSDOS(register); 
if (register.flags and FCarry) 0 
then FileClose:=O 
else FileClose:=register.ax; 

end; 

Andall function InitializeASPI(var AspiEntrypoint:MemAdress):boolean; 
together ... 

const ASPI_NAME = 'SCSIMGR$'; 

var result: integer; 
As pi Fi l eHandl e: integer; begin 

AspiFileHandle:=FileOpen(ASPI_NAME); 
if AspiFileHandle-1 
then 

begin 
GetASPIEntry(AspiFileHandle,AspiEntryPoint); 
FileCloseCAspiFileHandle); 
InitializeASPI:=true; 

enq 
else InitializeASPI:=false; 

end; 



Software interfaces 255 

Calling ASPI The following function calls ASPI to execute an SRB. The variable 
AspiEntryPoint is a global variable of the main program: 

procedure SRBexecute(var SRB: SRBarray); 
va r SRBsegment, SRBoffset: integer; 

begin 
SRBsegment:=segCSRB); 
SRBoffset:=ofs(SRB); 

asm 
mov ax, SRBsegment 
push ax 
mov ax, SRBoffset 
push ax 
LEA BX, As pi Entry Point 
call DWORD PTR [bx] 
add sp,4 
end; 

end; 

Afterwards the SRB status must be polled until it changes from 0 to another 
value 

Procedure Hostinquire; 

const 
SRB_STATUS $01; 
HA_SCSI_ID $09; 
ENTRY_LENGTH $10; 
MANAGER NAME $0A; 
HA NAME $1A; 

var k: integer; 
Status: byte; 
SRB: SRBarray; 
DataBuffer : DataBufferType; 

begin 
for k:=O to highCSRB) do SRB[k]:=O; 

\What is the result of this ASPI call? 
Right! HOST ADAPTER INQUIRY Host adapter number 0} 

SRBexecuteCSRB); 
repeat until SRB[SRB_STATUS]O; 
if SRB[SRB_STATUSJ = 1 
then 



256 SCSI Bus and IDE Interface 

begin 
writeln('Host Adapter SCSI ID: 

. ,SRB[HA_SCSI_IO]); 
write C 'Name of Host Adapter: ·); 
for k:=O to ENTRY_LENGTH-1 do 
write(char(SRB[HA_NAME+k])); 
writeln; 

end 
else writelnC'SRB Execution Error!'); 

end; 

In Appendix E and on the accompanying diskette you will find the source code 
to SCANSCSI.PAS. The program is relatively easy to follow and provides a good 
example using an ASPI interface call to execute a SCSI command. 



24 Test equipment 

24.1 

Timing 
diagrams 

Two components are needed in order to test SCSI targets practically: a SCSI emu­
lator capable of sending arbitrary SCSI commands, and a logic analyzer with which 
one can monitor the happenings on the SCSI bus. For testing initiators the same set­
up is needed except that the emulator must be capable of emulating a target. 

SCSI analyzers 

A SCSI analyzer permits the logging of SCSI bus activity and displaying it in a 
variety of formats. The most basic form of representation is the timing diagram. 
Such diagrams have been presented throughout this book in schematic form. 
Here we will see diagrams generated from an actual piece of measurement 
equipment (Figure 24.1). 

Timing diagrams of the SCSI bus can, in principle, be made using any logic ana­
lyzer. However, the device should have a time resolution of at least 10 ns (that 
is, 100 MHz). For Fast SCSI this resolution is almost too low. The Fast hold time, 
the minimal time between the activation of REQ or ACK and the changing of the 
data lines, is defined to be 10 ns. If I were trying to track down Fast synchronous 
data transfer problems I would prefer the successor model with a resolution 
down to 1 ns. 

If there are problems with phase sequencing on the SCSI bus there is no 
way to avoid the need for a timing analysis. Fortunately such problems have 
become very rare no-vv that bus timing is controlled by protocol chips. 
Nevertheless, the potential for bus timing problems will always exist, no matter 
how reliable the protocol chips are. 

Another application of a timing diagram is to gain an overview of longer 
time intervals. For example, how long does a target need from arbitration to the 
MESSAGE OUT phase? Here, there may be a world of difference in the behavior of 
different SCSI devices. Alternatively, how long are the gaps between bursts for fast 
.synchronous transfers? Does a device disconnect from the bus and huw long does 
it take to do so? All of these questions can be answered using the timing diagram. 

257 



258 SCSI Bus and IDE Interface 

Bus phase list 

24.2 

The SCSI 
monitor 

program 

!scsr TH1IG 1- T iaing Mftvef oras 

Morkers I Off I 
Accumulote []I[] 
T 1 me 10 1 v I 10.00 us I De loy I_, 594 ms I Somple pertod . 10 ns 

-
)( 

l 

I IL 

{ 

( u 
"JY 

/) -I /) 

fS.1 n 
T\4 • 
~E~ trnmn 

b 

1C lllllll 

Figure 24.1 SCSI timing diagram. 

Another important representation of bus activity is in the form of a list of bus 
phases. Here the individual bus phases are listed one after another, usually 
stamped with a time mark. This representation is especially helpful for software 
development. Did the host adapter really send the command it was supposed to 
send? Why was nothing retumed? Did the target answer? Was the correct LUN 
addressed in the MESSAGE OUT phase? 

A number of logic analyzers equipped with a SCSI disassembler are 
capable of delivering a list of bus phases. However, most of these have very 
small buffers, holding 1 Kbyte or less. Here it becomes extremely important to 
trigger on an event close enough to the activity of interest, otherwise it will pass 
through and out of the shallow buffer. 

Better still are a number of dedicated SCSI analyzers offered by various 
manufacturers. Although they may lack timing diagram capabilities, they pos­
sess buffers for the bus phase lists of 32 Kbytes and larger. 

SCSI emulators 

The SCSI monitor included with this book is an easy to use program (without 
rival as far as price is concerned) which allows arbitrary SCSI commands to be 
sent to any target on the SCSI bus. Although it is really intended as a educational 
device for the SCSI bus it can also be used for simple evaluation testing of SCSI 
peripherals. 

With a little practice you can modify the MODE parameters and format a 
disk drive. Such tasks are a little cumbersome without the ability to execute a 



Test equipment 259 

series of preprogrammed commands. The source code of the monitor is includ­
ed on the diskette, so it is easy to modify and extend the original program (but 
note that this is not allowed for commercial purposes). 

Commercial Commercial SCSI emulators have more flexibility. For example, these are often 
solutions capable of generating SCSI bus errors and other conflicts that are extremely use­

ful for evaluating SCSI devices. Moreover, they allow lengthy test sequences to 
be programmed and run, and often come delivered with tests designed for var­
ious devices. Target emulation is also possible with some equipment. This 
makes it possible to put initiators through tests that might be impossible using 
actual target devices. How do you get a normal target to return more data than 
was requested? A target emulator is designed to do just that. 

24.3 Examples from industry 

The intent here is not to give a comprehensive overview of products but rather 
a feeling for the variety of devices by way of a few examples. 

Logic analyzers Among the classic logic analyzers are the HP 1630 and HP 1650 machines. A 
SCSI bus adapter, the HP 10343B, is available for both of these. The adapter 
makes connecting to both single-ended and differential buses very simple. Wide 
SCSI support, ho-wever, is lacking. The adapter comes with SCSI disassembler 
software, which enables the analyzer to display output in the form of a bus 
phase list. The analyzer is capable of resolution down to 10 ns which is more 
than adequate for most situations. The only weak point is the very small event 
buffer of 512 bytes. The timing diagrams and bus phase lists in this book were 
generated using the HP 1650B together with the HP i0343B. 

The successor to this product is the HP 16500 logic analyzer family. This 
device is capable of measuring down to 1 ns. The event buffer size has been 
increased to 16 Kbytes. There is also an HP E2423A SCSI preprocessor available. 
This adapter, like the HP 10343B, allows access to single-ended and differential 
SCSI buses. In addition, Wide SCSI is supported. 

SCSI analyzers Adaptec builds an entire farnily of SCSI analyzers (see Figure 24.2). These are all 
implemented as PC boards with associated software. The SDS-310 is designed 
for transfer rates up to 5 Mbytes per second (50 ns resolution) and 8-bit SCSI. 
The SDS-310F supports fast synchronous transfers (20 ns resolution) and 16-bit 
SCSI as well. Both devices have a 32 Kbyte buffer. A special adapter is required 
for differential buses. 

I-Tech is a company that specializes in SCSI test systems. It makes the 
IPC-6500, an analyzer with 20 ns resolution for Fast and Wide SCSI. This device 
comes with a 64 Kbyte buffer and is capable of timing diagram as well as phase 



260 SCSI Bus and IDE Interface 

SCSI emulators 

SCSI 
development 

systems 

55.619_293_720 Bus_free 
56.611_335_080 Arb_win 
56.612_463_240 
56.612_886_480 
56.612_899_440 
56.614_185_340 
56.615_214_460 
56.615_227_600 
56.615_459_880 
56.623_041_840 
56.623_470_080 

Sel_start 
Sel_end 

Msg_out 

Msg_out 
Msg_in 

Conunand 
Status 

56.623_896_700 Msg_in 
56.624_697_760 Bus_free 
62.382_979_060 Arb_start 
62.382_981_460 
62.384_108_860 
62.384_530_060 
62.384_543_260 
62.385_669_740 

Arb_ win 

Sel_start 
Sel_end 

7 
(Atn Assertion) 
5 7 

co 01 03 01 32 
(Atn Deasset) 
07 
01 03 01 3E 07 
00 00 00 00 00 00 
00 
00 

7 
(Atn Assertion) 
5 7 

(Atn Deassert) 

Figure 24.2 Bus phase list of Adaptec analyzer. 

00032 
00034 

A 00035 
A 00036 
A 00037 

00038 
00039 
00040 
00041 
00042 
00043 
00044 
00045 

7 00046 
00047 

A 00048 
A 00049 
A 00050 

00051 

list output. I-Tech also makes SCSI emulators and pocket testers. The latter use 
LEDs and are useful for diagnosing bus problems, such as a differential device 
connected to a single-ended bus. 

Ancot is another important name in the area of SCSI test systems. The INI-350 is 
a SCSI initiator capable of generating controlled errors. The device is able to test 
SCSI targets by putting them through strange phase sequences. It is important 
for a target to be able to recover from improper sequences and, above all, not to 
lock up the bus. For these reasons the INI-350 is valuable in the design verifica­
tion process. Of course, it is also fully capable of normal operation and serves 
well as a SCSI compliant initiator. Ancot also offers the usual assortment of test 
equipment, with an emphasis on standalone devices. 

The SDS-3F family of test equipment is ideal for testing the entire range of SCSI 
options including fast synchronous and 16-bit wide transfers. These products 
represent an integrated development system complete with SCSI analyzer and 
emulator. The analyzer component has a configurable event buffer of up to 
256 Kbytes. Its time resolution, however, is only good down to 20 ns. Various 
configurations of the emulator are capable of playing both initiator and target 
roles. 

Adaptec has also announced the SDS-5 series of equipment. Among the 
improvements are an event buffer of 2 Mbytes and resolution down to 10 ns. 

Summary If you are mainly interested in occasionally testing SCSI targets for overall func­
tionality then the SCSI monitor should be more than adequate for you. 

If, on the other hand, you really need to know what is happening on the 
SCSI bus then there is no way to avoid investing in either a logic analyzer or a 



Test equipment 261 

dedicated SCSI analyzer. In general, logic analyzers have better time resolution 
than dedicated SCSI analyzers, but the latter are less expensive and have larger 
event buffers. 

In most circumstances the combination of a powerful SCSI emulator 
together with a SCSI analyzer should suffice for the testing and evaluation of 
SCSI targets. 

For professional design work an extensive SCSI development system is 
an invaluable tool, especially for work on initiators. What is more, targets sup­
porting tagged queues are almost impossible to test without the aid of such a 
system. 



25 

Chip 
characteristics 

262 

SCSI protocol chips 

The development of SCSI followed closely the development of the SCSI proto­
col chips. Without an inexpensive, fast implementation of the bus interface SCSI 
would have never captured the market in the way it has. In this chapter I intro­
duce three VLSI protocol chips which have helped to make this possible. In gen­
eral, each of them is suited to a different application. 

When choosing a protocol chip a number of criteria must be taken into consid­
eration. 

Initiator or target? 
Most protocol chips are capable of playing either the initiator or the target role. 
Nevertheless, some chips are better suited to one application or the other. In par­
ticular, there are chips for host adapters that require no additional logic for use 
with the ISA bus. In addition, these chips have a lot of SCSI overhead built in. 

SCSI features 
By SCSI features I mean, above all, the support of (fast) synchronous transfers as 
well as Wide SCSI. Here the maximum REQ/ ACK offset is of interest. For Wide 
SCSI, if the second 8-bit data path is not implemented on the chip then there 
should at least be provision for the REQB/ ACKB signals of the B cable. 

SCSI bus drivers 
Whether or not SCSI line drivers are integrated into the chip represents an 
important cost consideration. Chips with integrated single-ended drivers are the 
norm, but they should also provide the control signals for additional differential 
circuitry. 

CPU interface 
The CPU interface is key to smooth integration of the SCSI chip into the device 
design. A SCSI chip designed for an Intel 286 microprocessor will not only 
require extra 'glue' logic to make it work with a Motorola 68000, but it will also 
work less efficiently. Since this information is sometimes lacking in the chip's 
data sheets, you should ask the manufacturer. 



SCSI protocol chips 263 

Architecture 
The architecture of a chip includes various aspects of the hardware/ including 
the data path width/ and the number and kinds of registers. Another important 
point is to what extent the firmware of the SCSI device must intervene in the 
SCSI bus protocol. Ideally/ the firmware should be responsible for setting up 
transfers/ and the rest should be handled by the chip. With respect to this area/ 
there are chips that cover the entire spectrum/ beginning with those that need to 
be led by the firmware through every single bus phase. 

Another important architecture issue is the presence of a buffer for SCSI 
transfers. The larger the buffer is on the chip/ the more time the firmware has to 
react without slowing overall performance. 

25.1 The NCR 5385 

The NCR 5385 was the original single chip SCSI controller. Over the years it was 
succeeded by the 5385E and then the 5386. All three versions have fundamen­
tally the same design. You would be hard pressed to find a 5385 in a newly 
developed product. NCR has since come out with a number of more advanced 
chips. Nevertheless/ here we take a quick look at the very first chip/ in order to 
gain a perspective for the later generations. 

The 5385 is equally suited to target and initiator applications. It supports 
exclusively asynchronous transfers with a maximum transfer rate of approxi­
mately 2 Mbytes per second. The 5385 even needs external SCSI line drivers. 
Additional logic is necessary for differential drivers as welL 

The 14 registers of the 5385 (Table 25.1) are selected using four address 
lines. It is up to the hardware designer whether to map the registers to the mem­
ory or I/ 0 space of the processor. 

The 5385 is not capable of linking together complex SCSI phase 
sequences. What is more/ every phase change must be controlled by the 

Table 25.1 NCR 5385 registers. 

Address Type Register 

Oh R/W Data register 
lh R/W Command register 
2h R/W Control register 
3h R/W Target ID 
4h R Extra status 
Sh R ID register 
6h R Interrupt register 
7h R Source ID 
9h R Diagnostic status 
Ch R/W (MSB) 
Dh R/W Transfer counter 
Eh R/W (LSB) 



264 SCSI Bus and IDE Interface 

firmware. Here the chip occupies three states: DISCONNECTED, INITIATOR, and TAR­

GET. In each state only certain commands are possible. This keeps the firmware 
from initiating invalid bus phases. For example, the command RESELECT is only 
possible in the DISCONNECT state. 

25.2 Target applications: EMULEX ESP200 

EMULEX ESP SCSI chips are widely used in a variety of target applications 
(Figure 25.1). Various ESP chips are also sold by NCR under a different name. 
The ESP family has many members including chips that support Fast and Wide 
SCSI. As a group the chips are very similar, so that modifying firmware written 
for one chip for use with another is very straightforward. As a typical example 
of these chips consider the ESP200. 

Characteristics The ESP200 functions as an initiator as well as a target but is optimal in the tar­
get role. It is capable of synchronous and asynchronous transfers but lacks in 
Fast and Wide support. Nevertheless, it can reach rates as high as 3 Mbytes per 
second for asynchronous and even 5 Mbytes per second for synchronous trans­
fers. The maximal REQ/ ACK offset for synchronous transfers is 15. The ESP200 
has built-in single-ended SCSI drivers and the control signals for external dif­
ferential drivers. 

The ESP200 uses an 8-bit architecture; that is, all data paths and registers 
are 8 bits wide. The microprocessor interface is ideal for microcontrollers like the 

-

RAM 

__..... 

Formatter ,.. 
s ESP200 To c 
~ SCSI dri s controller I 

I I 
Buffer Control ... 
controller 

ve 

I 
I 

Microprocessor EPROM 
'---

Figure 25.1 Typical target application using ESP200. 



Register model 
and commands 

SCSI protocol chips 265 

Intel 8051, for which minimal additional circuitry is necessary. Moreover, the 
chip includes DMA circuitry, speeding the transfer of data between memory and 
the SCSI bus. The chip also contains a 16-byte FIFO, which supports, among 
other things, the synchronous offset offered by the chip. 

An important feature of the chip is that it is capable of handling 
sequences of SCSI phases without intervention of the microprocessor. The chip 
can, for example, go through the arbitration, selection, and command phases 
autonomously. As a target it can allow itself to be selected and receive the com­
mand before generating an interrupt to the microprocessor. 

The ESP200 is controlled using a bank of 8-bit registers (Table 25.2). Table 25.3 
gives an overview of the chip's capabilities, along with the chip commands. It is 
worth mentioning that the transfer counter is only 16 bits wide, limiting trans­
fers to 64 Kbytes. 

In Table 25.3 the abbreviations Ini, Tar and Dis stand for the initiator, tar­
get, and disconnected states. The commands labeled such are only executable 
when the chip is in that state. 

The ESP family also includes the ESP2x6 chips capable of 16-bit DMA 
and Wide SCSI, as well as FAS2x6 chips which in addition support Fast SCSI. 

Table 25.2 ESP200 registers. 

Address Read access Write access 

0 (LSB) Transfer 

1 counter (MSB) 

2 Data FIFO 

3 Command 

4 Status Select/reselect SCSI ID 

5 Interrupt status Select/ reselect timeout 

6 Sequencer Synchronous transfer period 

7 FIFO flags Synchronous offset 

8 Configuration 1 

9 R~served Clock factor 

10 Reserved Test 

11 Configuration 2 



266 SCSI Bus and IDE Interface 

25.3 

Table 25.3 ESP200 commands. 

Ini{rar Command Ini/Tar Command 

NOP Tar Send status 
Clear FIFO Tar Send data 
Chip reset Tar Reconnect sequence 
SCSI reset Tar Terminate sequence 

Ini Data transfer Tar Command complete sequence 
Ini Command sequence Tar Disconnect 
Ini Acknowledge message Tar Receive message 
Ini Transfer Tar Receive command 
Ini Set ATN Tar Receive data 
Dis Reconnect Tar Command sequence 
Dis Select w I o ATN 
Dis Select with ATN 
Dis Select with ATN and halt 
Dis Enable reselection 
Dis Disable reselection 

PC host adapters: FUTURE DOMAIN TMC-950 

The TMC-950 is an example of a single chip SCSI host adapter (Figure 25.2). No 
additional components are necessary to build an ISA to SCSI adapter; only if you 
wish to integrate a BIOS will an EPROM and decode circuitry be required. This 
solution is seen on a number of low cost host adapters from the Far East. Because 
of its popularity we take a closer look now at the workings of the TMC-950. The 
chip on the Seagate STOl and ST02 host adapters has a different name but is 
identicaL 

!SA bus 

SCSI bus 

Figure 25.2 Three-chip PC host adaptor using TMC -950. 



SCSI protocol chips 267 

The chip comes in a JEDEC 68-pin PLCC package. It incorporates both 
single-ended SCSI drivers and an ISA bus interface. It supports only the initia­
tor role and cannot be used for target applications. Only asynchronous SCSI 
transfers are possible, and this at a maximum rate of 2 Mbytes per second. 
Although such features put the chip at the lower end of the performance spec­
trum, its low cost and simplicity make it very attractive in many applications. It 
lends itself well to a system where access to a CD-ROM and perhaps a SCSI tape 
drive is necessary but speed is not crucial. If, on the other hand, access to anum­
ber of fast disk drives is called for, the TMC-950 is not recommended. 

Programming the chip is very simple. For example, to cause the chip to 
arbitrate involves the sending of a single command. Afterwards one merely 
waits until the chip responds that it has succeeded. 

Hardware model The model of the TMC-950 is unusual and differs from those chips designed pri­
marily for target applications (Figure 25.3). From the host's perspective the chip 
is an 8 Kbyte window in memory above the 640 Kbyte boundary. Four base 
addresses can be selected, the default of which is CAOOOh. The lower 6 Kbytes 
address the external ROM. The ROM holds disk BIOS routines. Above this at 
base+ 1800h comes 256 bytes of internal RAM. This is used to store BIOS vari­
ables and flags. The area from base+ 1COOh to base+ 1DFFh is the control/ status 
register, regardless of which of the 512 bytes is addressed. The same is true for 
the area from base+ 1EOOH to base+ 1FFFH, which addresses the SCSI data regis­
ter. For the Seagate ST01 and ST02 the control/ status register lies in memory 
between base+ 1AOOh and base+ 1 BFFh, and the SCSI data register lies between 
base+ 1 COOh and base+ 1FFFh. 

When read, the control/ status register returns status information; when 
written, control bits are set or cleared. 

PC address space TMC-950 address space 

FFFFF 1 Mbyte 

8 Kbyte TMC-950 
Base 

AOOOO~ 
9FFFF I I 

640 Kbyte 
ma1n memory 

00000 '----------' 

640 Kbyte 

0 Kbyte 

BasE).+ .. 1FFF. 

Base + 1EOO SCSI data 

Base + 1DFF 

Base + 1COO Control/status 

Base + 18FF 
RAM (internal) 

Base + 1800 

Base + 17FF 

EPROM 

Base 

. . .LJ{external) 

Figure 25.3 Address space of TMC-950. 

512 Bytes 

512 Bytes 

256 Bytes 

6 Kbyte 



268 SCSI Bus and IDE Interface 

The control The bits RST, SEL, BSY and ATN activate the corresponding signals on the SCSI 
register bus. It is the responsibility of the software to assure a proper sequence of bus 

phases. This allows for the generation of invalid phases in order to test the 
response of a target. 

• Arb (start arbitration): When this bit is set the chip will begin arbitration. 

e Par (SCSI parity enable): Turns on the generation of the SCSI parity bit. 

• ISel: When this bit is set the chip will generate an interrupt when the SEL sig­
nal goes active. 

e Dri (SCSI bus drivers enable): The SCSI line drivers of the TMC-950 are only 
enabled during arbitration or when this bit is set along with an active I/0 signal. 

The status The bits BSY, MSG, I/0, C/D and SEL reflect the state of the corresponding sig­
register nals of the SCSI bus (Table 25.4). 

• RnA (request and not acknowledge): This bit is set as long as REQ but not ACK is 
active. This is the precise moment when the data register must be written or read. 

• Par: This bit is set when a SCSI parity error occurs. 

• ArbC: This bit is set when the chip wins arbitration. 

The SCSI data The SCSI data register is used to exchange data with the SCSI bus. By program 
register control the signals I/O and REQ are monitored through the status register. As 

soon as REQ is active the value of I/o determines whether a read or a write is 
performed. Afterwards the chip activates the ACK signal. 

Summary The TMC-950 is a chip designed exclusively for use in PC host adapters. No 
additional components are necessary for integration in an ISA system. On the 
SCSI side the chip supports only asynchronous transfers. Single-ended SCSI dri­
vers are incorporated in the chip. To a certain extent SCSI bus phases are han­
dled by the chip autonomously. The lack of a data buffer for SCSI data transfers 
results in a slower transfer rate. 

Table 25.4 The control and status registers of the TMC-950. 

Control register 

7 6 5 4 3 2 1 0 

Dri ISel Par Arb ATN BSY SEL RST 

Status register 

7 6 5 4 3 2 1 0 

ArbC Par SEL RnA C/D I/0 MSG BSY 



APPENDIX A 

SCSI commands (by opcode) 

Key: 
M Mandatory 
0 Optional 
V Vendor unique 

D Disk drives 
P Printers 
W WORM drives 
S Scanners 
M Medium-changers 

Opcode 

00 
01 
01 
02 
03 
04 
04 
05 
06 
07 
07 
08 
08 
08 
09 
OA 
OA 
OA 
OA 
OB 
OB 

T Tape drives 
E Processor drives 
C CD-ROM 
0 Optical storage 
U Communication devices 

U Command 

M TEST UNIT READY 

REWIND 

REZERO UNIT 

M REQUEST SENSE 

FORMAT 

FORMAT UNIT 

READ BLOCK LIMITS 

INITIALIZE ELEMENT STATUS 

REASSIGN BLOCKS 

M GET MESSAGE(06) 

READ(06) 

RECEIVE 

PRINT 

M SEND MESSAGE(06) 

SEND(06) 

WRITE(06) 

SEEK(06) 

SLEW AND PRINT 

269 



270 SCSI Bus and IDE Interface 

Ope ode 

oc 
OD 
OE 
OF 
10 
10 
11 
12 
13 
14 
15 
16 
16 
17 
17 
18 
19 
1A 
1B 
1B 
1B 
1B 
1C 
1D 
1E 

20 
21 
22 
23 
24 
25 
25 
25 
26 
27 
28 
28 
29 
2A 
2A 
2A 
2B 
2B 
2B 

U Command 

READ REVERSE 

SYNCHRONIZE BUFFER 

WRITE FILEMARKS 

SPACE 

M INQUIRY 

VERIFY(06) 

RECOVER BUFFERED DATA 

0 MODE SELECT(06) 

RESERVE 

RESERVE UNIT 

RELEASE 

RELEASE UNIT 

COPY 

ERASE 

0 MODE SENSE(06) 

LOAD UNLOAD 

SCAN 

STOP PRINT 

STOP START UNIT 

0 RECEIVE DIAGNOSTIC RESULTS 

M SEND DIAGNOSTIC 

PREVENT ALLOW MEDIUM 

REMOVAL 

SET WINDOW 

GET WINDOW 

READ CAPACITY 

READ CD-ROM CAPACITY 

0 GET MESSAGE(lO) 

READ(10) 

READ GENERATION 

0 SEND MESSAGE(lO) 

SEND(lO) 

WRITE(lO) 

LOCATE 

POSITION TO ELEMENT 

SEEK(lO) 



Appendix A 271 

Ope ode u Command 

2C ERASE(lO) 

2D READ UPDATED BLOCK 

2E WRITE AND VERIFY(lO) 

2F VERIFY(lO) 

30 SEARCH DATA HIGH(lO) 

31 OBJECT POSITION 

31 SEARCH DATA EQUAL(lO) 

32 SEARCH DATA LOW(lO) 

33 SET LIMITS(lO) 

34 GET DATA BUFFER STATUS 

34 PRE-FETCH 

34 READ POSITION 

35 SYNCHRONIZE CACHE 

36 LOCK UNLOCK CACHE 

37 READ DEFECT DATA(lO) 

3S MEDIUM SCAN 

39 COMPARE 

3A COPY AND VERIFY 

3B 0 WRITE BUFFER 

3C 0 READ BUFFER 

3D UPDATE BLOCK 

3E READ LONG 

3F WRITE LONG 

40 0 CHANGE DEFINITION 

41 WRITE SAME 

42 READ SUB-CHANNEL 

43 READ TOC 

44 READ HEADER 

45 PLAY AUDIO(lO) 

47 PLAY AUDIO MSF 

4S PLAY AUDIO TRACK INDEX 

49 PLAY TRACK RELATIVE 

4B PAUSE RESUME 

4C 0 LOG SELECT 

4D 0 LOG SENSE 

55 0 MODE SELECT(lO) 

SA 0 MODE SENSE(lO) 

AS MOVE MEDIUM 

AS PLAY AUDI0(12) 

A6 EXCHANGE MEDIUM 

AS 0 GET MESSAGE(12) 

AS READ(12) 

A9 PLAY TRACK RELATIVE(12) 

AA 0 SEND MESSAGE(12) 

AA WRITE(12) 



272 SCSI Bus and IDE Interface 

Ope ode u Command 

AC ERASE(12) 

AE WRITE AND VERIFY(12) 

AF VERIFY(12) 

BO SEARCH DATA HIGH(12) 

Bl SEARCH DATA EQUAL(12) 

B2 SEARCH DATA LOW(l2) 

B3 SET LIMITS(l2) 

B5 REQUEST VOLUME ELEMENT 

ADDRESS 

B6 SEND VOLUME TAG 

B7 READ DEFECT DATA(12) 

B8 READ ELEMENT STATUS 



;] 

j 
.....-... 

APPENDIXB 

SCSI commands 
(alphabetically) 

Command Opcode 

CHANGE DEFINITION 40 
COMPARE 39 
COPY 18 
COPY AND VERIFY 3A 
ERASE 19 
ERASE(10) 2C 
ERASE(12) AC 
EXCHANGE MEDIUM A6 
FORMAT 04 
FORMAT UNIT 04 
GET DATA BUFFER STATUS 34 
GET MESSAGE(06) 08 
GET MESSAGE(10) 28 
GET MESSAGE(12) AS 
GET WINDOW 25 
INITIALIZE ELEMENT STATUS 07 
INQUIRY 12 
LOAD UNLOAD 1B 
LOCATE 2B 
LOCK UNLOCK CACHE 36 
LOG SELECT 4C 
LOG SENSE 4D 
MEDIUM SCAN 38 
MODE SELECT(06) 15 
MODE SELECT(10) 55 
MODE SENSE(06) 1A 
MODE SENSE(10) SA 
MOVE MEDIUM AS 
OBJECT POSITION 31 
PAUSE RESUME 4B 
PLAY AUDIO MSF 47 
PLAY AUDIO TRACK INDEX 48 

M 
0 
0 

M 

0 
0 

0 
0 
0 
0 

273 



274 SCSI Bus and IDE Interface 

Command Ope ode u 

PLAY AUDIO(lO) 45 
PLAY AUDI0(12) AS 
PLAY TRACK RELATIVE(lO) 49 
PLAY TRACK RELATIVE(12) A9 
POSITION TO ELEMENT 2B 
PRE-FETCH 34 
PREVENT ALLOW MEDIUM 1E 

REMOVAL 

PRINT OA 
READ BLOCK LIMITS 05 
READ BUFFER 3C 0 
READ CAPACITY 25 
READ CD-ROM CAPACITY 25 
READ DEFECT DATA(lO) 37 
READ DEFECT DATA(12) B7 
READ ELEMENT STATUS B8 
READ GENERATION 29 
READ HEADER 44 
READ LONG 3E 
READ POSITION 34 
READ REVERSE OF 
READ SUB-CHANNEL 42 
READ TOC 43 
READ UPDATED BLOCK 2D 
READ(06) 08 
READ(lO) 28 
READ(12) AS 
REASSIGN BLOCKS 07 
RECEIVE 08 
RECEIVE DIAGNOSTIC RESULTS 1C 0 
RECOVER BUFFERED DATA 14 
RELEASE 17 
RELEASE UNIT 17 
REQUEST SENSE 03 M 
REQUEST VOLUME ELEMENT BS 

ADDRESS 

RESERVE 16 
RESERVE UNIT 16 
REWIND 01 
REZERO UNIT 01 
SCAN 1B 
SEARCH DATA EQUAL(lO) 31 
SEARCH DATA EQUAL(12) B1 
SEARCH DATA HIGH(lO) 30 
SEARCH DATA HIGH(12) BO 



Appendix B 275 

Command 

SEARCH DATA LOW(lO) 32 
SEARCH DATA LOW(12) B2 
SEEK(06) OB 
SEEK(lO) 2B 
SEND DIAGNOSTIC 1D 
SEND MESSAGE(06) OA 
SEND MESSAGE(lO) 2A 
SEND MESSAGE(12) AA 
SEND VOLUME TAG B6 
SEND(06) OA 
SEND(lO) 2A 
SET LIMITS(lO) 33 
SET LIMITS(l2) B3 
SET WINDOW 24 
SLEW AND PRINT OB 
SPACE 11 
STOP PRINT 1B 
STOP START lJNIT 1B 
SYCHRONIZE BUFFER 10 
SYNCHRONIZE CACHE 35 
TEST UNIT READY 00 
UPDATE BLOCK 3D 
VERIFY(06) 13 
VERIFY(lO) 2F 
VERIFY(l2) AF 
WRITE AND VERIFY(lO) 2E 
WRITE AND VERIFY(l2) AE 
WRITE BUFFER 3B 
WRITE FILEMARKS 10 
WRITE LONG 3F 
WRITE SAME 41 
WRITE(06) OA 
WRITE(lO) 2A 
WPJTE(12) AA 



276 

APPENDIXC 

SCSI sense codes 

Sense 
code 

00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
01 
02 
03 
03 
03 
04 
04 
04 
04 
04 
05 
06 
07 
08 
08 
08 
09 
09 
09 

Meaning 

NO ADDITIONAL SENSE INFORMATION 

FILEMARK DETECTED 

END-OF-PARTITION I MEDIUM DETECTED 

SETMARK DETECTED 

BEGINNING-OF-PARTITION/ MEDIUM DETECTED 

END-OF-DATA DETECTED 

I/ 0 PROCESS TERMINATED 

AUDIO PLAY OPERATION IN PROGRESS 

AUDIO PLAY OPERATION PAUSED 

AUDIO PLAY OPERATION SUCCESSFULLY COMPLETED 

AUDIO PLAY OPERATION STOPPED DUE TO ERROR 

NO CURRENT AUDIO STATUS TO RETURN 

INDEX/ SECTOR SIGNAL 

SEEK COMPLETE 

PERIPHERAL DEVICE WRITE FAULT 

NO WRITE CURRENT 

EXCESSIVE WRITE ERRORS 

LOGICAL UNIT NOT READY 

LOGICAL UNIT IS IN PROCESS OF BECOMING READY 

LOGICAL UNIT NOT READY 

LOGICAL UNIT NOT READY 

LOGICAL UNIT NOT READY 

LOGICAL UNIT DOES NOT RESPOND TO SELECTION 

REFERENCE POSITION FOUND 

MULTIPLE PERIPHERAL DEVICES SELECTED 

LOGICAL UNIT COMMUNICATION FAILURE 

LOGICAL UNIT COMMUNICATION TIME-OUT 

LOGICAL UNIT COMMUNICATION PARITY ERROR 

TRACK FOLLOWING ERROR 

TRACKING SERVO FAILURE 

FOCUS SERVO FAILURE 



Sense 
code 

09 
OA 
oc 
oc 
oc 
10 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
12 
13 
14 
14 
14 
14 
14 
15 
15 
15 
16 
17 
17 
17 
17 
17 
17 
17 
17 
18 
18 

18 
18 
18 

Meaning 

SPINDLE SERVO FAILURE 

ERROR LOG OVERFLOW 

WRITE ERROR 

Appendix C 277 

WRITE ERROR RECOVERED WITH AUTO REALLOCATION 

WRITE ERROR - AUTO REALLOCATION FAILED 

CRC OR ECC ERROR 

UNRECOVERED READ ERROR 

READ RETRIES EXHAUSTED 

ERROR TOO LONG TO CORRECT 

MULTIPLE READ ERRORS 

UNRECOVERED READ ERROR - AUTO REALLOCATE FAILED 

L-EC UNCORRECTABLE ERROR 

CIRC UNRECOVERED ERROR 

DATA RESYNCHRONIZATION ERROR 

INCOMPLETE BLOCK READ 

NO GAP FOUND 

MISCORRECTED ERROR 

UNRECOVERED READ ERROR - RECOMMEND REASSIGI'>IMENT 

UNRECOVERED READ ERROR- RECOMMEND REWRITE THE DATA 

ADDRESS MARK NOT FOUND FOR ID FIELD 

ADDRESS MARK NOT FOUND FOR DATA FIELD 

RECORDED ENTITY NOT F01J1\H) 

RECORD NOT FOUND 

FILEMARK OR SETMARK NOT FOUND 

END-OF-DATA NOT FOUND 

BLOCK SEQUENCE ERROR 

RANDOM POSITIONING ERROR 

MECHANICAL POSITIONING ERROR 

POSITIOI\.TING ERROR DETECTED BY READ OF MEDIUM 

DATA SYNCHRONIZATION MARK ERROR 

RECOVERED DATA WITH NO ERROR CORRECTION APPLIED 

RECOVERED DATA WITH RETRIES 

RECOVERED DATA WITH POSITIVE HEAD OFFSET 

RECOVERED DATA WITH NEGATIVE HEAD OFFSET 

RECOVERED DATA WITH RETRIES AND/ OR CIRC APPLIED 

RECOVERED DATA USING PREVIOUS SECTOR ID 

RECOVERED DATA WITHOlJT ECC - DATA AUTO-REALLOCATED 

RECOVERED DATA WITHOUT ECC - RECOMMEND REASSIGNMENT 

RECOVERED DATA WITH ERROR CORRECTION APPLIED 

RECOVERED DATA WITH ERROR CORRECTION AND RETRIES 

APPLIED 

RECOVERED DATA - DATA AUTO-REALLOCATED 

RECOVERED DATA WITH CIRC 

RECOVERED DATA WITH LEC 



278 SCSI Bus and IDE Interface 

Sense 
code 

18 
19 
19 
19 
19 
1A 
1B 
1C 
1C 
1C 
1D 
1E 
20 
21 
21 
22 
24 
25 
26 
26 
26 
26 
27 
28 

28 
29 
2A 
2A 
2A 
2B 
2C 
2C 
2C 
2D 
2F 
30 
30 
30 
30 
31 
31 
32 
32 

Meaning 

RECOVERED DATA - RECOMMEND REASSIGNMENT 

DEFECT LIST ERROR 

DEFECT LIST NOT AVAILABLE 

DEFECT LIST ERROR IN PRIMARY LIST 

DEFECT LIST ERROR IN GROWN LIST 

PARAMETER LIST LENGTH ERROR 

SYNCHRONOUS DATA TRANSFER ERROR 

DEFECT LIST NOT FOUND 

PRIMARY DEFECT LIST NOT FOUND 

GROWN DEFECT LIST NOT FOUND 

MISCOMPARE DURING VERIFY OPERATION 

RECOVERED ID WITH ECC CORRECTION 

INVALID COMMAND OPERATION MODE 

LOGICAL BLOCK ADDRESS OUT OF RANGE 

INVALID ELEMENT ADDRESS 

ILLEGAL FUNCTION (SHOULD USE 20 00) 
INVALID FIELD IN CDB 

LOGICAL UNIT NOT SUPPORTERD 

INVALID FIELD IN PARAMETER LIST 

PARAMETER NOT SUPPORTED 

PARAMETER VALUE INVALID 

THRESHOLD PARAMETERS NOT SUPPORTED 

WRITE PROTECTED 

NOT READY TO READY TRANSITION (MEDIUM MAY HAVE 

CHANGED) 

IMPORT OR EXPORT ELEMENT ACCESSED 

POWER ON 

PARAMETERS CHANGED 

MODE PARAMETERS CHANGED 

LOG PARAMETERS CHANGED 

COPY CANNOT EXECUTE SINCE HOST CANNOT DISCONNECT 

COMMAND SEQUENCE ERROR 

TOO MANY WINDOWS SPECIFIED 

INVALID COMBINATION OF WINDOWS SPECIFIED 

OVERWRITE ERROR ON UPDATE IN PLACE 

COMMANDS CLEARED BY ANOTHER INITIATOR 

INCOMPATIBLE MEDIUM INSTALLED 

CANNOT READ MEDIUM - UNKNOWN FORMAT 

CANNOT READ MEDIUM- INCOMPATIBLE FORMAT 

CLEANING CARTRIDGE INSTALLED 

MEDIUM FORMAT CORRUPTED 

FORi\1AT COMMAND FAILED 

NO DEFECT SPARE LOCATION AVAILABLE 

DEFECT LIST UPDATE FAILURE 



Sense 
code 

33 
36 
37 
39 
3A 
3B 
3B 
3B 
3B 
3B 
3B 
3B 
3B 
3B 
3B 
3B 
3B 
3B 
3B 
3B 
3D 
3E 
3F 
3F 
3F 
3F 
40 

40 

41 
42 
43 
44 

45 
46 
47 
48 

49 
4A 
4B 
4C 
4E 
50 
50 
50 

Meaning 

TAPE LENGTH ERROR 

RIBBON 

ROUNDED PARAMETER 

SAVING PARAMETERS NOT SUPPORTED 

MEDIUM NOT PRESENT 

SEQUENTIAL POSITIONING ERROR 

Appendix C 279 

TAPE POSITION ERROR AT BEGINNING-OF-MEDIUM 

TAPE POSITION ERROR AT END-OF-MEDIUM 

TAPE OR ELECTRONIC VERTICAL FORMS UNIT NOT READY 

SLEW FAILURE 

PAPER JAM 

FAILED TO SENSE TOP-OF-FORM 

FAILED TO SENSE BOTTOM-OF-FORM 

REPOSITION ERROR 

READ PAST END OF MEDIUM 

READ PAST BEGINNING OF MEDIUM 

POSITION PAST END OF MEDIUM 

POSITION PAST BEGINNING OF MEDIUM 

MEDIUM DESTINATION ELEMENT FULL 

MEDIUM SOURCE ELEMENT EMPTY 

INVALID BITS IN IDENTIFY MESSAGE 

LOGICAL UNIT HAS NOT SELF-CONFIGURED YET 

TARGET OPERATING CONDITIONS HAVE CHANGED 

MICROCODE HAS BEEN CHANGED 

CHANGED OPERATING DEFINITION 

INQUIRY DATA HAS CHANGED 

RAM FAILURE (SHOULD USE 40 NN) 

DIAGNOSTIC FAILURE ON COMPONENT NN (80H-FFH) 

DATA PATH FAILURE (SHOULD USE 40 NN) 

POWER-ON OR SELF-TEST FAILURE (SHOULD USE 40 NN) 

MESSAGE ERROR 

INTERNAL TARGET FAILURE 

SELECT OR RESELECT FAILURE 

UNSUCCESSFUL SOFT RESET 

SCSI PARITY ERROR 

INITIATOR DETECTED ERROR MESSAGE RECEIVED 

INVALID MESSAGE ER..R.OR 

COMMAND PHASE ERROR 

DATA PHASE ERROR 

LOGICAL UNIT FAILED SELF-CONFIGURATION 

OVERLAPPED COMMANDS ATTEMPTED 

WRITE APPEND ERROR 

WRITE APPEND POSITION ERROR 

POSITION ERROR RELATED TO TIMING 



280 SCSI Bus and IDE Interface 

Sense 
code 

51 
52 
53 
53 
53 
54 
55 
57 
58 
59 
SA 
SA 
SA 
SA 
SB 
SB 
SB 
SB 
sc 
sc 
sc 
60 
61 
61 
61 
62 
63 
64 

Meaning 

ERASE FAILURE 

CARTRIDGE FAULT 

MEDIA LOAD OR EJECT FAILED 

UNLOAD TAPE FAILURE 

MEDIUM REMOVAL PREVENTED 

SCSI TO HOST SYSTEM INTERFACE FAILURE 

SYSTEM RESOURCE FAILURE 

UNABLE TO RECOVER TABLE-OF-CONTENTS 

GENERATION DOES NOT EXIST 

UPDATED BLOCK READ 

OPERATOR REQUEST OR STATE CHANGE INPUT (SPECIFIED) 

OPERATOR MEDIUM REMOVAL REQUEST 

OPERATOR SELECTED WRITE PROTECT 

OPERATOR SELECTED WRITE PERMIT 

LOG EXCEPTION 

THRESHOLD CONDITION MET 

LOG COUNTER AT MAXIMUM 

LOG LIST CODES EXHAUSTED 

RPL STATUS CHANGE 

SPINDLES SYNCHRONIZED 

SPINDLES NOT SYNCHRONIZED 

LAMP FAILURE 

VIDEO ACQUISITION ERROR 

UNABLE TO ACQUIRE VIDEO 

OUT OF FOCUS 

SCAN HEAD POSITIONING ERROR 

END OF USER AREA ENCOUNTERED ON THIS TRACK 

ILLEGAL MODE FOR THIS TRACK 



l 
l 

APPENDIXD 

The SCSI bulletin board 

The ANSI SCSI specification can also be acquired in an electronic format from 
the SCSI bulletin board (SCSI BBS) in the US. The telephone number (as of 
February 1993) is: 

(719) 574-0424 

If you are calling for the first time, you will need to register for a user account. 
In general it takes a few days to set up the account and the permissions that 
allow you to access data on the BBS. The SCSI BBS offers access to the various 
X3T9 documents, among other important documentation and information. You 
can follow, for example, ongoing discussions concerning the SCSI-3 standard. It 
is also possible to access information on other X3T domains such as IPI, ATA, or 
HIP PI. 

WILDCAT! Copyright (c) 87,92 Mustang Software, Inc. All 
Rights Reserved. 
Registration Number: 92-3725. Version: 3.55M (MULTI-LINE). 
Node:1. 

Connected at 2400 bps. ANSI detected. 

The SCSI Bulletin Board System 
Provided by the NCR Corporation 
Using the WildCat! BBS Package Version 3.55M 

New User Call limit .... 60 minutes/call .... 90 minutes/day 
(temporary settings) 
Registered Users ....... 60 minutes/call .... 90 minutes/day 
Modem .................. USR Courier HST(tm) Dual 
Standard(tm) 
Baud rates ............. 3 0 0-14 4 0 0 ( + H S T 16 8 0 0 ) 

What is your first name? friedhelm 
What is your last name? schmidt 
Looking up "FRIEDHELM SCHMIDT". Please wait ... 

281 



282 SCSI Bus and IDE Interface 

Your name "FRIEDHELM SCH~~IOT" was not found in the user 
data base. 

Hello! You are a new user to the system and we want 
to welcome you. 

There are many features to discover, so please read 
the HELP files and experiment with new choices. 

Check the Bulletin menu and Newsletter file for additional 
information. 

Welcome to The SCSI BBS. 
For our BBS records we would like to get some additional 
information. Please answer as correctly as possible to 
enable us to provide the best service and support possi­
ble. 

etc., etc. 

******************** Draft Standard ******************* 

While this BBS is called The SCSI BBS, there are other 
I/0 interfaces covered here as well. I have separated the 
files for these projects into different file areas in a 
rather ad hoc fashion. Here is the map: 

SCSI-1 File Area 7 
SCSI-2 File Area 8 
SCSI-3 File Area 20 
ATA File Area 15 
CAM File Area 13 
ESDI File Area 21 
HIPPI File Area 16 
I PI File Area 14 
Fibre Channel File Area 17 

Please remember that these files are provided for review 
and comment purposes only. The final ANSI-approved ver-
sions will not be posted here - if you want an ANSI­
approved standard, you must purchase the paper copy from 
ANSI 
Cor Global Engineering Documents). Ordering information is 
contained in another bulletin. 



APPENDIXE 

Source code for 
SCANSCSI.PAS 

SCANSCSI is a short utility program that also serves as a good example of an 
ASPI application. It checks all LUNs of all SCSI IDs to see whether a device is 
present. It does not rely on the ASPI internal table of devices but rather sends an 
INQUIRY command to each LUN. In this way devices that have been added to the 
bus after the loading of the ASPI manager are also discovered. 

program scanscsi(input,output); 

\*** Copyright Notice: This source code belongs to the 
book 

"The SCSI Bus and IDE Interface" from Addison-Wesley. 

It may be ported and modified for non-commercial 
purposes when this copyright notice is included. 
Authorization of the publisher is necessary for 
commercial purposes. 

uses CRT, DOS; 

const 
PNAM 

( f s) , ; 
string='SCSI-Scanner Vl.O rev 003 25.2.93 

{ASPI Specific Constants/ 

ASPI_SRB_LENGTH = $7F; 

SRB COMMAND CODE = $00; 
SRB_STATUS = $01; 
SRB_TARGET ID = $08; 
SRB LUN $09; 
SRB_DATA_LENGTH $0A; 
SRB BUFFER OFS = $OF; 

283 



284 SCSI Bus and IDE Interface 

SRB_BUFFER_SEG = $11; 
SRB_SCSI_LEN = $17; 
SRB_HA_STATUS = $18; 
SRB_TARGET_STATUS= $19; 
SRB SCSI CMD $40; 

SRB X SCSICMD $02; 

{SCSI Specific Constants} 

SCSI CMD_LENGTH = 11; 

{Program specific constants} 

DATA_LENGTH = $FF; 

{Messages} 

ASPI_CONNECTED 
ASPI_OPEN_ERROR 

='ASPI loaded'; 
='Error opening ASPI'; 

type 

{Generic Types} 
MemAdress = 

{ASPI-Types} 

record 
Offset: integer; 
Segment: integer; 

end; 

SRBsize= 0 .. ASPI_SRB_LENGTH; 
SRBarray array[SRBsize] of byte; 

{SCSI-Types} 

SCSICmdSize = 0 .. SCSI_CMD_LENGTH; 
SCSICmd = record 

Command: array[SCSICmdSize] of byte; 
Status: byte; 
ID: byte; 
LUN: byte; 
Len: byte; 

TimeOut: integer; 
end; 

Bufferlength ~ 0 .. DATA_LENGTH; 
DataBufferType = array[Bufferlength] of byte; 



var 
CommandBuffer SCSICmd; 
DataBuffer DataBufferType; 
ID,LUN byte; 
AspiEntryPoint: MemAdress; 
SRB: SRBarray; 
SCSIConnected: string; 

{**** Low Level Functions} 

function FileOpen(FileName:string):integer; 

const DOS_OPEN_FILE = $30; 

var register: registers; 

begin 
FileName:=FileName+chr(O); 
with register 
do 

begin 
ax := DOS OPEN FILE shl 8; 
bx:=O; 
cx:=O; 
ds seg(FileName); 

Appendix E 285 

dx := ofs(FileName)+l; because Pascal strings carry 
their length in byte 0 } 

end; 
MSDOS(register); 
if (register.flags and FCarry) > 0 
then FileOpen:=-1 
else FileOpen:=register.ax; 

end; 

function FileClose(FileHandle:integer):integer; 

const DOS_CLOSE_FILE = $3E; 

var register: registers; 

begin 
with register 
do 

begin 
ax := DOS_CLOSE FILE shl 8; 
bx:=FileHandle; 

end; 
MSDOS(register); 



286 SCSI Bus and IDE Interface 

if Cregister.flags and FCarry) 0 
then FileClose:=O 
else FileClose:=register.ax; 

end; 

{**** Miscellanous Generic Functions} 

{**** SCSI generic functions} 

function SCSICmdlen(Opcode: 
begin 

SCSICmdlen:=O; 

byte): byte; 

if Opcode and $EO 
if Opcode and $EO 
if Opcode and $EO 
if Opcode and $EO 

$00 then SCSICmdlen:=6; 
$20 then SCSICmdlen:=lO; 
$40 then SCSICmdlen:=lO; 
$AO then SCSICmdlen:=l2; 

end; 

{**** ASPI-specific functions} 

procedure GetASPIEntry(FileHandle:integer; var 
AspiEntry:MemAdress); 

const ASPI_ENTRY_LENGTH = 4; 
DOS IOCTL READ = $4402; 

var register: registers; 

begin 
with register 
do 

begin 
ax := DOS_IOCTL_READ; 
bx:=FileHandle; 
cx:=ASPI_ENTRY_LENGTH; 
ds := segCAspi Entry); 
dx := ofs(AspiEntry); 

end; 
fv1SDOS( register); 

end; 

procedure SCSI2SRB(var SRB: SRBarray; Command: SCSICmd; 
var DataBuffer: DataBufferType); 

var k:integer; 
begin 

for k:=O to High(SRB) do SRB[k]:=O; 
SRB[SRB_COMMAND_CODEJ:=SRB_X_SCSICMD; 



with Command do 
begin 

SRB[SRB_TARGET_IDJ:=ID; 
SRB[SRB_LUN]:=LUN; 

Appendix E 287 

SRB[SRB_SCSI EN]:=SCSICmdlen(Command[1]); 
for k:=O to SRB[SRB_SCSI_LEN]-1 do 

SRB[SRB_SCSI_CMD+k]:=Command[k]; 
end; 

SRB[SRB_DATA_LENGTH]:=lo(DATA_LENGTH); 
SRB[SRB_DATA_LENGTH+1]:=hi(DATA_LENGTH); 
SRB[SRB_BUFFER_SEG]:=lo(seg(DataBuffer)); 
SRB[SRB_BUFFER_SEG+1]:=hi(seg(DataBuffer)); 
SRB[SRB_BUFFER_OFS]:=lo(ofs(DataBuffer)); 
SRB[SRB_BUFFER_OFS+1]:=hi(ofs(DataBuffer)); 

end; 

procedure SRBexecute(var SRB: SRBarray); 
var SRBsegment, SRBoffset: integer; 

begin 

SRBsegment:=seg(SRB); 
SRBoffset:=ofs(SRB); 

asm 
mov ax, SRBsegment 
push ax 
mov ax, SRBoffset 
push ax 
LEA BX, As pi Entry Point 
call DWORD PTR [bx] 
add sp,4 
end; 

end; 

function InitializeASPI(var AspiEntrypoint:MemAdress): 
boolean; 

const ASPI_NAME = 'SCSIMGR$'; 

var result: integer; 
AspiFileHandle: integer; 

begin 
AspiFileHandle:=FileOpen(ASPI_NAME); 
if AspiFileHandle>-1 
then 



288 SCSI Bus and IDE Interface 

begin 
GetASPIEntry(AspiFileHandle,AspiEntryPoint); 
FileCloseCAspiFileHandle); 
InitializeASPI:=true; 

end 
else InitializeASPI:=false; 

end; 

procedure initialize; 

var ByteNbr : integer; 

begin 
with CommandBuffer do 
begin 

for ByteNbr:=O to SCSI CMD_LENGTH do 
Command[ByteNbr]:=O; 

I D :=0; 
LUN:=O; 
Status:=$FF; 

end; 
for ByteNbr:=O to DATA_LENGTH do DataBuffer[ByteNbr]:=O; 

end; 

Procedure InquireCID,LUN:byte); 
const INQUIRY : array [SCSICmdSize] of byte 
($12,$0,$0,$0,$ff,$0,$0,$0,$0,$0,$0,$0); 

var k: integer; 
Status: byte; 

begin 
for k:=O to SCSI CMD_LENGTH do 

CommandBuffer.command[k]:=INQUIRY[k]; 
CommandBuffer.ID:=ID; 
CommandBuffer.LUN:=LUN; 
If LUN=O then writeln('SCSI-ID ',ID,': '); 
SCSI2SRBCSRB,Command8uffer.Data8uffer); 
SRBexecute(SRB); 
repeat until SRB[SRB_STATUSJ<>O; 
if SRB[SRB_STATUS] = 1 then 
if SRB[SRB_HA_STATUS]= 0 then 

begin 
Status:=DataBuffer[OJ and $EO; 
if Status=O then 

begin 
write(' LUN ',LUN,': '); 
for k:=S to 35 do writeCchr(DataBuffer[kJ)); 
writeln; 

* 



end; 
end 

else if LUN=O then writeln; 
end; 

begin 
writeln(PNAM); 
initialize; 
if InitializeASPI(AspiEntryPoint) 
then 

begin 
writeln(ASPI_CONNECTED); 
for ID:=O to 7 do 
for LUN:=O to 7 do Inquire(ID,LUN); 

end 
else writeln(ASPI_OPEN_ERROR); 

end. 

Appendix E 289 



290 

Glossary 

Active high An electrical signal is active high when it is interpreted as true for 
high voltage levels. See also Active low. 

Active low A signal that is interpreted as true in the low voltage state. Often 
such signals have a bar over the name, such as DASP. 

SCSI Since all SCSI signals are active low they are not marked in any special way in 
the SCSI chapters. 

IDE Low active signals are marked with a bar in the IDE chapters. 

AT bus Refers to either the system bus of IBM AT compatible computers, the 
ISA bus, or the IDE interface. The term AT bus is not used in this book but 
instead ISA bus and IDE interface are used. 

ATA standard The ANSI version of the IDE interface is called ATA. The name 
comes from AT Attachment. In this book ATA is used whenever the ANSI 
standard is meant. 

Bandwidth see Throughput. 
Cache A small storage capable of very fast access. For disk drives such a cache 

is implemented as RAM, usually at least 1 Mbyte in size. All data read from 
the medium is stored here. Data that is already in the cache can be read up 
to 20 times faster. When the cache is full the oldest data is overwritten. 

SCSI Contingent allegiance condition This is created for an I_T_x nexus after a 
CHECK CONDITION or COMMAND TERMINATED status. In this condition a LUN 
holds sense data pertaining to the I_T_x nexus. If a LUN is only capable of 
holding data for a single I_T_x nexus then attempts by all other initiators 
to access the LUN will be met with BUSY status. In the event that a TAGGED 

QUEUE is implemented for this LUN other commands will not be affected 
(see Extended contingent allegiance condition). The contingent allegiance 
condition ends when a new command is received from the same initiator 
or by an ABORT or BUS DEVICE RESET message. 



Glossary 291 

Controller In this book a controller is a system component that controls a 
peripheral device. A controller may reside on the peripheral itself or be 
integrated into the host system. The term is often used in reference to a 
subsystem that is actually a combination of a controller and host adapter. 
As an example, a disk drive controller allows for the attachment of disk 
drives to the host system. 

SCSI A SCSI controller allows the connecting of one or more peripheral devices to the 
SCSI bus. The device that connects the SCSI bus to the host system is 
called a host adapter. 

CRC (cyclic redundancy check) A checksum that is written in addition to the 
data to a sector. With the aid of CRC data errors can be detected with high­
er confidence than with a simple parity bit. 

Data rate see Throughput. 
DMA (direct memory access) Refers to the ability of a host adapter to write 

and read host system memory without host intervention. This not only 
makes possible very fast data transfers but also frees the host processor to 
do other tasks. This is especially advantageous in multi-tasking systems 
where multiple tasks are the norm. Programmed I/0 (PIO), on the other 
hand, is performed entirely by the host processor. 

ECC (error correction code) Additional bits written with the data that allow, 
to a certain degree, the recognition and correction of data errors. Disk 
drives always employ error correction codes. 

SCSI Extended contingent allegiance condition This extends the normal contin­
gent allegiance condition in that the execution of all commands in the 
tagged queue of this LUN is also suspended. This condition exists for an 
I_T_L nexus and is entered by the target in certain error situations. The 
target sends an INITIATE RECOVERY message after a CHECK CONDITION status. 
Afterwards the initiator should take appropriate measures to recover from 
the error. The extended contingent allegiance condition is ended when the 
initiator sends a RELEASE RECOVERY message. 

Formatted capacity As opposed to unformatted capacity, this is the amount of 
space available to store information on a disk drive. The replacement sec­
tors are not included. The formatted capacity of a drive is usually between 
10 and 30°/o less than the unformatted capacity. 

Formatting A hard disk or replaceable medium disk needs to be formatted 
before data can be stored on it. Here sectors for data storage are written to 
the medium. Since the sectors take up more room than just what is need­
ed for data storage there arises a difference between formatted and unfor­
matted drive capacity. 



292 SCSI Bus and IDE Interface 

Geometry The geometry of a disk drive describes the format of the drive in 
terms of cylinders,. heads,. and sectors. For exantple,. two drives with dif­
ferent geometries differ in the number of cylinders. 

Hard sector A type of disk drive formatting where the beginning of each sec­
tor is marked by a pulse generated by the head disk assembly. In compar­
ison,. the pulse from a soft sector format is generated from the read/write 
electronics and requires space on the medium. 

Host adapter A host adapter allows a controller to be connected to the I/0 bus 
of the host. The host adapter may be integrated on the motherboard of the 
system or it may be implemented as a separate board. 

I/0 bus A computer bus for the attachment of peripheral devices. 

SCSI I/0 process Any logical connection between two SCSI devices is referred to as 
an I/0 process. It begins with the selection of a target by an initiator. It 
exists during the entire command execution or command chain including 
all BUS FREE periods. Normally,. the process ends after the message COM­

MAND COMPLETE with a BUS FREE phase . 

. IDE interface A disk drive interface used primarily in the PC domain. The 
name comes from integrated disk electronics. Also known as ATA inter­
face. 

Index A pulse indicating the beginning of a track on a rotating disk. 

SCSI Initiator One of two possible devices types that occupy the SCSI bus. The ini­
tiator is the device that initiates the I/0 process. As soon as the target 
device is selected it controls the I/0 process as well as the SCSI protocol. 

ISA bus The original system bus of the IBM AT. The bus has since become a 
standard and is used by all AT compatible systems. The name comes from 
industry standard architecture. 

SCSI I_T_x Nexus Either an I_T_L nexus or an I_T_L_Q nexus. 

SCSI LUN (logical unit) Each SCSI target contains at least one and up to eight 
LUNs. A LUN is the actual physical device. For example a SCSI controller 
connected to three disk drives controls three LUNs. 

Mapping For disk drives,. the correspondence between physical sectors and 
logical block numbers is accomplished through a mapping. A linear map­
ping refers to the approach where first sectors of a track,. then tracks of a 
cylinder,. and finally cylinders are exhausted for increasing LBN numbers. 



Glossary 293 

This approach insures that the access time for continuous logical blocks is 
minimaL 

Master When two devices or systems are in such a relationship that one of 
them has control over the other, the controlling device is the master and 
the other device the slave. 

IDE Master drive For IDE, drive 0 is the master drive. The term derives from the 
fact that when spindle synchronization is used this drive supplies the 
clock for the second drive. Otherwise the drives are independent. 

Mirrored drives Two disk drives that are maintained to hold exactly the same 
information are said to be mirrored. Mirroring is the responsibility of a con­
troller or special software and is transparent to the user. Mirrored drives 
are used for redundancy purposes in the event of a hardware failure. 

Parity bit Simple error detection for a data byte. A parity bit transferred with 
the data byte allows the receiver to detect 1-bit errors. Multiple bit errors 
may not be detected. 

PIO (programmed I/0) The exchange of data via a register or port by program 
control. In contrast to direct memory access (DMA), the processor moves 
each individual piece of data to memory, which is very time consuming. 

Redundancy Insurance against data loss or downtime through the use of 
duplicate components. In order to guarantee zero downtime some sys­
tems allow for replacements 'on-the-fly', or hot swaps. 

Rotational position sensing (RPS) A controller connected to multiple disk 
drives which monitors the relative rotational position of each drive is said 
to employ RPS. This is accomplished by monitoring the index pulses of 
the drives. When processing multiple I/0 requests this allows the con­
troller to choose the drive that can be accessed with minimal access time. 

Slave see Master. 

IDE Slave drive see Master drive. 

Soft sectoring A method of formatting for a disk drive. Here the pulse mark­
ing the beginning of a sector is written to the medium during formatting 
and read from the medium during access to the sector, in contrast to hard 
sectoring, which uses slightly less space on the disk. 

Spindle synchronization Two or more disk drives that are synchronized for 
spindle speed and rotational position are said to employ spindle synchro­
nization. This allows, for example, simultaneous writing of mirrored drives. 

SCSI Status A byte sent from the target to the initiator at the end of a command 
sequence. This byte reflects the success or failure of the command execu­
tion. Afterwards the message COMMAND COMPLETE normally follows. 



294 SCSI Bus and IDE Interface 

SCSI Status phase The SCSI bus phase where a status byte is transferred from the 
target to the initiator. 

SCSI Target One of two possible SCSI device types that occupy the SCSI bus. The 
target is the device that executes commands for the initiator. After the 
selection phase the target takes control of bus protocol. 

IDE Task file Another name for the command register block of an IDE controller. 

Throughput (bandwidth, data rate) Given in Mbytes per secondf throughput 
relates how much data can be transferred over the bus in a given time. 
Throughput is the product of the transfer rate in MHz times the bus width 
in bytes. For examplef a 32-bit wide SCSI bus with a transfer rate of 10 
MHz results in a throughput of 40 Mbytes per second. As a further differ­
entiationf there is also the peak transfer rate and sustained transfer rate. 
For examplef a disk drive typically has a sustained transfer rate of 3 
Mbytes per second. This is how fast the data can be read from the medi­
um. Howeverf a controller using Fast SCSI might be able to reach a peak 
data rate of 10 Mbytes per second. 

Transfer rate The speed at which a data transfer occurs measured in MHz. In 
the case of 8-bit transfers this is identical to throughput in Mbytes per sec­
ond. It is often used to express serial rates like that of the data from the 
head of a drive. Here a transfer rate of 24 MHz corresponds to a through­
put of 3 Mbytes per second. 

Unformatted capacity The capacity of a disk drive or medium before format­
ting. Only the formatted capacity is important to the user. Unformatted 
capacity lies approximately 10 to 30°/o higher than this. Manufacturers cite 
unformatted capacity since formatted capacity is a function of the exact 
method of formatting. 

SCSI Unit attention condition This condition exists in a LUN relative to certain ini­
tiators when a status change has occurred in the LUN that the initiators 
did not cause. Examples of such status changes are the insertion of a medi­
um in a replaceable medium drivef the setting of MODE parameters from a 
third-party initiator or a SCSI reset. As long as a unit attention condition 
exists the LUN will reply to all COITLinands with a CHECK CONDITION status 
and status key UNIT AITENTIONf with the exception of INQUIRY and REQUEST 
SENSEf which will be executed normally. After this the LUN enters into a 
contingent allegiance condition. The unit attention condition ends for an 
initiator as soon as it receives the CHECK CONDITION status. Unit attention 
can also hold for all LUNs and all initiators. This occursf for examplef at 
power-up or after a SCSI reset. 



Index 

1/2 inch tape 182 
10 byte command 136 
12 byte command 136 
6 byte command 134 

A 

A cable 19/23, 92 
ABORT 128, 252 
abort corn.mand 56 
ABORT TAG 128 
access time 18 
ACKNOWLEDGE MEDIA CHANGE 70 
ACTIVE (status) 65 
address register 521' 55 
addressing 

logical 60 
physical 60 
relative 23, 140 

AE~ 129,140,157,162,208 
alternate status register 53 
ANSI 37,40 
ANSI version 38, 40, 140 
asynchronous 8, 12, 25, 81, 109, 111, 

114,117,124,140,208,263,267 
asynchronous event 140,208 
AT bus 33 3 7 .11 n A r:: 11 '7 r::::n 1 nt:: 

t 'J' -:rv, 7Jr 7/ r JV, .LVV1 

122,125,128/133,268 
AT task file 50 
ATA interface 37/ 40/ 44, 47, 50, 52, 

60 
audio 214,222/227 

B 

B cable 19/ 23/ 92 
backplane 31 
block descriptor 133, 150, 171/ 190/ 

201,203,229 
block format 180, 182 
BOM 180 
BPI 182 
bridge controller 40, 79, 90, 132/ 156, 

193 
buffer 161 

double ported 63 
single ported 63, 259 

buffer memory 16 
bus 29 

I/0 31 
memory 32 
universal 32, 38 
VME 31/33 

BUS DEVICE RESET 128 
BUS FREE phase 105 
bytes after index forrrtat 15, 27, 223 

c 
cache 39; 52 1 70 1 72, 129, 144, 162, 

166,172,177,220,229 
CAM 37,247 
capacity 

formatted 15, 17 
unformatted 17 

ccs 78, 84, 140/ 149 

295 



296 SCSI Bus and IDE Interface 

CD-ROM 4, 14, 86, 91, 154, 158, 214, 
222,227,229,267 

CDC 13 
Centronics 9, 12 
Centronics protocol 12 
CHANGE DEFINITION 149 
channel 210 
CHECK POWER MODE 70 
CHS mode 53, 60 
CLEAR QUEUE 128 
Clist 161 
CLV 222 
command 

control byte 135 
opcode 134 
status 137 
types 136 

command chain 121, 135 
command classes 

class 1: 55 
class 2: 56 
class 3: 57 
class 4: 57 
class 5: 58 

COMMAND COMPLETE 121 
command descriptor block 133, 150, 

152,171,190,203,229 
command phase (IDE) 57 
command phase (SCSI) 110 
COMMAND phase 110, 252 
command register 54 
commands 

10 byte 136 
12 byte 136 
6 byte 134 

commands, optional 70 
communications devices 129, 210, 

213 
Compaq 37 
corJ1ector 96 
Conner Peripherals 59 
control byte 135 
control mode page 157 
controller 18, 79 
CRC 15,158 
cylinder 14, 60 
cylinder number register 53 
cylinder skew 16, 17, 158, 173 

D 

DAT 182 
DATA phase 111, 122, 124 
data rate 30 
data registers 50 
data separator 15, 18, 23 
data width 30, 32 
defect descriptor 171 
defect list 23, 26, 66, 78, 84, 160, 168, 

171 
defect management 62, 78, 161 
defects, grown 161 
deferred error 157, 185 
device classes 132 

list of 133 
device control register 54 
diagnostic pages 132, 148 
diagnostics 51, 66, 148 
differential 20, 77, 81, 92, 96, 100, 

259,262 
direct memory access 47, 163 
DISCONNECT 123 
disconnect-reconnect page 123, 156, 

237 
disconnect privilege 121, 123 
Dlist 161 
DMA 40, 46, 57, 64, 70, 73, 162, 265 
DOOR LOCK 70 
DOOR UNLOCK 70 
draft proposal 77 
drive/head register 53 

E 

ECB bus 31}' 33 
ECC 15, 52, 69, 74, 83, 158, 166 
ECC error 52, 69, 74, 166 
EIA 7 
EISA bus 39 
element 233 
embedded controller 38, 79, 132 
emulation 194, 259 
EOD 183 
EOM 180 
ERASE 10,187,219 
error code 66 
error register 51 



ESDI commands 27 
EXABYTE 182 
EXCHANGE MEDIUM 237 
EXECUTE DRIVE DIAGNOSTICS 66 
Extends 160 

F 
fast SCSI 113 
feature register 52 
file mark 183, 186 
flag bit 121, 135, 250, 267 
format 14 
FORMAT 68, 168, 196 
format chip 15 
FORMAT TRACK 68 
FORMAT UNIT 168 

G 

generation 217 
geometry 14, 60, 68, 70, 175, 238 
GET MESSAGE(l 0) 211 
GET MESSAGE(12) 211 
GET MESSAGE(6) 211 
Glist 161 
glitch 107 

H 

handshake 12,25,58,81,109 
hard disk 14 
hard disk geometry 14, 175 
hard sectoring 15, 23, 175 
hardware reset 58, 72, 248 
HDA 18 
head 60 
HEAD OF QUEUE TAG 127 
header 15 
host adapter 18, 78, 89 

I 

I/0 process 118, 131 
I~T_Lnexus 120,126,128 
ID 79 
IDE adapter 38 

IDE command 66 
IDE command classes 55 
IDE controller 50 
IDE signals 44-7 
IDENTIFY 70, 120 
IDENTIFY DRIVE 70 
IDLE (command) 70 
IDLE (state) 65, 70 
IDLE IMMEDIATE 70 
IGNORE WIDE RESIDUE 126 
index 14 
index format 172 
initialization pattern 171 
INITIALIZE DRIVE PARAMETERS 68 
initiator 79, 89 
INITIATOR DETECTED ERROR 122 
INQUIRY 138, 250, 255 
interface· 

ESDI 13 
IDE 37 

Index 297 

peripheral 4, 19, 29, 31, 79, 84 
physical 5, 7, 10, 12 
printer 5, 10 
serial 7 
SMD 13,28 
ST412 13 
ST506 13, 18 

interleave 16, 64, 68, 158, 169, 173 
interrupt request 32, 46, 52 
IPS 182 

L 

large frame 223 
LBA mode 53, 61 
LB~ 135,158,167,171,185,189,219 
linear mapping 60, 158, 223 
link bit 10, 32, 121, 135, 140, 166 
LINKED COMMAND COMPLETE 121 
LOAD UNLOAD 189 
LOCATE 188 
logic analyzer 58, 107, 257 
logical block 135, 159, 214 
logical block (tape) 183 
logical unit 131 
LUN 120, 131, 135 



298 SCSI Bus and IDE Interface 

M 

mandatory commands 66,136 
mapping 55,60,70, 158,168,223, 

239 
mapping, linear 60, 158, 223 
mass storage 3, 31, 84, 163 
master drive 38, 46, 53, 55, 58, 66, 

72, 90, 177 
measurement units 205 
medium changer 233,237 
medium defect 27, 62, 78, 160, 168, 

172, 175 
MEDIUM SCAN 218 
message 

format 117 
phase 109 
system 116 

message codes list 119 
MESSAGE PARlTY ERROR 129 
MESSAGE REJECT 129 
message, extended 109, 118, 124, 

127 
MFM format 19,22 
mode 

buffered 183, 190, 194, 197 
unbuffered 183, 190, 197 

mode parameter pages 
all device classes 154 
CD-ROM 229 
communications devices 213 
disk drives 173 
medium changers 237 
printers 197 
scanners 204 
tape devices 191 

mode parameters 132 
MODE SELECT 149 
MODE SENSE 149 
model 

disk drive 14 
IDE drive 60 
peripheral device 5 
peripheral interface 5 

MODIFY DATA POINTER 122 
mount 160, 180 
MOVE MEDIUM 236 
multi-initiator 146 

N 
nexus 119, 126, 128 
NO OPERATION 122 
notch 174, 178 

0 

offset 114 
opcode 26,55,66, 103,123,134,194, 

207,211 
open collector 19, 81 
optical storage 4, 14, 160, 214, 221, 

233 
ORDERED QUEUE TAG 127 

p 

parameter list 133, 148 
parity error 8, 25, 95, 117, 122, 129, 

268 
partition 153, 183, 186, 191 
PAUSE/RESUME 227 
PC host adapter 19, 50, 79, 89, 96, 

207,240,266,268 
PCMIA 41 
peripheral device page 156 
peripheral device type 140 
peripheral interfaces 5 
peripheral qualifier 141 
phases 102 
pin assignments 

differential 82 
single ended 81 

PIO 47, 50, 55, 64 
PLAY AUDIO(lO) 227 
PLAY AUDI0(12) 227 
PLAY AUDIO MSF 227 
PLAY AUDIO TRACK/INDEX 227 
Plist 161 
PostScript 5 
power condition 64, 133, 160, 207, 

245 
power-up cycle 46, 149 
pre-fetch 162, 172, 178 
PRlNT 194, 196 
printers 4, 9, 79, 132, 193, 196, 247 
priority 31, 89, 178 



processor device 129, 140, 206, 210, 
259,262 

programmed I/0 47, 64, 123 
protocol XON/XOFF 9 

Q 

Q-22 bus 30,33 
QIC 182 
queue 23, 106, 120, 126/ 141, 157, 

261 

R 
RAID array 79, 177 
READ 185, 203 
READ(lO) 165 
READ(6) 165 
READ BLOCK LIMITS 188 
READ BUFFER 70 
READ CD-ROM CAPACITY 225 
READ DMA 70 
READ DRIVE STATE 71 
READ GENERATION 217 
READ LONG 69 f 166 
READ MULTIPLE 71 
READ SECTORS 68 
READ TOC 225 
READ UPDATED BLOCK 218 
READ VERIFY SECTORS 69 
read I write head 14 
ready condition 180 
real time 30 
reallocation 62, 161 
RECALIBRATE 68 
RECEIVE 207 
reconnection 123 
recording format 4, 158, 160, 174, 

180,222 
red book 222 
register block 50 
register model 50 
RELEASE 146 
REQ/ ACK offset 114, 264 
REQ/ ACK sequence 109 
request/ acknowledge handshake 

12, 25, 81, 109 

Index 299 

RESELECTION phase 108 
reselection, unexpected 121 
RESERVATION CONFLICT 146 
reservation, third-party 147 
RESERVE 146 
reset, hard 38, 58, 72, 140, 248 
REST (command) 72 
REST (state) 65 
RESTORE DRIVE STATE 62 
RESTORE POINTERS 122 
REWIND 184 
RLL format 19, 22 
rotational latency 18, 23, 177 
rotational position locking 177 
rotational position sensing 23 
RPS 23 
RS-232 7, 198 

s 
Si\SI 77,91,165 
SAVE DATA POINTER 122 
SCAN 203,218,256 
scan window 201 
scanner 4,132,200,203,247 
SCSI 

analyzer 104,107,125,257 
bulletin board 85 
bus timing 104 
chips 262 
configurations 89, 91 
controller 89 
device 79 
differential 100 
emulator 257,259 
fast 113 
history 41 
messages 117 
pointers 122 
priority 31, 89 
signals 92 
single-ended 96 
standard 85 
synchronous 113 
throughput 82 
wide 78, 80, 82, 92, 125 



300 SCSI Bus and IDE Interface 

SCSI Bus phases 
ARBITRATION 106 
BUS FREE 105 
DATA 111 
MESSAGE 109 
RESELECTION 108 
SELECTION 106 
STATUS 112 

SCSI pointers 122 
SCSI-1 83 
SCSI-2 difference to SCSI-1 104, 

106, 113, 131, 148, 184 
SCSI-3 5, 78, 84 
Seagate 13 
sector 14, 60 
sector buffer 16, 55, 63, 68, 72, 161 
sector count register 52 
sector format 15 
sector number register 53 
sector skew 16, 158, 173 
seek time 18 
SELECTION 106 
SEND 208 
SEND DIAGNOSTIC 147 
SEND MESSAGE(lO) 211 
SEND MESSAGE(12) 211 
SEND MESSAGE(6) 211 
sense code 144 
sense data 143 
sense key 144 
sequential access 4, 61 
serial transfer 7 
SET FEATURES 72 
set mark 183 
SET MULTIPLE MODE 72 
SET WINDOW 202 
setmark 183 
signal level 5, 9, 46, 97, 117 
SIMPLE QUEUE TAG 127 
single ended 81 
slave drive 38, 46, 55, 58 
SLEEP (command) 72 
SLEEP (state) 65 
SLEW AND PRINT 196 
soft sectoring 15, 21, 23, 175 
software interface 7, 52, 78, 83, 194, 

247 
SPACE 186 

spindle synchronization 176 
spiral offset 16 
SRB 248,255 
STANDBY (command) 73 
STANDBY (state) 65, 70 
STANDBY IMMEDIATE 73 
status 137 

CHECK CONDITION 137 
list of 137 
RESERVATION CONFLICT 146 

status byte 137 
STATUS phase 112 
status register 53 
STOP PRINT 196 
storage medium 4 
surface 14 
SYNCHRONIZE BUFFER 196 
SYNCHRONOUS DATA TRANSFER REQUEST 

124 
synchronous SCSI 113 
synchronous transfer period 114 
synchronous transfers 8 

T 

tagged queue 120 
tape device 180 
tape marks 180, 183, 186 
target 79, 90, 131 
target emulator 259 
target routine 120, 128, 131, 135, 

208,250,267 
TERMINATE I/ 0 PROCESS 128 
termination resistors 19, 97 
termination, incorrect 99, 127 
terminator 19, 81, 94, 100 
TEST UNIT READY 141 
throughput 

peak 17 
sustained 17 

timing diagrams 257 
track (CD-ROM) 223 
track 14 
track skew 16, 158, 173 
transfer period 114, 116, 124 
transfer rate 17 
transfer rate, peak 8, 18 



u 
unexpected bus free 121 
UNIT ATTENTION condition 133, 157 
UPDATE BLOCK 217 

v 
volume tag 235 

w 
Western Digital 37 
WIDE DATA TRANSFER REQUEST 125 
WORM drive 14, 158, 214 
WRITE 185 
WRITE(lO) 165 
WRITE(6) 165 
WRITE BUFFER 73 
write current 16, 21, 23 

WRITE DMA 73 
WRITE FILEMARKS 187 
WRITE LONG 69, 166 
WRITE MULTIPLE 73 

Index 301 

write precompensation 52 
write protection 180 
WRITE SAME 73 
WRITE SECTORS 69 
write splice 16 
write-through cache 163 
WRITE VERIFY 7 4 

y 

yellow book 222 

z 
zone 173 
zone bit recording 61, 158, 160 



' "[q r·r·,r··r · rJ 
_llB 0~~- Dll3 

-:• r1cl. 11J R~ ·£nts1~£.l!!B 

Friedheim Schmidt 

Almost all modern computers including 
PCs, workstations and mainframes are 
equipped with a SCSI interface. SCSI 

bus is designed for hard drives, tape drives, CO­
ROMs, scanners and 
printers, while the IDE 
hard disk interface is found 
almost exclusively in the 
world of IBM PC 
compatibles. 

Outside the ANSI 
standard documentation, 
little additional information 
has been available about 
either specification - untU 

now. Tbt SCSI BUJ .w IDE lnterftue provides 
an accessible description of both interfaces, 
including an explanation of essential terminology 
together with a breakdown of the commands and 
protocols. This book is the perfect tutor to SCSI 
and IDE and an invaluable guide to the ANSI 
literature. 

Friedheim Schmidt is the marketing ms.nager for 
SEICOM, a networking distributor based in Munich, 
Germany. An expert in SCSI, he spent eight years as 
European Technical Manager for EMU LEX, one of the 
pioneers in SCSI development. 

Features include: 

A description of peripheral core 
technologies and device models 

Detailed descriptions of SCSI and IDE, 
including the physical and logical interfaces, 
command sets and a summary of the 
essential terminology. 

Thorough cross-referencing to the 
previously impenetrable ANSI 
documentation 

A wealth of program examples with 
thorough explanations that will enable you 
either to expa.nd on the source code 
provided or write your own applications 

A practical chapter on testing SCSI targets 
that will enable you to check that your SCSI 
peripherals are working correctly 

A disk eontaining source code for the 
program examples listed in the book and a 
SCSI monitor tool for testing and 
troubleshooting SCSI devices 

lllllllllillilllllllll!llllllllllllll lll 
XOOODJ9X43 

u~ed - Ver; GooJ - Tt1e Sc;;i Bus 
arK' ide !f'terrace Protoro! ~. 




